
LECTURE 9: REDUCED SYSTEMS

1. Projection of mappings

1.1. Reduced matrices

The least-squares problem

min

���

n

���h�� (1)

focuses on a simpler representation of a data vector ���

m

as a linear combination of column vectors of h��

m×n

.

Consider some phenomenon modeled as a function between vector spaces � :X�Y , such that for input parameters

��X, the state of the system is �= � (�). For most models � is di�erentiable, a transcription of the condition that the

system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice of units

and origin, a linearized model

�=h�,h��

m×n

,

is obtained if ��C(h), expressed as (1) if �	C(h).

A simpler description is often sought, typically based on recognition that the inputs and outputs of the model can

themselves be obtained as linear combinations �=i�, �=j�, involving a smaller set of parameters ���

q

, ���

p

,

p<m, q<n. The column spaces of the matrices i��

n×q

, j��

m×p

are vector subspaces of the original set of inputs

and outputs, C(i)d�

n

, C(j)d�

m

. The sets of column vectors of i,j each form a reduced basis for the system

inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been orthonormalized

through the Gram-Schmidt procedure such that i

T

i= p

q

, and j

T

j= p

p

. Expressing the model inputs and outputs in

terms of the reduced basis leads to

j�=hi�Ò�=j

T

hi�Ò�=y�.

The matrix y=j

T

hi��

p×q

is called the reduced system matrix and is associated with a mapping �:U�V , that is

a restriction to the U,V vector subspaces of the mapping � . When � is an endomorphism, � :X�X, m=n, the same

reduced basis is used for both inputs and outputs, �=i�, �=i�, and the reduced system is

�=y�,y=i

T

hi.

Since i is assumed to be orthogonal, the projector onto C(i) is w

i

=ii

T

. Applying the projector on the inital model

w

i

�=w

i

h�

leads to ii

T

�=ii

T

h�, and since �=i

T

� the relation i�=ii

T

hi� is obtained, and conveniently grouped as

i�=i (i

T

hi)�Òi�=i(y�),

again leading to the reduced model �=i�. The above calculation highlights that the reduced model is a projection of

the full model �=h� on C(i).

1.2. Dynamical system model reduction

An often encountered situation is the reduction of large-dimensional dynamical system

t�

¨

+k�

Ù

+r�= � ,t,k,r��

m×m

,�, � :�

+

��

m

, (2)

�

Ù

=

d�

dt

,�

¨

=

d�

Ù

dt

,

a generalization to multiple degrees of freedom of the damped oscillator equation

mx

¨

+dx

Ù

+kx= f .

In (2), �(t) are the time-depenent coordinates of the system, � (t) the forces acting on the system, andt,k,r are the

mass, drag, sti�ness matrices, respectively.
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When mk1, a reduced description is sought by linear combination of njm basis vectors

�E�

Ü

=i�Òti�

¨

+ki �

Ù

+ri �= �

Choose i��

m×n

to have orthonormal columns, and project (2) onto C(i) by multiplication with the projector w=

ii

T

ii

T

ti �

¨

+ii

T

ki �

Ù

+ii

T

ri �=ii

T

� Ò

i(i

T

ti�

¨

+i

T

ki �

Ù

+i

T

ri ��i

T

� )=ÎÔi�=Î.

Since N(i)={Î}, deduce �=Î, hence

i

T

ti�

¨

+i

T

ki �

Ù

+i

T

ri �=i

T

� .

Introduce notations

t

Ü

=i

T

ti,k

Ü

=i

T

ki,r

Ü

=i

T

ri

for the reduced mass, drag, sti�ness matrices, witht

Ü

,k

Ü

,r

Ü

��

n×n

of smaller size. The reduced coordinates and forces

are

�

Ü

=i

T

� , �, �

Ü

��

n

.

The resulting reduced dynamical system is

t

Ü

�

¨

+k

Ü

�

Ù

+r

Ü

�= �

Ü

.

2. Reduced bases

One elemenet is missing from the description of model reduction above: how is i determined? Domain-speci�c

knowledge can often dictate an appropriate basis (e.g., Fourier basis fo periodic phenomena). An alternative approach

is to extract an appropriate basis from observations of a phenomenon, known as data-driven modeling.

2.1. Correlation matrices

Correlation coe�cient. Consider two functions x

1

,x

2

:���, that represent data streams in time of inputs x

1

(t) and

outputs x

2

(t) of some system. A basic question arising in modeling and data science is whether the inputs and outputs

are themselves in a functional relationship. This usually is a consequence of incomplete knowledge of the system, such

that while x

1

,x

2

might be assumed to be the most relevant input, output quantities, this is not yet fully established. A

typical approach is to then carry out repeated measurements leading to a data set D={(x

1

(t

i

),x

2

(t

i

))| i=1,. . . ,N}, thus

de�ning a relation. Let �

1

,�

2

��

N

denote vectors containing the input and output values. The mean values �

1

,�

2

of

the input and output are estimated by the statistics

�

1

Ex

¯

1

=

1

N

y

i=1

N

x

1

(t

i

)=E [x

1

],�

2

Ex

¯

2

=

1

N

y

i=1

N

x

2

(t

i

)=E [x

2

],

where E is the expectation seen to be a linear mapping, E:�

N

�� whose associated matrix is

l=

1

N

[
1 1 . . . 1

],

and the means are also obtained by matrix vector multiplication (linear combination),

x

¯

1

=l�

1

, x

¯

2

=l�

2

.

