
PROBLEMS AND ALGORITHMS

1. Mathematical problems

1.1. Formalism for defining a mathematical problem

In general, mathematical problems can be thought of as mappings from some set of inputs X to some set of outputs Y .
The mapping is often carried out through a function f , i.e., a procedure that associates a single y∈Y to some input x∈X

f :X →Y ,y= f (x), x →
f

y

Examples:
∘ Compute the square of a real:

X =ℝ,Y =ℝ, y= f (x)=x2 .

∘ Find x solution of ax +b=c for given a,b,c∈ℝ, a≠0. The inputs to this problem are a,b,c and the output is the
solution (c−b)/a

X =ℝ\{0}×ℝ×ℝ,Y =ℝ, f (a,b,c)=(c−b)/a.

∘ Compute the innner product of two vectors 𝒖, 𝒗∈ℝn:

X =ℝn ×ℝn,Y =ℝ, y= f (𝒖, 𝒗)=�
i=1

n

uivi

with ui,vi the components of 𝒖,𝒗. Note that the input set is the Cartesian product of sets of vectors and the output set
is the reals. Such functions defined from sets of vectors (more accurately vector spaces) to reals (more accurately
scalars) are called functionals.

∘ Compute the definite integral

(u, v)=�
a

b
u(x)v(x)dx,

with f ,g arbitrary continuous functions, denoted by f ,g∈C (0)([a,b]):

X =C (0)([a,b])×C (0)([a,b]),Y =ℝ.

Again, this an example of a functional.
∘ Compute the derivative of a function g∈C (1)(ℝ), with C (k)(ℝ) the space of functions defined on ℝ differentiable

k times: X = C (1)(ℝ), Y =C (0)(ℝ), f = d/dx. Note that in this case X, Y are sets of functions, in which case f is
referred to as an operator.

∘ Find the roots of a polynomial pn(x)=anxn + . . . +a1x +a0. The input is the polynomial specified by the vector of
coefficients 𝒂∈ℝn+1. The output is another vector 𝒙∈ℝn whose components are roots, pn(xi)=0

X =ℝn+1,Y =ℝn.

The function f :X →Y cannot be written explicitly (corollary of Abel-Ruffini theorem), but there are approxima-
tions f̃ of the root-finding function that can be implemented such f̃ ≅ f .

Note that the specification of a mathematical problem requires definition of the triplet (X,Y , f ).
Once a problem is specified, the natural question is to ascertain whether a solution is possible. Generally, simple
affirmation of the existence of a solution is the objective of some field of mathematics (e.g., analysis, functional
analysis). From the point of view of science, an essential question is not only existence but also:

1. how does the output y= f (x) change if x changes?

2. what are the constructive methods to approximate y?
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1.2. Vector space

The above general definition of a mathematical problem must be refined in order to assess magnitude of changes in
inputs or outputs. A first step is to introduce some structure in the input and output sets X,Y . Using these sets, vector
spaces 𝒱 = (V , S, +, ⋅) are constructed, consisting of a set of vectors V , a set of scalars S, an addition operation +,
and a scaling operation ⋅ . The vector space is often referred to simply by its set of vectors V , when the set of scalars,
addition operation, and scaling operation are self-evident in context.

Formally,a vector space 𝒱 is defined by a set V whose
elements satisfy certain scaling and addition properties,
denoted all together by the 4-tuple 𝒱=(V ,S,+, ⋅). The
first element of the 4-tuple is a set whose elements are
called vectors. The second element is a set of scalars,
and the third is the vector addition operation. The last is
the scaling operation, seen as multiplication of a vector
by a scalar. The vector addition and scaling operations
must satisfy rules suggested by positions or forces in
three-dimensional space, which are listed in Table 1. In
particular, a vector space requires definition of two dis-
tinguished elements: the zero vector 𝟎∈V , and the iden-
tity scalar element 1∈S.

Addition rules for ∀𝒂,𝒃, 𝒄∈V
𝒂+𝒃∈V Closure
𝒂+(𝒃+𝒄)=(𝒂+𝒃)+𝒄 Associativity
𝒂+𝒃=𝒃+𝒂 Commutativity
𝟎+𝒂=𝒂 Zero vector
𝒂+(−𝒂)=𝟎 Additive inverse
Scaling rules for ∀𝒂,𝒃∈V , ∀x, y∈S
x𝒂∈V Closure
x(𝒂+𝒃)=x𝒂+x𝒃 Distributivity
(x +y)𝒂=x𝒂+y𝒂 Distributivity
x(y𝒂)=(xy)𝒂 Composition
1𝒂=𝒂 Scalar identity

Table 1. Vector space 𝒱=(V ,S,+, ⋅) properties for arbitrary 𝒂,𝒃,𝒄∈V

1.3. Norm

A first step is quantification of the changes in input or output, assumed to have the structure of a vector space, 𝒳=(X,
ℝ,+, ⋅),𝒴=(Y ,ℝ,+, ⋅).

