MATH661/2 Revised Lesson Plan

1 MATH661

Week	Topic
1	Floating point arithmetic. Approximating sequences. Order of convergence. Summation
	order and floating point non-associativity. Finite difference approximation of derivative
	and catastrophic loss of precision. Condition number.
2	Linear combinations. Vector spaces and subspaces. Bases. Dimension. Orthogonal
	matrices. Matrix subspaces. Fundamental theorem of linear algebra. Rank-nullity.
3	Vector and matrix norms. Singular value decomposition theorem & proof. Link to
	Karhunen-Loève. Rank-1 expansions. Operator approximation.
4	Linear statement of principal applied mathematics problems: coordinate changes (linear
	systems), reduced-order models (least squares), operator invariants (eigenproblems).
	Solution by the SVD. Pseudo-inverse. Midterm 1.
5	Additional operator representations: QR , LU , LL^* , QTQ^* . Computational complexity.
6	Projection: Householder, Givens. Hessenberg form. QR least-squares solution. Stability
7	Interpolation in the monomial basis. Newton form (matrix triangularization). Lagrange
	form, including barycentric. Continuum limits. Taylor series. Residuals. Finite differ-
	ence calculus.
8	Interpolation in <i>B</i> -spline basis. Bezier curves and surfaces. Computational geometry.
	Simplicia. Midterm 2.
9	Approximation in monomial basis. Continuum norms. Stationarity conditions & extrema.
10	L_1, L_2, L_∞ approximants (momentum, energy, constraints of physical systems).
10	Interpolation in orthogonal bases: trigonometric, Legendre, Laguerre, Hermite, Bessel,
1 1	spherical harmonics. Fast decompositions.
11	Linear operator approximation 1: quadrature $(\int dx^n)$. Newton-Cotes. Moments. Gauss.
10	Convergence. Stability.
12	Linear operator approximation 2: differentiation $(d/dx^n, \nabla, \nabla^2)$, linear ODE $(\sum_k a_k d/dx^n, \nabla, \nabla^2)$
19	dx^k). Convergence. Stability.
13	Non-linear operator approximation 1: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 0$. 0-degree approximant (bisection) 1 degree approximants (accent Newton). Convergence, fixed points
14	tion), 1-degree approximants (secant, Newton). Convergence, fixed points.
14	Non-linear operator approximation 2: Non-linear operator composition $f = l_n \circ \ldots \circ l_1$, Ouasi linear approximants $\mathbf{A} = \boldsymbol{\sigma} \circ \mathbf{I}$, $\boldsymbol{\sigma} = \boldsymbol{\sigma} \circ \mathbf{I}$, Artificial neural networks
	Quasi-linear approximants $\mathbf{A} = \boldsymbol{\sigma} \circ \boldsymbol{L}_n \circ \dots \boldsymbol{\sigma} \circ \boldsymbol{L}_1$. Artificial neural networks. Non-linear operator approximation 3: $f: \mathbb{R}^n \to \mathbb{R}, f(x) = 0$. 0,1,2-degree approximants.
15	Non-intear operator approximation 5: $f: \mathbb{R}^n \to \mathbb{R}, f(x) = 0$. $0, 1, 2$ -degree approximants. Convexity, steepest descent, sampled descent directions (stochastic gradient). Recur-
	rent, generative, adversarial neural networks.
	reno, generative, auversariai neurar neuvorks.

2 MATH 662

Week	Topic
1	Mixed-operator approximation 1: Sum of linear operators, linear integro-differential
	equations
2	Mixed-operator approximation 2: Sum of linear with non-linear operators, general ODEs
	$(\sum_k a_k d/dx^k + f, y' = f(y))$. Linear multistep methods. Stability. Convergence
3	Mixed-operator approximation 3: Runge-Kutta methods
4	Mixed-operator approximation 4: Integro-differential equations. Fredholm alternative.
5	Mixed-operator approximation 5: Fractional calculus approximation. Midterm 1
6	Operator invariants. Eigenproblems. Spectral expansion. Characteristic polynomial.
	Cayley-Hamilton.
7	Iterative coordinate transforms: Jacobi, Gauss-Seidel, SOR
8	Iterative reduced order methods: Krylov spaces, Arnoldi & Lanczos factorizations. Con-
	jugate gradient, GMRES.
9	Iterative operator invariant methods: QR , Lanczos, Arnoldi. SVD computation
10	Random variables, probability distributions, sampling, random number generators
11	Operator sampling: random choice (Glimm's method, Monte Carlo integration)
12	Stochastic calculus: stochastic processes, Ito, Stratonovich
13	SDE: Euler-Maruyama, Milstein, Runge-Kutta
14	Discrete representations: graphs, graph Laplacian
15	Differentiation & integration on graphs, graph diffusion equation.