
LECTURE 1: NUMBER APPROXIMATION

1. Numbers

1.1. Number sets

Most scienti�c disciplines introduce an idea of the amount of some entity or property of interest. Furthermore, the

amount is usually combined with the concept of a number, an abstraction of the observation that the two sets A=

{Mary, Jane, Tom} and B= {apple, plum, cherry} seem quite di�erent, but we can match one distinct person to

one distinct fruit as in {Mary�plum, Jane�apple, Tom�cherry}. In contrast, we cannot do the same matching of

distinct persons to a distinct color from the set {red, green}, and one of the colors must be shared between two persons.

Formal de�nition of the concept of a number from the above observations is surprisingly di�cult since it would be

self-referential due to the apperance of the numbers �one� and �two�. Leaving this aside, the key concept is that of

quantity of some property of interest that is expressed through a number.

Several types of numbers have been introduced in mathematics to express di�erent types of quantities, and the fol-

lowing will be used throughout this text:

�. The set of natural numbers,�={0,1,2, 3, . . . }, in�nite and countable,�

+

={1,2,3, . . . };

$. The set of integers, $={0,±1,±2,±3, . . . }, in�nite and countable;

�. The set of rational numbers�={p/q, p�$,q��

+

}, in�nite and countable;

�. The set of real numbers, in�nite, not countable, can be ordered;

�. The set of complex numbers, �={x+ iy,x,y��}, in�nite, not countable, cannot be ordered.

These sets of numbers form a hierarchy, with��$������. The size of a set of numbers is an important aspect

of its utility in describing natural phenomena. The set S={Mary,Jane,Tom} has three elements, and its size is de�ned

by the cardinal number, |S|=3. The sets�,$,�,�,� have an in�nite number of elements, but the relation

z=

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

�n/2 forneven

(n+1)/2 fornodd

de�nes a one-to-one correspondence between n�� and z�$, so these sets are of the same size denoted by the

trans�nite number 5

0

(aleph-zero). The rationals can also be placed into a one-to-one correspondence with�, hence

|�| = |$| = |�| =5

0

.

In contrast there is no one-to-one mapping of the reals to the naturals, and the cardinality of the reals is |�|= (Fraktur-

script c). Georg Cantor established set theory and introduced a proof technique known as the diagonal argument to

show that =2

5

0

. Intuitively, there are exponentially more reals than naturals.

1.2. Quanti�cation

One of the foundations of the scienti�c method is quanti�cation, ascribing numbers to phenomena of interest. To

exemplify the utility of di�erent types of number to describe natural phenomena, consider common salt (sodium

chloride, Fig. 1) which has the chemical formula NaCl with the sodium ions (Na

+

) and chloride ions (Cl

�

) spatially

organized in a cubic lattice, with an edge length a=5.6402Å (1 Å = 10

�10

m) between atoms of the same type. Setting

the origin of a Cartesian coordinate system Oxyz at a sodium atom, the position of some atom within the lattice is

(x,y, z)=±i

a

2

, j

a

2

,k

a

2

².

Sodium atoms are found positions where i+ j+k is even, while chloride atoms are found at positions where i+ j+k

is odd. The Cartesian coordinates (x, y, z) describe some arbitrary position in space, which is conceptualized as a

continuum and placed into one-to-one correspondence with �

3

. A particular lattice position can be speci�ed simply

through a label consisting of three integers (i, j,k)�$

3

. The position can be recovered through a scaling operation

(x,y, z)=

a

2

(i, j,k),

LECTURE 1: NUMBER APPROXIMATION 1

and the number a/2�� that modi�es the length scale from 1 to a/2, it is called a scalar.

Figure 1. Left: Polycrystalline sodium chloride. Right: Cubic lattice structure of a single sodium chloride crystal

1.3. Computer number sets

A computer has a �nite amount of memory, hence cannot represent all numbers, but rather subsets of the above

number sets. Current digital computers internally use numbers represented through binary digits, or bits. Many com-

puter number types are de�ned for speci�c purposes, and are often encountered in applications such as image represen-

tation or digital data acquisition. Here are the main types.

Subsets of �. The number types uint8, uint16, uint32, uint64 represent subsets of the natural numbers

(unsigned integers) using 8, 16, 32, 64 bits respectively. An unsigned integer with b bits can store a natural

number in the range from 0 to 2

b

�1. Two arbitrary natural numbers, written as �i, j�� can be added and will

give another natural number, k= i+ j��. In contrast, addition of computer unsigned integers is only de�ned

within the speci�c range 0 to 2

b

�1. If k>2

b

�1, the result might be displayed as the maximum possible value

or as kmod2

b

.