Deviation from the mean is measured by the standard deviation de�ned for x

1

,x

2

by

�

1

= E[(x

1

��

1

)

2

]
4

,�

2

= E[(x

2

��

2

)

2

]
4

.

Note that the standard deviations are no longer linear mappings of the data.



Assume that the origin is chosen such that x

¯

1

=x

¯

2

=0. One tool to estalish whether the relation D is also a function is

to compute the correlation coe�cient

�(x

1

,x

2

)=

E[x

1

x

2

]

�

1

�

2

=

E[x

1

x

2

]

E[x

1

2

]E[x

2

2

]
4

,

that can be expressed in terms of a scalar product and 2-norm as

�(x

1

,x

2

)=

�

1

T

�

2

��

1

� ��

2

�

.

Squaring each side of the norm property ��

1

+�

2

�} ��

1

�+ ��

2

�, leads to

(�

1

+�

2

)

T

(�

1

+�

2

)}�

1

T

�

1

+�

2

T

�

2

+2 ��

1

� ��

2

�Ò�

1

T

�

2

} ��

1

� ��

2

�,

known as the Cauchy-Schwarz inequality, which implies �1}�(x

1

,x

2

)}1. Depending on the value of�, the variables

x

1

(t),x

2

(t) are said to be:

1. uncorrelated, if �=0;

2. correlated, if �=1;

3. anti-correlated, if �=�1.

The numerator of the correlation coe�cient is known as the covariance of x

1

,x

2

cov(x

1

,x

2

)=E[x

1

x

2

].

The correlation coe�cient can be interpreted as a normalization of the covariance, and the relation

cov(x

1

,x

2

)=�

1

T

�

2

=�(x

1

,x

2

) ��

1

� ��

2

�,

is the two-variable version of a more general relationship encountered when the system inputs and outputs become

vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters ���

n

, ���

m

thought

to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful

description is furnished by ���

q

, ���

p

with fewer components p<m, q< n. Applying the same ideas as in the

correlation coe�cient, a sequence of N measurements is made leading to data sets

�=[
�

1

�

2

. . . �

n

]��

N×n

,�=[
�

1

�

2

. . . �

n

]��

N×m

.

Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero

E[�]=Î,E[�]=Î.

Covariance matrices can be constructed by

j

�

=�

T

�=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�

1

T

�

2

T

Å

Å

Å

�

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[
�

1

�

2

. . . �

n

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�

1

T

�

1

�

1

T

�

2

. . . �

1

T

�

n

�

2

T

�

1

�

2

T

�

2

. . . �

2

T

�

n

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

�

n

T

�

1

�

n

T

�

2

. . . �

n

T

�

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

��

n×n

.

Consider now the SVDs of C

�

=u²u

T

, �=|ºz

T

, and from

j

�

=�

T

�=(|ºz

T

)

T

|ºz

T

=zº

T

|

T

|ºz

T

=zº

T

ºz

T

=u²u

T

,

identify u=z, and²=º

T

º.

Recall that the SVD returns an order set of singular values �

1

~�

2

~ Å Å Å~ , and associated singular vectors. In many

applications the singular values decrease quickly, often exponentially fast. Taking the �rst q singular modes then gives

a basis set suitable for mode reduction

�=z

q

�= �

�

1

�

2

. . . �

q

��.
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3. Stochastic systems - Karhunen-Loève theorem

The data reduction inherent in SVD representations is a generic feature of natural phenomena. A paradigm for phys-

ical systems is the evolution of correlated behavior against a backdrop of thermal enery, typically represented as a

form of noise.

One mathematical technique to model such systems is the de�nition of a stochastic process {X

t

}

a}t}b

, where for each

�xed t, X

t

is a random variable, i.e., a measurable function X:©�E from a set of possible outcomes© to a measurable

space E. The set© is the sample space of a probability triple (©,1,P), where for �S�E

P(X�S)=P({��©}|X(�)�S|).

A measurable space is a set coupled with procedure to determine measurable subsets, known as a �-algebra.

THEOREM. Let X

t

be a zero-mean (<[X

t

]= 0), square-integrable stochastic process de�ned over probability space

(©,1,P) indexed by t��, a} t}b. Then X

t

admits a representation

X

t

=y

k=1

�

Z

k

e

k

(t),

with

Z

k

=5

a

b

X

t

e

k

(t)dt,<[Z

k

]=0,<[Z

i

,Z

j

]=ÿ

ij

�

j

.
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