
MATH661 HW03 - SVD applications

Posted: 09/13/23
Due: 09/20/23, 11:59PM
Tracks 1 & 2: 1. Track 2: 2.

This homework marks your first foray into realistic scientific computation by applying concepts from linear
algebra, specifically using the singular value decomposition to analyze hurricane Lee, still active at this time.

1 Problem setup

1.1 Image data

Processing of image data through the tools of linear algebra is often encountered, and in this assignment
you shall work with satellite images of hurricane Lee of 2023 Season. Open the following folds and execute
the code to set up your environment.

� The following commands within a BASH shell brings up an animation of hurricane Lee (ImageMagick
package must be installed and in the system path.

� The model will use various Julia packages to process image data, carry out linear algebra operations.
The following commands build the appropriate Julia environment. The Julia packages are downloaded,
compiled and stored in your local Julia library. Note: compiling the Images package takes a long time
and it's best to do this within a terminal window. Compiling the packages need only be done once.

� Once compiled, packages are imported into the current environment

� With appropriate packages in place and available, the satellite imagery can be imported into the Julia
environment and used to insert images such as the one in Fig. (1).

� Image data must be quantified, i.e., transformed into numbers prior to analysis. In this case matrices of
32-bit floats are obtained from the gray-scale intensity values associated with each pixel. The 720 by 850
pixel images might be too large for machines with limited hardware resources, so adapt the window to
obtain reasonable code execution times, Fig. 2.

Figure 1. Night-time satellite imagery of hurricane Lee. Superimposed on the familiar overall anti-cyclone pattern are
small-scale features (lightning, cloud patterns in the arms). The SVD can be used to distinguish between small and
large scale features.
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Figure 2. Data window of a time snapshot of hurricane Lee.

1.2 Computing the SVD

The SVD of the array of floats obtained from an image identifies correlations in gray-level intensity between
pixel positions, an encoded description of weather physics. Here are the Julia instructions to compute the
SVD of one frame of image data. It is instructive to plot the singular values � = diag(�1; �2; :::), in log
coordinates.

) n=32; A=data[:,:,n]; U,S,V=svd(A);

) clf(); plot(log.(S),"o"); xlabel(L"mode number $k$"); ylabel(L"lg(\sigma_k)");

) title("Singular values of hurricane Lee image"); grid("on");

) savefig(hwdir*"/H03Fig03a.eps");

) clf(); plot(log.(S[1:100]),"o"); xlabel(L"mode number $k$"); ylabel(L"lg(\sigma_k)");

) title("Singular values of hurricane Lee image"); grid("on");

) savefig(hwdir*"/H03Fig03b.eps");

)
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Figure 3. The singular values of a hurricane satellite image rapidly decay from�105 to�100, a five order-of-magnitude
decrease over the first 100 modes (singular vectors). This indicates considerable data compression is possible.
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� Define a function rsvd to sum the rank-one updates from p to q from an SVD,

A=U�V T =�B=
X
k=p

q

�jujvj
T :

The sum from p = 1 to q contains the first q dominant correlations, identified as large scale weather
patterns. The sum from p= 101 to q= 140 can be identified as small scale patterns.

Figure 4. (Left) Reconstruction of hurricane Lee image from first q=12 modes, showing large scale patterms. (Right)
Correlated small-scale patterns obtained by sum of modes p= 101 to q= 140.

2 Common problems (both tracks)

1. Consider large-scale weather patterns Bk, Bk¡1, Bk¡2 obtained from the p most significant modes
from frames k; k¡1; k¡2 (i.e., different times in the past). Assuming a constant rate of change leads
to the prediction

Pk=Bk¡1+(Bk¡1¡Bk¡2) (3)

for the known large-scale weather Bk. The prediction error is "k;1(p)= kPk¡BkkF /kBkkF . Present
a plot of the prediction error for various values of p over the recorded hurricane data. Analyze your
results to answer the question: �can overall storm evolution be predicted by linear extrapolation of
past data?�

Solution.

2. Repeat the above construction of an error plot for local weather patterns Ck;Ck¡1;Ck¡2 for lesser
significance modes from p to q, that lead to prediction

Qk=Ck¡1+(Ck¡1¡Ck¡2):

Analyze your results to answer the question: �are small-scale storm features predictable?�

Solution.

3. Repeat the above for combined large (B) and small scale (C) weather patterns. Experiment with
different weights u; v in the linear combination uB+ vC, u+ v=1.
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Solution.

4. Formula (3) expresses a degree-one in time t prediction

B(t)=Bk¡1+(t¡ k+1)(Bk¡1¡Bk¡2);

evaluated at t=k. Construct a quadratic prediction based upon dataBk¡1;Bk¡2;Bk¡3, and compare
with degree-one prediction in question 1. Recall that a quadratic can be constructed from knowledge
of three points. Again, experiment with various values of k; p.

Solution.

3 Track 2 questions

Use the SVD to investigate how familiar properties for a 2 R might extend to matrices A 2 Rm�m. For
example, on the real axis adding ¡a to a results in the null element, a¡ a=0, so we say a is a distance jaj
from zero. This easily generalizes to Rm, and the minimal modification of a 2 Rm to obtain zero is ¡a,
a+(¡a)=0, and a is distance kak away from zero. Consider now matrices A2Rm�m, with rank(A)=m.
How far is this matrix from �zero�? By �zero� we shall understand a singular matrix with rank(A)<m.

All real numbers x2R can be obtained as the limit of a sequence of rationals fpn/qng, pn; qn2Z. We say
that the rationals Q is a dense subset of R. What about matrix spaces?

1. Find X of minimal norm such that A+X is singular. State how far A is from �zero�?

2. Prove that any matrix in Rm�m is the limit of a sequence of matrices of full rank, i.e., the set of full-
rank matrices is a dense subset of Rm�m.
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