4 i=UInt8(15); j=UInt8(10); k=i+j

25

4 i=UInt8(150); j=UInt8(200); k=i+j; [k i+j mod(350,256)]

[
94 94 94

] (1)

4 i=UInt8(150); j=UInt8(200); k=i-j; [k i-j mod(-50,256)]

[
206 206 206

] (2)

4 typeof(i-j)

UInt8

4

Subsets of $. The number types int8, int16, int32, int64 represent subsets of the integers. One bit is

used to store the sign of the number, so the subset of $ that can be represented is from 1�2

b�1

to 2

b�1

�1.

4 i=Int8(15); j=Int8(21); k=i+j

36

4 i=Int8(100); j=Int8(101); k=i+j; [k i+j mod(201,128)-128]

[�55 �55 �55] (3)

4 typeof(k)

Int8

4 [typemin(Int8) typemax(Int8)]

[
�128 127

] (4)

4

Subsets of �,�,�. Computers approximate the real numbers through the set= of floating point numbers. Floating

point numbers that use b=32 bits are known as single precision, while those that use b=64 are double pre-

cision. A �oating point number x�= is stored internally as x=±.B

1

B

2

. . .B

m

×2

±b

1

b

2

. . .b

e

where B

i

, i=1, . . . ,

m are bits within themantissa of lengthm, and b

j

, j=1,...,e are bits within the exponent, along with signs ± for

each. The default number type is usually double precision, more concisely referred to Float64. Common

irrational constants such as e, � are prede�ned as irrationals and casting to Float64 or Float32 gives

�oating point approximation. Unicode notation is recognized. Speci�cation of a decimal point indicates a

�oating point number; its absence indicates an integer.

4 pi

�

4 typeof(pi)

Irrational{:À}

4 [Float32(pi) Float64(pi) Float64(À)]

[
3.1415927410125732 3.141592653589793 3.141592653589793

] (5)

4 a=2.3; b=2; c=3.; [typeof(a) typeof(b) typeof(c)]

DataType[Float64 Int64 Float64]

4

The approximation of the reals � by the floats = is characterized by: floatmax(), the largest float,

floatmin the smallest positive �oat, and eps() known as machine epsilon. Machine epsilon highlights

the di�erences between �oating point and real numbers since it may be informally de�ned as the smallest

number of form �=2

k

�= that satis�es 1+ �` 1. If ��� of course 1 +�=1 implies �= 0, but �oating

points exhibit �granularity�, in the sense that over a unit interval there are small steps that are indistinguish-

able from zero due to the �nite number of bits available for a �oat leading to 1+�/2 being indistiguishable

from 1, and the apparently endless loop shown below actually terminates.

4 eps=1.0;

4 while (1.0+0.5*eps != 1.0)

global eps;

eps=0.5*eps;

end

4 eps

2.220446049250313e�16

LECTURE 1: NUMBER APPROXIMATION 3

The granularity of double precision expressed by machine epsilon is su�cient to represent natural phenomena,

and �oating point errors can usually be kept under control,

4 [floatmin(Float32) floatmax(Float32) eps(Float32)]

[
1.1754944e�38 3.4028235e38 1.1920929e�7

] (6)

4 [floatmin(Float64) floatmax(Float64) eps(Float64)]

[2.2250738585072014e�308 1.7976931348623157e308 2.220446049250313e�16] (7)

4

Keep in mind that perfect accuracy is a mathematical abstraction, not encountered in nature. In �elds such as

sociology or psychology 3 digits of accuracy are excellent, in mechanical engineering this might increase to

6 digits, or in electronic engineering to 8 digits. The most precisely known physical constant is the Rydberg

constant known to 12 digits, hence a mathematical statement such as

x=2.6309283450461248350319486319845

is unlikely to have any real signi�cance, while

x=2.631±0.0005

is much more informative.

Within the reals certain operations are unde�ned such as 1/0. Special �oat constants are de�ned to handle

such situations: Inf is a �oat meant to represent in�nity, and NaN (�not a number�) is meant to represent an

unde�nable result of an arithmetic operation.

