MATH661 HW07 - Least squares, minimax

Posted: 10/18/23
Due: $10 / 25 / 23,11: 59 \mathrm{PM}$
These exercises focus on midterm examination preparation.

1 Track 1

1. Find the polynomial of least degree that interpolates the data $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right), i=0,1, \ldots\right.$, $n\}=\{(3,10),(7,146),(1,2),(2,1)\}$.
2. Find the polynomial of least degree that interpolates the data $\mathcal{D}=\left\{\left(x_{i}, y_{i}, y_{i}^{\prime}\right), i=0,1, \ldots\right.$, $n\}=\mathcal{D}=\{(3,10,14),(1,2,-6)\}$.
3. Find the polynomial of least degree that interpolates the data $\mathcal{D}=\left\{\left(x_{i}, y_{i}, y_{i}^{\prime}, y_{i}^{\prime \prime}\right), i=0,1, \ldots\right.$, $n\}=\mathcal{D}=\{(1,2,-6,10)\}$.
4. Find a, b, c, d such that

$$
S(x)= \begin{cases}1-2 x & x \in(-\infty,-3] \\ a+b x+c x^{2}+d x^{3} & x \in[-3,4] \\ 157-32 x & x \in[4, \infty)\end{cases}
$$

is a natural spline on the $[-3,4]$ interval.
5. Apply the Gram-Schmidt algorithm to orthonormalize the function set $\left\{1, t, t^{2}\right\}$ with respect to the scalar product

$$
(f, g)=\int_{-1}^{+1} f(t) g(t) \mathrm{d} t
$$

6. Let $\left\{\varphi_{0}(t), \varphi_{1}(t), \varphi_{2}(t)\right\}$ denote the orthonormalized set found above. Find the best 2-norm approximant $g(t)=c_{0} \varphi_{0}(t)+c_{1} \varphi_{1}(t)+c_{2} \varphi_{2}(t)$ of $f(t)=\sin (\pi t / 2)$ on the interval $[-1,1]$.
7. As above, find the best 2-norm approximant of $f(t)=\cos (\pi t / 2)$ on the interval $[-1,1]$.
8. Find the best approximant $g(t)=\lambda t$ of $f(t)=\sin t$ on the interval $[0, \pi / 2]$ in the ∞-norm.

2 Track 2

1. In the limit $x_{1} \rightarrow x_{0}$ the divided difference

$$
f\left[x_{0}, x_{1}\right]=\left[y_{1}, y_{0}\right]=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}, y_{i}=f\left(x_{i}\right), i=0,1,
$$

has limit $f\left[x_{0}, x_{1}\right] \rightarrow f^{\prime}\left(x_{0}\right)$. Write and establish the validity of the finite difference form of the product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$.
2. Repeat the above for second order finite differences and $(f g)^{\prime \prime}=f^{\prime \prime} g+2 f^{\prime} g^{\prime}+f g^{\prime \prime}$.
3. A natural cubic spline has zero curvature at the end points. Prove that of all cubic spline interpolations of data $\mathcal{D}=\left\{\left(x_{i}, y_{i}=f\left(x_{i}\right)\right), i=0,1, \ldots, n\right\}$, the natural spline $S(t)$ curvature two-norm is bounded by the function curvature two-norm

$$
\int_{x_{0}}^{x_{n}}\left[S^{\prime \prime}(t)\right]^{2} \mathrm{~d} t \leqslant \int_{x_{0}}^{x_{n}}\left[f^{\prime \prime}(t)\right]^{2} \mathrm{~d} t .
$$

4. Find a, b, c, d such that

$$
\begin{aligned}
& |e(1)|=|e(0)| \Rightarrow|\cosh 1-a-b|=|1-a| \Rightarrow \\
& S(x)= \begin{cases}1-2 x & x \in(-\infty,-3] \\
a+b x+c x^{2}+d x^{3} & x \in[-3,4] \\
157-32 x & x \in[4, \infty)\end{cases}
\end{aligned}
$$

is a natural spline on the $[-3,4]$ interval.
5. Present an analysis of the conditioning of quadratic spline interpolation.
6. Apply the Gram-Schmidt algorithm to orthonormalize the function set $\left\{1, t, t^{2}\right\}$ with respect to the scalar product

$$
(f, g)=\int_{-1}^{+1} \frac{f(t) g(t)}{\sqrt{1-t^{2}}} \mathrm{~d} t
$$

7. Find the best approximant $g(t)=a+b t$ of $f(t)=\sin t$ on the interval $[0, \pi / 2]$ in the 2-norm and the ∞-norm.
8. Prove that best inf-norm approximant of $f:[-1,1] \rightarrow \mathbb{R}, f(t)=\cosh (t)$ by a quadratic polynomial has form $p_{2}(t)=a+b t^{2}$, with $b=\cosh 1-1$. Compute a.
