
LECTURE 4: LINEAR COMBINATIONS

1. Finite-dimensional vector spaces

1.1. Overview

The de�nition from Table 1 of a vector space re�ects

everyday experience with vectors in Euclidean geometry,

and it is common to refer to such vectors by descriptions

in a Cartesian coordinate system. For example, a posi-

tion vector � within the plane can be referred through the

pair of coordinates (x, y). This intuitive understanding

can be made precise through the de�nition of a vector

space �

2

= (�

2

,�, +, Å), called the real 2-space. Vec-

tors within �

2

are elements of �

2

=� ×�= {(x, y)| x,

y��}, meaning that a vector is speci�ed through two

real numbers, �� (x, y). Addition of two vectors, ��

(s, t), �� (x,y) is de�ned by addition of coordinates �+

�=(s+x, t+v). Scaling �� (x,y) by scalar a is de�ned

by a�� (ax, ay). Similarly, consideration of position

vectors in three-dimensional space leads to the de�ni-

tion of the �

3

=(�

3

,�, +, Å), or more generally a real

m-space�

m

=(�

m

,�,+, Å), m��, m>0.

Addition rules for ��,�,��V

�+��V Closure

�+(�+�)=(�+�)+� Associativity

�+�=�+� Commutativity

Î+�=� Zero vector

�+(��)=Î Additive inverse

Scaling rules for ��,��V , �x,y�S

x��V Closure

x(�+�)=x�+x� Distributivity

(x+y)�=x�+y� Distributivity

x(y�)=(xy)� Composition

1�=� Scalar identity

Table 1. Vector space±=(V ,S,+, Å) properties for arbitrary �,�,��V

Note however that there is no mention of coordinates in the de�nition of a vector space as can be seen from the

list of properties in Table 1. The intent of such a de�nition is to highlight that besides position vectors, many other

mathematical objects follow the same rules. As an example, consider the set of all continuous functions C(�)={ f | f :

��� }, with function addition de�ned by the sum at each argument t, ( f +g)(t)= f (t)+g(t), and scaling by a��

de�ned as (a f )(t)= af (t). Read this as: �given two continuous functions f and g, the function f + g is de�ned by

stating that its value for argument x is the sum of the two real numbers f (t) and g(t)�. Similarly: �given a continuous

function f , the function af is de�ned by stating that its value for argument t is the product of the real numbers a and

f (t)�. Under such de�nitions�

0

=(C(�),�,+, Å) is a vector space, but quite di�erent from�

m

. Nonetheless, the fact

that both �

0

and�

m

are vector spaces can be used to obtain insight into the behavior of continuous functions from

Euclidean vectors, and vice versa. This correspondence principle between discrete and continuous formulations is a

recurring theme in scienti�c computation.

1.2. Real vector space �

m

Column vectors. Since the real spaces�

m

=(�

m

,�,+, Å) play such an important role in themselves and as a guide

to other vector spaces, familiarity with vector operations in�

m

is necessary to fully appreciate the utility of linear

algebra to a wide range of applications. Following the usage in geometry and physics, the m real numbers that specify

a vector ���

m

are called the components of �. The one-to-one correspondence between a vector and its components

�� (u

1

, . . . ,u

m

), is by convention taken to de�ne an equality relationship,

�=
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with the components arranged vertically and enclosed in square brackets. Given two vectors �, ���

m

, and a scalar

a��, vector addition and scaling are de�ned in�

m

by real number addition and multiplication of components
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The vector space �

m

is de�ned using the real numbers as the set of scalars, and constructing vectors by grouping

together m scalars, but this approach can be extended to any set of scalars S, leading to the de�nition of the vector

spaces®

n

=(S

n

,S,+, Å). These will often be referred to as n-vector space of scalars, signifying that the set of vectors

is V =S

n

.

To aid in visual recognition of vectors, the following notation conventions are introduced:

" vectors are denoted by lower-case bold Latin letters: �,�;

" scalars are denoted by normal face Latin or Greek letters: a,b,ü,ý;

" the components of a vector are denoted by the corresponding normal face with subscripts as in equation (1);

" related sets of vectors are denoted by indexed bold Latin letters: �

1

,�

2

, . . . ,�

n

.

Row vectors. Instead of the vertical placement or components into one column, the components of could have been

placed horizontally in one row [
u

1

. . . u

m

], that contains the same data, di�erently organized. By convention vertical

placement of vector components is the preferred organization, and � shall denote a column vector henceforth. A

transpose operation denoted by a T superscript is introduced to relate the two representations

� �

T

=[
u

1

. . . u

m

],

and �

T

is the notation used to denote a row vector.

� In Julia, horizontal placement of successive components in a row is denoted by a space.

