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MODEL REDUCTION

1. Projection of mappings

1.1. Reduced matrices

The least-squares problem
min [y -Ax]| ()
xeR”
focuses on a simpler representation of a data vector y € R” as a linear combination of column vectors of A € R"™".
Consider some phenomenon modeled as a function between vector spaces f: X — Y, such that for input parameters
x € X, the state of the system is y =f (x). For most models f is differentiable, a transcription of the condition that the

system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice of units
and origin, a linearized model

y=Ax,AeR"™",
is obtained if y e C(A), expressed as (1) if y ¢ C(A).

A simpler description is often sought, typically based on recognition that the inputs and outputs of the model can
themselves be obtained as linear combinations x =Bu, y = Cv, involving a smaller set of parameters u € R?, v e R?,
p <m, g<n. The column spaces of the matrices B € R"*?, C € R™*? are vector subspaces of the original set of inputs
and outputs, C(B) <R”, C(C) <R™. The sets of column vectors of B, C each form a reduced basis for the system
inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been orthonormalized
through the Gram-Schmidt procedure such that B'B =1, and C*C=1,. Expressing the model inputs and outputs in
terms of the reduced basis leads to

Cv=ABu=v=CTABu=v=Ru.

The matrix R =C” AB € R?*4is called the reduced system matrix and is associated with a mapping g: U — V, that is
a restriction to the U, V vector subspaces of the mapping f. When f is an endomorphism, f: X — X, m =n, the same
reduced basis is used for both inputs and outputs, x =Bu, y = By, and the reduced system is

v=Ru,R=BT AB.
Since B is assumed to be orthogonal, the projector onto C(B) is Pg=BB”. Applying the projector on the inital model
Ppy=PpAx
leads to BBT y=BBT” Ax, and since v=B"y the relation Bv=BB” ABu is obtained, and conveniently grouped as
Bv=B(B"AB)u=Bv=B(Ru),
again leading to the reduced model v = Bu. The above calculation highlights that the reduced model is a projection of
the full model y=Ax on C(B).
1.2. Dynamical system model reduction

An often encountered situation is the reduction of large-dimensional dynamical system

Mx+Dx+Kx=f,M,D,Ke R™" x,f:R, > R", 2)
_dx . dE
Y=Y ar

a generalization to multiple degrees of freedom of the damped oscillator equation
mx+dx+kx=f.

In (2), x(t) are the time-depenent coordinates of the system, f(¢) the forces acting on the system, and M,D, K are the
mass, drag, stiffness matrices, respectively.



When m > 1, a reduced description is sought by linear combination of n « m basis vectors

x=Xx=By=>MBy+DBy+KBy=f
Choose B € R™" to have orthonormal columns, and project (2) onto C(B) by multiplication with the projector P =
BBT

BB'MBy+BB'"DBy+BB'KBy=BB' f =
B(BT™MBy+B"DBy+B"KBy-B" f)=0<= Bz=0.

Since N (B) = {0}, deduce z =0, hence

B"™MBy+B"DBy+B"KBy=B'f.
Introduce notations

M=B"MB,D=B"DB,K=B"KB

for the reduced mass, drag, stiffness matrices, with M ,13,12 € R™" of smaller size. The reduced coordinates and forces
are

f=B"f, y.feR"
The resulting reduced dynamical system is

My'+13y'+12y=f.

2. Reduced bases

One elemenet is missing from the description of model reduction above: how is B determined? Domain-specific
knowledge can often dictate an appropriate basis (e.g., Fourier basis fo periodic phenomena). An alternative approach
is to extract an appropriate basis from observations of a phenomenon, known as data-driven modeling.

