Fundamental Theorem of Linear Algebra

1. Partition of linear mapping domain and codomain

A partition of a set S has been introduced as a collection of subsets $P=\left\{S_{i} \mid S_{i} \subset P, S_{i} \neq \emptyset\right\}$ such that any given element $x \in S$ belongs to only one set in the partition. This is modified when applied to subspaces of a vector space, and a partition of a set of vectors is understood as a collection of subsets such that any vector except $\mathbf{0}$ belongs to only one member of the partition.

Linear mappings between vector spaces $\boldsymbol{f}: U \rightarrow V$ can be represented by matrices \boldsymbol{A} with columns that are images of the columns of a basis $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots\right\}$ of U

$$
\boldsymbol{A}=\left[\begin{array}{lll}
\boldsymbol{f}\left(\boldsymbol{u}_{1}\right) & \boldsymbol{f}\left(\boldsymbol{u}_{2}\right) & \ldots
\end{array}\right] .
$$

Consider the case of real finite-dimensional domain and co-domain, $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, in which case $\boldsymbol{A} \in \mathbb{R}^{m \times n}$,

$$
\boldsymbol{A}=\left[\begin{array}{llll}
\boldsymbol{f}\left(\boldsymbol{e}_{1}\right) & \boldsymbol{f}\left(\boldsymbol{e}_{2}\right) & \ldots & \boldsymbol{f}\left(\boldsymbol{e}_{n}\right)
\end{array}\right]=\left[\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{n}
\end{array}\right]
$$

- Example 1. Rotation by θ in \mathbb{R}^{2} is obtained from

$$
\boldsymbol{f}\left(\boldsymbol{e}_{1}\right)=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right], f\left(\boldsymbol{e}_{2}\right)=\left[\begin{array}{l}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

leading to

$$
\boldsymbol{A}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

The column space of \boldsymbol{A} is a vector subspace of the codomain, $C(\boldsymbol{A}) \leq \mathbb{R}^{m}$, but according to the definition of dimension if $n<m$ there remain non-zero vectors within the codomain that are outside the range of \boldsymbol{A},

$$
n<m \Rightarrow \exists \boldsymbol{v} \in \mathbb{R}^{m}, \boldsymbol{v} \neq \mathbf{0}, \boldsymbol{v} \notin C(\boldsymbol{A})
$$

All of the non-zero vectors in $N\left(\boldsymbol{A}^{T}\right)$, namely the set of vectors orthogonal to all columns in \boldsymbol{A} fall into this category. The above considerations can be stated as

$$
C(\boldsymbol{A}) \leq \mathbb{R}^{m}, N\left(\boldsymbol{A}^{T}\right) \leq \mathbb{R}^{m}, C(\boldsymbol{A}) \perp N\left(\boldsymbol{A}^{T}\right) \quad C(\boldsymbol{A})+N\left(\boldsymbol{A}^{T}\right) \leq \mathbb{R}^{m}
$$

The question that arises is whether there remain any non-zero vectors in the codomain that are not part of $C(\boldsymbol{A})$ or $N\left(\boldsymbol{A}^{T}\right)$. The fundamental theorem of linear algebra states that there no such vectors, that $C(\boldsymbol{A})$ is the orthogonal complement of $N\left(\boldsymbol{A}^{T}\right)$, and their direct sum covers the entire codomain $C(\boldsymbol{A}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{m}$.

LEMMA 2. Let \mathscr{U}, \mathscr{T}, be subspaces of vector space \mathscr{W}. Then $\mathscr{W}=\mathscr{U} \oplus \mathscr{T}$ if and only if
i. $\mathscr{W}=\mathscr{U}+\mathscr{V}$, and
ii. $\mathscr{U} \cap \mathscr{V}=\{\mathbf{0}\}$.

