MATH661 HW08 - Linear operator approximation

Posted: 10/25/23

Due: $11 / 06 / 23,11: 59 \mathrm{PM}$
The basic idea in linear operator approximation is to apply the exact operator to an approximation of the input. These exercises explore and reinforce this concept.

1 Track 1

1. Use Taylor series expansions to verify the approximations

$$
\begin{gathered}
f^{\prime}(t) \cong \frac{1}{12 h}[-f(t+2 h)+8 f(t+h)-8 f(t-h)+f(t-2 h)], \\
f^{\prime}(t) \cong \frac{1}{2 h}[-3 f(t)+4 f(t+h)-f(t+2 h)] .
\end{gathered}
$$

Determine the error term. Construct the polynomial approximant $p_{n}(t) \cong f(t)$ whose derivative leads to the above formula. Conduct a convergence study as $h \rightarrow 0$ for $f(t) \in\{\sin (\pi t / 4)$, $\left.e^{10 t}, e^{-10 t}\right\}$ at $t_{0}=1$, and compare the observed order of convergence with the theoretical estimate.
2. As above for

$$
\begin{gathered}
f^{\prime \prime}(t) \cong \frac{1}{12 h^{2}}[-f(t+2 h)+16 f(t+h)-30 f(t)+16 f(t-h)-f(t-2 h)] \\
f^{\prime \prime \prime}(t) \cong \frac{1}{h^{3}}[f(t+3 h)-3 f(t+2 h)+3 f(t+h)-f(t)]
\end{gathered}
$$

3. Construct a recursive function $\operatorname{Rec} \operatorname{Int}(\mathrm{a}, \mathrm{b}, \operatorname{err}, \mathrm{f}, \mathrm{Q})$ that has arguments scalars a, b, err and functions f, Q and approximates

$$
I(f)=\int_{a}^{b} f(t) \mathrm{d} t
$$

through repeated application of quadrature rule $Q(f, a, b)$ according to the algorithm

Algorithm Recursive quadrature

```
\(\operatorname{RecInt}(\mathrm{a}, \mathrm{b}, \mathrm{err}, \mathrm{f}, \mathrm{Q})\)
\(c=a+(b-a) / 2\)
\(Q_{\mathrm{ab}}=Q(f, a, b) ; Q_{\mathrm{ac}}=Q(f, a, c) ; Q_{\mathrm{cb}}=Q(f, c, b)\)
\(e=\left|Q_{\mathrm{ac}}+Q_{\mathrm{cb}}-Q_{\mathrm{ab}}\right| /\left|Q_{\mathrm{ac}}+Q_{\mathrm{cb}}\right|\)
if \(e<\mathrm{err}\)
    return \(Q_{\mathrm{ac}}+Q_{\mathrm{cb}}\)
    else
    return \(\operatorname{RecInt}(\mathrm{a}, \mathrm{c}, \mathrm{err}, \mathrm{f}, \mathrm{Q})+\operatorname{Rec} \operatorname{Int}(\mathrm{c}, \mathrm{b}, \mathrm{err}, \mathrm{f}, \mathrm{Q})\)
```

Test the recursive integration procedure with trapezoid, Simpson, and Gauss-Legendre rules of orders 2,3 on the integral

$$
\int_{-1}^{1} \cos \left(\frac{1}{t}\right)
$$

For each case, present plots of the integrand and the evaluation points used in the recursive quadrature algorithm. Construct convergence plots by executing the algorithm for various error thresholds ε_{k} and recording the number of evaluation points n_{k}. Plot $\left(\log n_{k}, \log \varepsilon_{k}\right)$ and comment on whether the observed order of convergence is that predicted by theoretical quadrature error estimates.

2 Track 2

1. Use the finite difference expressions of the derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} t}=\frac{1}{h}\left(\Delta-\frac{1}{2} \Delta^{2}+\ldots\right)=\frac{1}{h}\left(\nabla+\frac{1}{2} \nabla^{2}+\ldots\right)=\frac{1}{h}\left(\delta-\frac{\delta^{3}}{24}+\cdots\right)
$$

to obtain the approximations.

$$
\begin{gathered}
f^{\prime}(t) \cong \frac{1}{12 h}[-f(t+2 h)+8 f(t+h)-8 f(t-h)+f(t-2 h)], \\
f^{\prime}(t) \cong \frac{1}{2 h}[-3 f(t)+4 f(t+h)-f(t+2 h)] .
\end{gathered}
$$

Conduct a convergence study as $h \rightarrow 0$ for $f(t) \in\left\{\sin (\pi t / 4), e^{10 t}, e^{-10 t}\right\}$ at $t_{0}=1$, and compare the observed order of convergence with theoretical estimates. How do the three functions differ, and what effect does this have on derivative approximation?
2. As above for

$$
\begin{gathered}
f^{\prime \prime}(t) \cong \frac{1}{12 h^{2}}[-f(t+2 h)+16 f(t+h)-30 f(t)+16 f(t-h)-f(t-2 h)] \\
f^{\prime \prime \prime}(t) \cong \frac{1}{h^{3}}[f(t+3 h)-3 f(t+2 h)+3 f(t+h)-f(t)]
\end{gathered}
$$

Use the series products

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\mathrm{~d}}{\mathrm{~d} t}=\frac{1}{h^{2}}\left(\Delta-\frac{1}{2} \Delta^{2}+\ldots\right)\left(\Delta-\frac{1}{2} \Delta^{2}+\ldots\right)
$$

3. Romberg integration is a combination of trapezoid quadrature over decreasing subintervals and Aitken extrapolation. Implement Romberg integration and test on

$$
\int_{0}^{1} e^{t} \cos (\pi t) \mathrm{d} t .
$$

Present a convergence sutdy. What is the observed order of convergence?

