MATH661 HW05 - Linear algebra analytical practice

Posted: 10/04/23 **Due**: 10/11/23, 11:59PM

While working on computational aspects in P01, homework will concentrate on analytical properties.

1 Track 1

- 1. Let λ, μ be distinct eigenvalues of \boldsymbol{A} symmetric, i.e., $\lambda \neq \mu$, $\boldsymbol{A} = \boldsymbol{A}^T$, $\boldsymbol{A} \boldsymbol{x} = \lambda \boldsymbol{x}$, $\boldsymbol{A} \boldsymbol{y} = \mu \boldsymbol{y}$. Show that $\boldsymbol{x}, \boldsymbol{y}$ are orthogonal.
- 2. Consider

$$\boldsymbol{A} = \left[\begin{array}{rrr} -i & -i & 0 \\ -i & i & 0 \\ 0 & 0 & 1 \end{array} \right].$$

- a) Is A normal?
- b) Is \boldsymbol{A} self-adjoint?
- c) Is **A** unitary?
- d) Find the eigenvalues and eigenvectors of A.
- 3. Find the eigenvalues and eigenvectors of the matrix $\mathbf{R} \in \mathbb{R}^{3 \times 3}$ expressing rotation around the z axis (unit vector $\mathbf{e}_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$).
- 4. Find the eigenvalues and eigenvectors of the matrix $\mathbf{R} \in \mathbb{R}^{3 \times 3}$ expressing rotation around the axis with unit vector $l = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.
- 5. Compute $\sin(\mathbf{A}t)$ for

$$\boldsymbol{A} = \left[\begin{array}{cc} 3 & -9 \\ 2 & -6 \end{array} \right]$$

6. Compute $\cos(\mathbf{A}t)$ for

$$\boldsymbol{A} = \left[\begin{array}{cc} 5 & -4 \\ 2 & -1 \end{array} \right].$$

7. Compute the SVD of

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & -2 \\ -3 & 6 \end{array} \right]$$

by finding the eigenvalues and eigenvectors of AA^{T} , $A^{T}A$.

8. Find the eigenvalues and eigenvectors of $\mathbf{A} \in \mathbb{R}^{m \times m}$ with elements $a_{ij} = 1$ for all $1 \leq i, j \leq m$. Hint: start with m = 1, 2, 3 and generalize.

2 Track 2

1. Prove that $\mathbf{A} \in \mathbb{C}^{m \times m}$ is normal if and only if it has m orthonormal eigenvectors.

- 2. Prove that $A \in \mathbb{R}^{m \times m}$ symmetric has a repeated eigenvalue if and only if it commutes with a non-zero skew-symmetric matrix B.
- 3. Prove that every positive definite matrix $K \in \mathbb{R}^{m \times m}$ has a unique square root B, B positive definite and $B^2 = K$.
- 4. Find all positive definite orthogonal matrices.
- 5. Find the eigenvalues and eigenvectors of a Householder reflection matrix.
- 6. Find the eigenvalues and eigenvectors of a Givens rotation matrix.
- 7. Prove or state a counterexample: If all eigenvalues of A are zero then A = 0.
- 8. Prove: A hermitian matrix is unitarily diagonalizable and its eigenvalues are real.