Proof. $\mathscr{W}=\mathscr{U} \oplus \mathscr{V} \Rightarrow \mathscr{W}=\mathscr{U}+\mathscr{V}$ by definition of direct sum, sum of vector subspaces. To prove that $\mathscr{W}=\mathscr{U} \oplus \mathscr{V} \Rightarrow$ $\mathscr{U} \cap \mathscr{T}=\{\mathbf{0}\}$, consider $\boldsymbol{w} \in \mathscr{U} \cap \mathscr{V}$. Since $\boldsymbol{w} \in \mathscr{U}$ and $\boldsymbol{w} \in \mathscr{V}$ write

$$
\boldsymbol{w}=\boldsymbol{w}+\mathbf{0} \quad(\boldsymbol{w} \in \mathscr{U}, \mathbf{0} \in \mathscr{V}), \boldsymbol{w}=\mathbf{0}+\boldsymbol{w} \quad(\mathbf{0} \in \mathscr{U}, \boldsymbol{w} \in \mathscr{V}),
$$

and since expression $\boldsymbol{w}=\boldsymbol{u}+\boldsymbol{v}$ is unique, it results that $\boldsymbol{w}=\mathbf{0}$. Now assume (i),(ii) and establish an unique decomposition. Assume there might be two decompositions of $\boldsymbol{w} \in \mathscr{W}, \boldsymbol{w}=\boldsymbol{u}_{1}+\boldsymbol{v}_{1}, \boldsymbol{w}=\boldsymbol{u}_{2}+\boldsymbol{v}_{2}$, with $\boldsymbol{u}_{1}, \boldsymbol{u}_{2} \in \mathscr{U}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathscr{V}$. Obtain $\boldsymbol{u}_{1}+\boldsymbol{v}_{1}=\boldsymbol{u}_{2}+\boldsymbol{v}_{2}$, or $\boldsymbol{x}=\boldsymbol{u}_{1}-\boldsymbol{u}_{2}=\boldsymbol{v}_{2}-\boldsymbol{v}_{1}$. Since $\boldsymbol{x} \in \mathscr{U}$ and $\boldsymbol{x} \in \mathscr{V}$ it results that $\boldsymbol{x}=\mathbf{0}$, and $\boldsymbol{u}_{1}=\boldsymbol{u}_{2}, \boldsymbol{v}_{1}=\boldsymbol{v}_{2}$, i.e., the decomposition is unique.

In the vector space $U+V$ the subspaces U, V are said to be orthogonal complements if $U \perp V$, and $U \cap V=\{\mathbf{0}\}$. When $U \leq \mathbb{R}^{m}$, the orthogonal complement of U is denoted as $U^{\perp}, U \oplus U^{\perp}=\mathbb{R}^{m}$.

THEOREM. Given the linear mapping associated with matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ we have:

1. $C(\boldsymbol{A}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{m}$, the direct sum of the column space and left null space is the codomain of the mapping
2. $C\left(\boldsymbol{A}^{T}\right) \oplus N(\boldsymbol{A})=\mathbb{R}^{n}$, the direct sum of the row space and null space is the domain of the mapping
3. $C(\boldsymbol{A}) \perp N\left(\boldsymbol{A}^{T}\right)$ and $C(\boldsymbol{A}) \cap N\left(\boldsymbol{A}^{T}\right)=\{\mathbf{0}\}$, the column space is orthogonal to the left null space, and they are orthogonal complements of one another,

$$
C(\boldsymbol{A})=N\left(\boldsymbol{A}^{T}\right)^{\perp}, N\left(\boldsymbol{A}^{T}\right)=C(\boldsymbol{A})^{\perp} .
$$

4. $C\left(\boldsymbol{A}^{T}\right) \perp N(\boldsymbol{A})$ and $C\left(\boldsymbol{A}^{T}\right) \cap N(\boldsymbol{A})=\{\mathbf{0}\}$, the row space is orthogonal to the null space, and they are orthogonal complements of one another,

$$
C\left(\boldsymbol{A}^{T}\right)=N(\boldsymbol{A})^{\perp}, N(\boldsymbol{A})=C\left(\boldsymbol{A}^{T}\right)^{\perp}
$$

Figure 1. Graphical represenation of the Fundamental Theorem of Linear Algebra, Gil Strang, Amer. Math. Monthly 100, 848-855, 1993.
Consideration of equality between sets arises in proving the above theorem. A standard technique to show set equality $A=B$, is by double inclusion, $A \subseteq B \wedge B \subseteq A \Rightarrow A=B$. This is shown for the statements giving the decomposition of the codomain \mathbb{R}^{m}. A similar approach can be used to decomposition of \mathbb{R}^{n}.
i. $C(\boldsymbol{A}) \perp N\left(\boldsymbol{A}^{T}\right)$ (column space is orthogonal to left null space).