Compatible vectors. Addition of real vectors �, ���

m

de�nes another vector �=�+ ���

m

. The components of

� are the sums of the corresponding components of � and �, w

i

=u

i

+ v

i

, for i=1,2, . . . ,m. Addition of vectors with

di�erent number of components is not de�ned, and attempting to add such vectors produces an error. Such vectors

with di�erent number of components are called incompatible, while vectors with the same number of components are

said to be compatible. Scaling of � by a de�nes a vector �=a�, whose components are z

i

=au

i

, for i=1,2, . . . ,m.

1.3. Working with vectors

Ranges. The vectors used in applications usually have a large number of components, mk1, and it is important to

become pro�cient in their manipulation. Previous examples de�ned vectors by explicit listing of their m components.

This is impractical for large m, and support is provided for automated generation for often-encountered situations.

First, observe that Table 1 mentions one distinguished vector, the zero element that is a member of any vector space

Î�V . The zero vector of a real vector space�

m

is a column vector with m components, all of which are zero, and a

mathematical convention for specifying this vector is Î

T

=[
0 0 . . . 0

]��

m

. This notation speci�es that transpose

of the zero vector is the row vector withm zero components, also written through explicit indexing of each component

as Î

i

=0, for i=1,. . . ,m. Keep in mind that the zero vector Î and the zero scalar 0 are di�erent mathematical objects.

The ellipsis symbol in the mathematical notation is transcribed in Julia by the notion of a range, with 1:m denoting

all the integers starting from 1 to m, organized as a row vector. The notation is extended to allow for strides di�erent

from one, and the mathematical ellipsis i=m,m�1,...,1 is denoted as m:-1:1. In general r:s:t denotes the set of

numbers {r, r+ s, . . . , r+ns} with r+ns} t, and r, s, t real numbers and n a natural number, r, s, t��, n��. If there

is no natural number n such that r+ns} t, an empty vector with no components is returned.



2. Linear combinations

2.1. Linear combination as a matrix-vector product

The expression �=x

1

�

1

+x

2

�

2

+ Å Å Å+x

m

�

m

expresses the idea of scaling vectors within a set and subsequent addition

to form a new vector �. The matrix p=[
�

1

�

2

. . . �

m

] groups these vectors together in a single entity, and the scaling

factors are the components of the vector �. To bring all these concepts together it is natural to consider the notation

� �= p�,

as a generalization of the scalar expression x=1 Åx. It is clear what the operation p� should signify: it should capture

the vector scaling and subsequent vector addition x

1

�

1

+x

2

�

2

+ Å Å Å+x

m

�

m

. A speci�c meaning is now ascribed to p�

by identifying two de�nitions to one another.

Linear combination. Repeateadly stating �vector scaling and subsequent vector addition� is unwieldy, so a special

term is introduced for some given set of vectors {�

1

, . . . ,�

n

}.

DEFINITION. (LINEAR COMBINATION) . The linear combination of vectors �

1

, �

2

, . . . , �

n

�V with scalars x

1

, x

2

, . . . ,

x

n

�S in vector space (V ,S,+, Å) is the vector �=x

1

�

1

+x

2

�

2

+ . . .x

n

�

n

.

Matrix-vector product. Similar to the grouping of unit vectors �

1

,...,�

m

into the identity matrix p, a more concise way

of referring to arbitrary vectors �

1

, . . . ,�

n

from the same vector space is the matrix h=[
�

1

�

2

. . . �

n

]. Combining

these observations leads to the de�nition of a matrix-vector product.

DEFINITION. (MATRIX-VECTOR PRODUCT) . In the vector space (V ,S,+, Å), the product of matrix h=[
�

1

�

2

. . . �

n

]

composed of columns �

1

, �

2

, . . . , �

n

�V with the vector �� S

n

whose components are scalars x

1

, x

2

, . . . , x

n

� S is the

linear combination �=x

1

�

1

+x

2

�

2

+ . . .x

n

�

n

=h��V .

2.2. Linear algebra problem examples

Linear combinations in E

2

. Consider a simple example that leads to a common linear algebra problem: decomposi-

tion of forces in the plane along two directions. Suppose a force is given in terms of components along the Cartesian

x, y-axes, �= b

x

�

x

+ b

y

�

y

, as expressed by the matrix-vector multiplication �= p�. Note that the same force could

be obtained by linear combination of other vectors, for instance the normal and tangential components of the force

applied on an inclined plane with angle �, �= x

t

�

t

+ x

n

�

n

, as in Figure 1. This de�nes an alternate reference system

for the problem. The unit vectors along these directions are

" �=
ã

cos�

sin�

ä
,�=

ã

�sin�

cos�

ä
,

4 ¸=À/6.; c=cos(¸); s=sin(¸); t=[c; s]; n=[-s; c];

4

and can be combined into a matrix h=[
� �

]. The value of the components (x

t

, x

n

) are the scaling factors and can

be combined into a vector �=[
x

t

x

n

]

T

. The same force must result irrespective of whether its components are given

along the Cartesian axes or the inclined plane directions leading to the equality

" p�=�=h�. (9)
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4 b=[0.2; 0.4]; I*b

ã

0.2

0.4

ä
(10)

4

Interpret equation (9) to state that the vector � could be obtained either as a linear combination of p, �=p�, or as a linear

combination of the columns of h, �=h�. Of course the simpler description seems to be p� for which the components

are already known. But this is only due to an arbitrary choice made by a human observer to de�ne the force in terms of

horizontal and vertical components. The problem itself suggests that the tangential and normal components are more

relevant; for instance a friction force would be evaluated as a scaling of the normal force.