4 [1/0 -1.0/0.0 1/Inf -1/Inf Inf/Inf]

[
� �� 0.0 �0.0 NaN

] (8)

4

Complex numbers z�� are speci�ed by two reals, in Cartesian form as z=x+ iy, x,y�� or in polar form as

z=�e

i�

, �,���, �~0. The computer type complex is similarly de�ned from two �oats and the additional

constant I is de�ned to represent �1
(

= i=e

i�/2

. Functions are available to obtain the real and imaginary parts

within the Cartesian form, or the absolute value and argument of the polar form.

4 z1=1+1im; z2=1-im; [z1+z2 z1/z2]

[
2.0+0.0i �0.0+1.0i

] (9)

4 [real(z1) real(z2) real(z1+z2) real(z1/z2)]

[
1.0 1.0 2.0 �0.0

] (10)

4 [imag(z1) imag(z2) imag(z1+z2) imag(z1/z2)]

[
1.0 �1.0 0.0 1.0

] (11)

4 [abs(z1) abs(z2) abs(z1+z2) abs(z1/z2)]

[1.4142135623730951 1.4142135623730951 2.0 1.0] (12)

4 [angle(z1) angle(z2) angle(z1+z2) angle(z1/z2)]

[0.7853981633974483 �0.7853981633974483 0.0 1.5707963267948966] (13)

4

Figure 2. Hierarchy of number types in the Julia language.

2. Approximation

2.1. Axiom of �oating point arithmetic

The reals� form an algebraic structure known as a �eld (�,+, Å). The set of �oats together with �oating point addition

and multiplication are denoted as (=,�,�). Operations with �oats do not have the same properties as the reals, but

are assumed to have a relative error bounded by machine epsilon

�x,y��,
½

�(x)��(y)�x �y

x �y

½
}�, (�,�)� {(�,+), (�, Å)},

where �(x)�= is the �oating point representation of x��. The above is restated

�(x)��(y)=(x �y) (1+�), |�|}�,

and accepted as an axiom for use in error analysis involving �oating point arithmetic. Computer number sets are a �rst

example of approximation: replacing some complicated object with a simpler one. It is one of the key mathematical

ideas studied throughout this text.

2.2. Cummulative �oating point operations

Care should be exercised about the cummulative e�ect of many �oating point operations. An informative example is

o�ered by Zeno's paradox of motion, that purports that �eet-footed Achilles could never overcome an initial head start

of D=2 given to the lethargic Tortoise since, as stated by Aristotle:

In a race, the quickest runner can never overtake the slowest, since the pursuer must �rst reach the

point whence the pursued started, so that the slower must always hold a lead.

The above is often formulated by considering that the �rst half of the initial head start must be overcome, then another

half and so on. The distance traversed after N such steps is

D

N

=1+

1

2

+ Å Å Å+

1

2

N

=

1� (1/2)

N+1

1� (1/2)

=2[1� (1/2)

N+1

]<2.

Calculus resolves the paradox by rigorous de�nition of the limit D= lim

N��

D

N

= 2 and de�nition of velocity as

v(t)= lim

ÿt�0

(D(t+ÿt)�D(t))/ÿt, ÿt=1/N , D(t)=2[1� (1/2)

t/ÿt

].

Undertake a numerical invesigation and consider two scenarios, with increasing or decreasing step sizes

D

N

=1+

1

2

+ Å Å Å+

1

2

N

,C

N

=

1

2

N

+

1

2

N�1

+ Å Å Å+1.

In (�,+, Å) associativity ensures D

N

=C

N

.

LECTURE 1: NUMBER APPROXIMATION 5

4 N=10; D=2.0 .^ (0:-1:-N); C=2.0 .^ (-N:1:0); sum(D)==sum(C)

t ru e

4 N=20; D=2.0 .^ (0:-1:-N); C=2.0 .^ (-N:1:0); sum(D)==sum(C)

t ru e

4

Irrespective of the value for N , D

N

=C

N

in �oating point arithmetic. Recall however that computers use binary rep-

resentations internally, so division by powers of two might have unique features (indeed, it corresponds to a bit shift

operation). Try subdividing the head start by a di�erent number, perhaps� to get an �irrational� numerical investiga-

tion of Zeno's paradox of motion. De�ne now the distance S

N

traversed by step sizes that are scaled by 1/� starting

from one to T

N

, traversed by step sizes scaled by � starting from �

�N

S

N

=1+

1

�

+

1

�

2

+ Å Å Å+

1

�

N

,T

N

=

1

�

N

+

1

�

N�1

+ Å Å Å+1.

Again, in the reals the above two expressions are equal, S

N

=T

N

, but this is no longer veri�ed computationally for all

N , not even within a tolerance of machine epsilon.