DEFINITION 1. A norm on vector space 𝒳 is a function ‖‖:X →ℝ+, that for any x,y,z∈X, 𝛼∈ℝ satisfies the properties:

1. ‖x‖=0 if and only if x=0.

2. ‖ax‖= |a| ‖x‖

3. ‖x +y‖⩽‖x‖+‖y‖

1.4. Condition number

The ratio of changes in output to changes in input is the absolute condition number of a problem.

DEFINITION 2. The problem f :X →Y has absolute condition number

�̂�= lim
𝜀→0

sup
‖𝛿x‖⩽𝜀

‖ f (x +𝛿x)− f (x)‖
‖𝛿x‖

To avoid influence of choice of reference unit, the relative condition number is also introduced.

DEFINITION 3. The problem f :X →Y has relative condition number

�̂�= lim
𝜀→0

sup
‖𝛿x‖⩽𝜀

‖ f (x +𝛿x)− f (x)‖
‖ f (x)‖ ⋅ ‖x‖

‖𝛿x‖ .

2. Solution algorithm

2.1. Accuracy

In scientific computation, the mathematical problem f : X → Y is approximated by an algorithm f̃ : X̃ → Ỹ , in which is
assumed to be computable, and X̃, Ỹ are vector spaces that approximate X,Y . As a first step in characterizing how well
the algorithm f̃ approximates the problem f , consider that X̃ =X and Ỹ =Y , i.e., there is no error in representation of
the domain and codomain.



DEFINITION 4. The absolute error of algorithm f̃ :X →Y that approximates the problem f :X →Y is

e=‖ f̃ (x)− f (x)‖ .

DEFINITION 5. The relative error of algorithm f̃ :X →Y that approximates the problem f :X →Y is

𝜀= ‖ f̃ (x)− f (x)‖
‖ f (x)‖ .

DEFINITION 6. An algorithm f̃ :X →Y is accurate if there exists finite M ∈ℝ+ such that

𝜀= ‖ f̃ (x)− f (x)‖
‖ f (x)‖ ⩽M𝜖mach

The above condition is also denoted as 𝜀=𝒪(𝜖mach)

2.2. Stability

Algorithms should not catastrophically increase input errors. This is quantified in the concept of stability.

DEFINITION 7. An algorithm f̃ :X →Y is forward stable if

‖x̃ −x‖/‖x‖=𝒪(𝜖mach)⇒‖ f̃ (x)− f (x̃)‖/‖ f (x̃)‖=𝒪(𝜖mach)

The above states that the relative error in the output should be on the order of machine epsilon if the relative in the
input is of order machine epsilon. Note that the constants in the order statements M,N are usually different from one
another, ‖x̃ −x‖/‖x‖⩽M𝜖mach, ‖ f̃ (x)− f (x̃)‖/‖ f (x̃)‖⩽N 𝜖mach.

DEFINITION 8. An algorithm f̃ :X →Y is backward stable if from existence of some x̃ such that f̃ (x)= f (x̃), it results that

‖x̃ −x‖/‖x‖=𝒪(𝜖mach).

Backward stability asserts that the result of the algorithm on exact input data is the same as the solution to the mathe-
matical problem for nearby data (with distance on order of machine epsilon).

Summary.

• Mathematical problems are stated as functions from a set of inputs X to a set of outputs Y , f :X →Y

• The difficulty of a mathematical problem is assessed by measuring the effect of changes in input

• To quantify changes in inputs and outputs, the framework of a normed vector space is introduced

• The ratio of norm of output change to norm of input change is the absolute condition number of a problem

�̂�= lim
𝜀→0

sup
‖𝛿x‖⩽𝜀

‖ f (x +𝛿x)− f (x)‖
‖𝛿x‖

• Algorithms are constructive approximations of mathemtical problems f̃ :X →Y . The accuracy of an algorithm
is assessed by comparison of the algorithm output to that of the mathematical problem through absolute error
e and relative error 𝜀

e=‖ f̃ (x)− f (x)‖, 𝜀= ‖ f̃ (x)− f (x)‖
‖ f (x)‖

• The tendency of an algorithm to amplify pertubations of input is assessed by the concept of stability

• Algorithms that do not amplify relative changes in input of the size of machine precision are forward stable.

• Algorithms that compute the exact result of a mathematical problem for changes in put of the size of machine
precision are backward stable.
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