� The components of � in this more natural reference system

are not known, but can be determined by solving the vector

equality h�= p�=�, known as a linear system of equations,

implemented in many programming environments (Julia,

Matlab, Octave) through the backslash operator x=A\b.

Figure 1. Alternative decompositions of force on inclined plane.

Linear combinations in �

m

and���������

0

[0,2À). Linear combinations in a real space can suggest properties or approxi-

mations of more complex objects such as continuous functions. Let�

0

[0,2�)=(C[0,2�),�,+, Å) denote the vector

space of continuous functions that are periodic on the interval [0, 2�), C[0,�) = { f | f :���, f (t) = f (t +2�)}.

Recall that vector addition is de�ned by ( f + g)(t)= f (t)+ g(t), and scaling by (af )(t)=af (t), for f ,g�C[0, 2�),

a��. Familiar functions within this vector space are sin(kt), cos(kt) with k��, and these can be recognized to

intrinsically represent periodicity on [0, 2�), a role analogous to the normal and tangential directions in the inclined

plane example. De�ne now another periodic function b(t+2�)=b(t) by repeating the values b(t)= t(�� t)(2�� t)

from the interval [0, 2�) on all intervals [2p�, 2(p+1)� ], for p�$. The function b is not given in terms of the

�naturally� periodic functions sin(kt), cos(kt), but could it thus be expressed? This can be stated as seeking a linear

combination b(t)=�

k=1

�

x

k

sin(kt), as studied in Fourier analysis. The coe�cients x

k

could be determined from an

analytical formula involving calculus operations x

k

=

1

�

+

0

2�

b(t) sin(kt) dt, but we'll seek an approximation using a

linear combination of n terms

b(t)Ey

k=1

n

x

k

sin(kt),A(t)=[
sin(t) sin(2t) . . . sin(nt)

],A:���

n

.

Organize this as a matrix vector product b(�)E A(�)�, with

A(�)=[
sin (�) sin(2�) . . . sin (n�)

],�=[
x

1

x

2

. . . x

n

]

T

��

n

.

The idea is to sample the column vectors of A(�) at the components of the vector �=[
t

1

t

2

. . . t

m

]

T

��

m

, t

j

=( j�1)h,

j=1, 2, . . . ,m, h=�/m. Let �=b(�), and h= A(�), denote the so-sampled b, A functions leading to the de�nition of

a vector ���

m

and a matrix h��

m×n

. There are n coe�cients available to scale the column vectors of h, and �

has m components. For m> n it is generally not possible to �nd � such that h� would exactly equal �, but as seen

later the condition to be as close as possible to � leads to a well de�ned solution procedure. This is known as a least

squares problem and is automatically applied in the x=A\b instruction when the matrix A is not square. As seen in

the following numerical experiment and Figure 2, the approximation is excellent and the information conveyed by

m=1000 samples of b(t) is now much more e�ciently stored in the form chosen for the columns of h and the n=5

scaling coe�cients that are the components of �.



"
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t
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b(
t)

Fourier approximation of b(t)

Figure 2. Comparison of least squares approximation (red line) with samples (black dots) of exact function b(t)= t(�� t)(2�� t)

4 m=1000; h=2*À/m; j=1:m;

4 t=((j.-1)*h);

4 n=3; A=sin.(t);

4 for k=2:n

global A

A = [A sin.(k*t)]

end;

4 bt=t.*(À.-t).*(2*À.-t);

4 x=A\bt; b=A*x;

4 s=25; i=1:s:m; ts=t[i]; bs=bt[i];

4 clf(); plot(ts,bs,"ok",t,b,"r");

4 xlabel("t"); ylabel("b(t)"); grid("on")

4 title("Fourier approximation of \$b(t)\$");

4 cd(homedir()*"/courses/MATH661/images");

4 savefig("L04Fig02.eps");

4

Summary.

" A widely used framework for constructing additive approximations is the vector space algebraic space struc-

ture in which scaling and addition operations are de�ned

" In a vector space linear combinations are used to construct more complicated objects from simpler ones

�=h�=x

1

�

1

+ Å Å Å+x

n

�

n
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