4 fpi=Float64(pi);

4 N=10; S=fpi .^ (0:-1:-N); T=fpi .^ (-N:1:0); sum(S)==sum(T)

t ru e

4 N=20; S=fpi .^ (0:-1:-N); T=fpi .^ (-N:1:0); sum(S)==sum(T)

f a l se

4 sum(S)-sum(T)<eps(Float64)

f a l se

4

This example gives a �rst glimpse of the steps that need to be carried out in addition to mathematical analysis to fully

characterize an algorithm. Since S

N

`T

N

, a natural question is whether one is more accurate than the other. For some

arbitrary ratio a, the exact value is known

E

N

=

1� (1/a)

N+1

1� (1/a)

,

and can be used to evaluate the errors |S

N

�E

N

|, |T

N

�E

N

|.

4 function E(N,a)

(1-(1/a)^(N+1))/(1-(1/a))

end;

4 function µs(N,a)

S=a .^ (0:-1:-N)

abs(sum(S)-E(N,a))

end;

4 function µt(N,a)

T=a .^ (-N:1:0)

abs(sum(T)-E(N,a))

end;

4

Carrying out the computations leads to results in Fig. 3.

4 n=30; errs=zeros(Float64,n); errt=zeros(Float64,n);

4 for i=1:n

errs[i]=µs(N,fpi); errt[i]=µt(N,fpi);

end

4 clf(); plot(1:n,errs,1:n,errt,marker="o"); title("Summation error");

grid("on"); xlabel("n"); ylabel("µs,µt"); legend(["µs"; "µt"]);

4

0 5 10 15 20 25 30
n

0.0

0.5

1.0

1.5

2.0

εs
,ε
t

1e−16 Summation error

εs
εt

Figure 3. Summation order errors.

Note that errors are about the size of machine epsilon for S

N

, but are zero for T

N

, it seems that the summation ordering

T

N

= a

�N

+ a

�N+1

+ Å Å Å +1 gives the exact value. A bit of re�ection reinforces this interpretation: �rst adding small

quantities allows for carry over digits to be accounted for.

This example is instructive beyond the immediate adage of �add small quantities �rst�. It highlights the blend of

empirical and analytical approaches that is prevalent in scienti�c computing.

3. Successive approximations

3.1. Sequences in �

Single values given by some algorithm are of little value in the practice of scienti�c computing. The main goal is the

construction of a sequence of approximations {x

n

}

n��

that enables assessment of the quality of an approximation.

Recall from calculus that {x

n

}

n��

converges to x if |x

n

� x| can be made as small as desired for all n beyond some

threshold. In precise mathematical language this is stated through:

DEFINITION. {x

n

}

n��

converges to x if ��>0, �N(�) such that |x

n

�x| <� for n>N(�).

Though it might seem natural to require a sequence of approximations to converge to an exact solution x

lim

n��

x

n

=x,

such a condition is problematic on multiple counts:

1. the exact solution is rarely known;

2. the best approximation might be achieved for some �nite range n

1

}n}n

2

, rather than in the n�� limit.

LECTURE 1: NUMBER APPROXIMATION 7

Both situations arise when approximating numbers and serve as useful reference points when considering approxima-

tion other types of mathematical objects such as functions. For example, the number� is readily de�ned in geometric

terms as the ratio of circle circumference to diameter, but can only be approximately expressed by a rational number,

e.g., �E22/7. The exact value of � is only obtained as the limit of an in�nite number of operations with rationals.

There are many such in�nite representations, one of which is the Leibniz series

�

4

=1�

1

3

+

1

5

�

1

7

+

1

9

�

No �nite term

L

n

=y

k=0

n

(�1)

k

2k+1

of the above Leibniz series equals �/4, i.e.,

�n�� such thatL

n

=�/4.

Rather, the Leibniz series should be understood as an algorithm, i.e., a sequence of elementary operations that leads

to succesively more accurate approximations of �/4

lim

n��

L

n

=�/4.

Complex analysis provides a convergence proof starting from properties of the arctan function

d

dz

arctan(z)=

1

1+ z

2

Ò

�

4

=arctan(1)�arctan(0)=5

0

1

dz

1+ z

2

.