2.1. Correlation matrices

Correlation coefficient. Consider two functions x,x,: R —» R, that represent data streams in time of inputs x;(¢) and
outputs x(#) of some system. A basic question arising in modeling and data science is whether the inputs and outputs
are themselves in a functional relationship. This usually is a consequence of incomplete knowledge of the system, such
that while x;,x, might be assumed to be the most relevant input, output quantities, this is not yet fully established. A
typical approach is to then carry out repeated measurements leading to a data set D= {(x(#;),x2(#;))|i=1,...,N}, thus
defining a relation. Letx;,x, € RY denote vectors containing the input and output values. The mean values py, yt5 of
the input and output are estimated by the statistics

N N
.1 -1
=X :NZ x1 () :E[xl]yNZEXZZNZ xa(t;) = E [x2],
i=1 i=1

where E is the expectation seen to be a linear mapping, E: RY — R whose associated matrix is

1
E=5[11 .. 1],

and the means are also obtained by matrix vector multiplication (linear combination),
fl =Ex1, )?2=Ex2.

Deviation from the mean is measured by the standard deviation defined for x;,x, by

o= \/E[(xl_lll)z]a o= \/E[(xz—ﬂ2)2]~

Note that the standard deviations are no longer linear mappings of the data.
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Assume that the origin is chosen such that x; =x,=0. One tool to estalish whether the relation D is also a function is

to compute the correlation coefficient
E[x1x2 E[xi1x2
p(x1,x2) = £ P 1 [2 ] =
192 E[x7] E[x3]

that can be expressed in terms of a scalar product and 2-norm as

T

X1 X2
(x1,x2) = ———.
PN T

Squaring each side of the norm property [x; +x2| < [lx 1l + [|x2], leads to
T <yl T ) T <
(X1 +x2)" (X1 +x2) Sxq X1 +X2 X2+ 22y P2l = x7 x2 < e[ 12,

known as the Cauchy-Schwarz inequality, which implies —1 < p (x1,x2) < 1. Depending on the value of p, the variables
x1(t),x,(t) are said to be:

1. uncorrelated, if p =0;
2. correlated, if p=1;
3. anti-correlated, if p=—1.
The numerator of the correlation coefficient is known as the covariance of x,x»
cov(xy,xa) = E[x1x3].
The correlation coefficient can be interpreted as a normalization of the covariance, and the relation
COV(x1,%2) =X ] X2= p (x1,x2) |1 |2l

is the two-variable version of a more general relationship encountered when the system inputs and outputs become
vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters x € R”, y € R™ thought
to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful
description is furnished by u € R, v € R” with fewer components p <m, g <n. Applying the same ideas as in the
correlation coefficient, a sequence of N measurements is made leading to data sets

X=[x1 x5 ... x, ]JeRY" Y=y, y, ... y, ]e RV,
Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero
E[x]=0,E[y]=0.

Covariance matrices can be constructed by

x! xTxr xTx, o xTx,
T T T T
Cy=X"X=|*2|[x; x, ... x,]=| %251 ¥2X2 - X2 Xn | c Rrxn,
xT xIx; xIx, ... xIx,

Consider now the SVDs of Cy=NANT, X=UZXS7, and from
Cx=X"X=UZSHTUZS"=SXTUTUXLST=SET"XST=NANT,

identify N=S,and A=X7 X.

Recall that the SVD returns an order set of singular values o> 02> --- >, and associated singular vectors. In many

applications the singular values decrease quickly, often exponentially fast. Taking the first g singular modes then gives
a basis set suitable for mode reduction

x=S,u=[s1 5 ... 5;]u.



3. Stochastic systems - Karhunen-Loeve theorem

The data reduction inherent in SVD representations is a generic feature of natural phenomena. A paradigm for phys-
ical systems is the evolution of correlated behavior against a backdrop of thermal enery, typically represented as a
form of noise.

One mathematical technique to model such systems is the definition of a stochastic process {X;},<;<», Where for each
fixed ¢, X, is arandom variable, i.e., a measurable function X: QQ — E from a set of possible outcomes €2 to a measurable
space E. The set Q is the sample space of a probability triple (Q, ¥, P), where for VS CE

P(XeS)=P({weQ}X(w)eS).
A measurable space is a set coupled with procedure to determine measurable subsets, known as a o-algebra.

THEOREM. Let X, be a zero-mean (E[X,] =0), square-integrable stochastic process defined over probability space
(Q, F,P) indexed by te R, a<t<b. Then X; admits a representation

X,=) Ziet),
. k=1
with
b
Zi= | Xiew(n)d1, B[Z]=0,BIZ,Z)) = 80,
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