MATH661 HW10 - Nonlinear operators

Posted: 11/27/23
Due: $12 / 06 / 23,11: 59 \mathrm{PM}$
The simplest nonlinear operator is a scalar function $f(x)$, and a basic problem is to find the null set of f, those values x for which $f(x)=0$, known as the roots of f.
Consider $f(x)=p_{8}(x)=\sum_{i=0}^{8} a_{i} x^{i}$, an eigth degree polynomial with $\boldsymbol{a}=\left[\begin{array}{lll}a_{0} & \ldots & a_{8}\end{array}\right]$

$$
\boldsymbol{a}=\left[\begin{array}{lllllllll}
40320 & -109584 & 118124 & -67284 & 22449 & -4536 & 546 & -36 & 1
\end{array}\right] .
$$

1 Track 1

Implement each of the following methods to find a root of p_{8}.

1. Seek a root $r \in[5.5,6.5]$ using the bisection algorithm (see course webpage).
2. Seek r by the secant method.
3. Seek r by Newton's method.
4. Seek r by Steffensen's method.
5. Change $a_{7}=-36-10^{-3}$ and repeat the above

2 Track 2

1. Prove that Steffensen's method is of second order.
2. Implement Steffensen's and find $r \in[5.5,6.5]$, a root of a perturbed $\tilde{p}_{8}(t)$, where $\tilde{a}_{2}=a_{2}+\varepsilon_{k}$, $\varepsilon_{k}=2^{-k}, k \in\{15,14, \ldots, 10\}$. Comment on what you observe.
3. Apply the vector-valued version of Newton's method

$$
\begin{equation*}
\boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}-\boldsymbol{J}_{n}^{-1} \boldsymbol{f}\left(\boldsymbol{x}_{n}\right), \tag{1}
\end{equation*}
$$

where \boldsymbol{J}_{n} is the Jacobian

$$
\boldsymbol{J}_{n}=\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{n}\right)=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\left(\boldsymbol{x}_{n}\right),
$$

to find a root of

$$
\left\{\begin{array}{l}
u v-w^{2}=1 \\
u v w-u^{2}+v^{2}=2 \\
e^{u}-e^{v}+w=3
\end{array}\right.
$$

Implementation notes:

- As usual, \boldsymbol{J}^{-1} is implemented as linear system solve

$$
\boldsymbol{J} \boldsymbol{s}=\boldsymbol{f}\left(\boldsymbol{x}_{n}\right) \Rightarrow \boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}+\boldsymbol{s}
$$

- An initial guess is typically obtained by linearization of the system.