For |z|<1 the sequence S

n

=�

k=0

n

(�z

2

)

k

of partial sums of a geometric series converges uniformly

y

k=0

�

(�z

2

)

k

= lim

n��

1� (�z

2

)

n

1� (�z

2

)

=

1

1+ z

2

,

and can be integrated term by term to give

�

4

=5

0

1

y

k=0

�

(�z

2

)

k

dz=y

k=0

�

5

0

1

(�z

2

)

k

dz=y

k=0

�

(�1)

k

2k+1

.

This elegant result does not address however the points raised above: if�were not known, how could the convergence

of the sequence {L

n

}

n��

be assessed? A simple numerical experiment indicates that the familiar value of � is only

recovered for large n, with 10000 terms insu�cient to ensure �ve signi�cant digits.

4 function L(n)

L=1.0; s=-1.0

for k=1:n

L += s/(2*k+1); s = -s

end

return 4*L

end

L

4 [L(100) L(1000) L(10000) Float64(À)]

[3.1514934010709914 3.1425916543395442 3.1416926435905346 3.141592653589793] (14)

4

3.2. Cauchy sequences

Instead of evaluating distance to an unknown limit, as in |L

n

��| <�, one could evaluate if terms get closer to one

another as in |L

n

�L

m

| <�, a condition that can readily be checked in an algorithm.

DEFINITION. {x

n

}

n��

is a Cauchy sequence if ��>0, �N(�) such that |x

n

�x

m

|<� for all m,n>N(�).

Note that the distance between any two terms after the threshold N(�) must be smaller than an arbitrary tolerance �.

For example the sequence a

n

= n
�

is not a Cauchy sequence even though the distance between successive terms can

be made arbitrarily small

a

n+1

�a

n

= n+1
(

� n
�

=

� n+1
(

� n
�

�� n+1
(

+ n
�

�

n+1(+ n
�

=

1

n+1(+ n
�

<

1

2 n
�

.

Veri�cation of decreasing successive distance is therefore a necessary but not su�cient condition to assess whether a

sequence is a Cauchy sequence. Furthermore, the distance between successive iterates is not necessarily an indication

of the distance to the limit. Reprising the Leibniz example, successive terms can be further apart than the distance to

the limit, though terms separated by 2 are closer than the distance to the limit (a consequence of the alternating Leibniz

series signs)

4 n=1000; [log10(abs(L(n)-L(n-1))) log10(abs(L(n)-À))]

[�2.6991870973082537 �3.000434185835426] (15)

4 [log10(abs(L(n)-L(n-2))) log10(abs(L(n)-À))]

[�5.698969895788488 �3.000434185835426] (16)

4

Another question is whether a Cauchy sequence is itself convergent. For sequences of reals this is true, but the Leibniz

sequence furnishes a counterexample since it contains rationals and converges to an irrational. Such aspects that

arise in number approximation sequences become even more important when considering approximation sequences

composed of vectors or functions.

3.3. Sequences in =

Consideration of �oating point arithmetic indicates adaptation of the mathematical concept of convergence is required

in scienti�c computation. Recall that machine epsilon � is that largest number such that 1+�=1 is true, and charac-

terizes the granularity of the �oating point system. A reasonable adaptation of the notion of convergence might be:

DEFINITION. {x

n

}

n��

, x

n

�= converges to x�= if ��>�, �N(�) such that |x

n

�x|<� for n>N(�).

What emerges is the need to consider a degree of uncertainty in an approximating sequence. If the uncertainty can be

bounded to the intrinsic granularity of the number system, a good approximation is obtained.

Summary. The problem of approximating numbers uncovers generic aspects of scienti�c computing:

" di�erent models of some phenomenon are possible and it is necessary to establish correspondence between

models and of a model to theory;

" scienti�c computation seeks to establish viable approximation techniques for the mathematical objects that

arise in models;

" correspondence of a model to theory is established through properties of approximation sequences, not single

results of a particular approximation technique;

" physical limitations of computer memory require revisiting of mathematical concepts to characterize approx-

imation sequence behavior, and impart a stochastic aspect to approximation techniques;

" computational experiments are a key aspect, giving an empirical aspect to scienti�c computing that is not found

in deductive or analytical mathematics.

LECTURE 1: NUMBER APPROXIMATION 9

	Lecture 1: Number Approximation
	1. Numbers
	1.1. Number sets
	1.2. Quantification
	1.3. Computer number sets

	2. Approximation
	2.1. Axiom of floating point arithmetic
	2.2. Cummulative floating point operations

	3. Successive approximations
	3.1. Sequences in ℝ
	3.2. Cauchy sequences
	3.3. Sequences in 𝔽
	Summary.

