MATH661 HW09 - Multiple operator approximation

Posted: 11/13/23
Due: 11/20/23, 11:59PM
Investigate various aspects of the $L y=f(y)$ problem with L a linear operator and f nonlinear. Algorithms will be applied to the Van der Pol oscillator for $t \in[0,250]$ with $\mu=1$,

$$
x^{\prime \prime}-\mu\left(1-x^{2}\right) x^{\prime}+x=0, x(0)=0, x^{\prime}(0)=1 .
$$

Plots of the solution are typically presented in phase space as $\left(x(t), x^{\prime}(t)\right)$.

1 Track 1

1. Rewrite the second-order ODE as a system of first-order equations $\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y})$.
2. Carry out a convergence study when applying the single-step Runge-Kutta method

$$
\begin{gathered}
\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+\frac{1}{6}\left(\boldsymbol{k}_{1}+2 \boldsymbol{k}_{2}+2 \boldsymbol{k}_{3}+\boldsymbol{k}_{4}\right), \\
\boldsymbol{k}_{1}=h \boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right) \\
\boldsymbol{k}_{2}=h \boldsymbol{f}\left(t_{n}+\frac{1}{2} h, \boldsymbol{y}_{n}+\frac{1}{2} \boldsymbol{k}_{1}\right) \\
\boldsymbol{k}_{3}=h \boldsymbol{f}\left(t_{n}+\frac{1}{2} h, \boldsymbol{y}_{n}+\frac{1}{2} \boldsymbol{k}_{2}\right) \\
\boldsymbol{k}_{4}=h \boldsymbol{f}\left(t_{n}+h, \boldsymbol{y}_{n}+\boldsymbol{k}_{3}\right)
\end{gathered}
$$

3. Carry out a convergence study when applying the Adams-Bashforth of order 4.

2 Track 2

1. Rewrite the second-order ODE as a system of first-order equations $\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y})$.
2. Use a symbolic package (e.g., Mathematica) to verify the fourth-order theoretical accuracy of the Runge-Kutta method from Track 1.
3. Carry out a convergence study using Adams-Moulton of fourth order. This requires knowledge the latest value \boldsymbol{y}_{n+1}. Approximate this by a predictor $\tilde{\boldsymbol{y}}_{n+1}$ obtained by an Adams-Bashforth of fourth order where needed, e.g., $\boldsymbol{f}\left(\boldsymbol{y}_{n+1}\right) \cong \boldsymbol{f}\left(\tilde{\boldsymbol{y}}_{n+1}\right)$.