Proof. Consider arbitrary $\boldsymbol{u} \in C(\boldsymbol{A}), \boldsymbol{v} \in N\left(\boldsymbol{A}^{T}\right)$. By definition of $C(\boldsymbol{A}), \exists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{u}=\boldsymbol{A} \boldsymbol{x}$, and by definition of $N\left(\boldsymbol{A}^{T}\right), \boldsymbol{A}^{T} \boldsymbol{v}=\mathbf{0}$. Compute $\boldsymbol{u}^{T} \boldsymbol{v}=(\boldsymbol{A} \boldsymbol{x})^{T} \boldsymbol{v}=\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{v}=\boldsymbol{x}^{T}\left(\boldsymbol{A}^{T} \boldsymbol{v}\right)=\boldsymbol{x}^{T} \mathbf{0}=0$, hence $\boldsymbol{u} \perp \boldsymbol{v}$ for arbitrary \boldsymbol{u}, \boldsymbol{v}, and $C(\boldsymbol{A}) \perp N\left(\boldsymbol{A}^{T}\right)$.
ii. $C(\boldsymbol{A}) \cap N\left(\boldsymbol{A}^{T}\right)=\{\mathbf{0}\}\left(\mathbf{0}\right.$ is the only vector both in $C(\boldsymbol{A})$ and $\left.N\left(\boldsymbol{A}^{T}\right)\right)$.

Proof. (By contradiction, reductio ad absurdum). Assume there might be $\boldsymbol{b} \in C(\boldsymbol{A})$ and $b \in N\left(\boldsymbol{A}^{T}\right)$ and $\boldsymbol{b} \neq \mathbf{0}$. Since $\boldsymbol{b} \in C(\boldsymbol{A}), \exists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}$. Since $\boldsymbol{b} \in N\left(\boldsymbol{A}^{T}\right), \boldsymbol{A}^{T} \boldsymbol{b}=\boldsymbol{A}^{T}(\boldsymbol{A} \boldsymbol{x})=\mathbf{0}$. Note that $\boldsymbol{x} \neq 0$ since $\boldsymbol{x}=0 \Rightarrow$ $\boldsymbol{b}=0$, contradicting assumptions. Multiply equality $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ on left by \boldsymbol{x}^{T},

$$
\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow(\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{b}^{T} \boldsymbol{b}=\|\boldsymbol{b}\|^{2}=0
$$

thereby obtaining $\boldsymbol{b}=0$, using norm property 3 . Contradiction.
iii. $C(\boldsymbol{A}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{m}$

Proof. (iii) and (iv) have established that $C(\boldsymbol{A}), N\left(\boldsymbol{A}^{T}\right)$ are orthogonal complements

$$
C(\boldsymbol{A})=N\left(\boldsymbol{A}^{T}\right)^{\perp}, N\left(\boldsymbol{A}^{T}\right)=C(\boldsymbol{A})^{\perp} .
$$

By Lemma 2 it results that $C(\boldsymbol{A}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{m}$.
The remainder of the FTLA is established by considering $\boldsymbol{B}=\boldsymbol{A}^{T}$, e.g., since it has been established in (v) that $C(\boldsymbol{B}) \oplus$ $N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{n}$, replacing $\boldsymbol{B}=\boldsymbol{A}^{T}$ yields $C\left(\boldsymbol{A}^{T}\right) \oplus N(\boldsymbol{A})=\mathbb{R}^{m}$, etc.

