
MODEL REDUCTION

1. Projection of mappings

1.1. Reduced matrices

The least-squares problem

min
𝒙∈ℝn

‖𝒚−𝑨𝒙‖ (1)

focuses on a simpler representation of a data vector 𝒚 ∈ ℝm as a linear combination of column vectors of 𝑨 ∈ ℝm×n.
Consider some phenomenon modeled as a function between vector spaces 𝒇 : X → Y , such that for input parameters
𝒙∈X, the state of the system is 𝒚=𝒇 (𝒙). For most models 𝒇 is differentiable, a transcription of the condition that the
system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice of units
and origin, a linearized model

𝒚=𝑨𝒙, 𝑨∈ℝm×n,

is obtained if 𝒚∈C(𝑨), expressed as (1) if 𝒚∉C(𝑨).

A simpler description is often sought, typically based on recognition that the inputs and outputs of the model can
themselves be obtained as linear combinations 𝒙 =𝑩𝒖, 𝒚 =𝑪𝒗, involving a smaller set of parameters 𝒖∈ℝq, 𝒗∈ℝp,
p<m, q<n. The column spaces of the matrices 𝑩∈ℝn×q, 𝑪∈ℝm×p are vector subspaces of the original set of inputs
and outputs, C(𝑩) ≤ℝn, C(𝑪) ≤ ℝm. The sets of column vectors of 𝑩, 𝑪 each form a reduced basis for the system
inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been orthonormalized
through the Gram-Schmidt procedure such that 𝑩T𝑩= 𝑰q, and 𝑪T𝑪=𝑰p. Expressing the model inputs and outputs in
terms of the reduced basis leads to

𝑪𝒗=𝑨𝑩𝒖⇒𝒗=𝑪T 𝑨𝑩𝒖⇒𝒗=𝑹𝒖.

The matrix 𝑹=𝑪T 𝑨𝑩∈ℝp×q is called the reduced system matrix and is associated with a mapping 𝒈:U →V , that is
a restriction to the U, V vector subspaces of the mapping 𝒇 . When 𝒇 is an endomorphism, 𝒇 :X → X, m= n, the same
reduced basis is used for both inputs and outputs, 𝒙=𝑩𝒖, 𝒚=𝑩𝒗, and the reduced system is

𝒗=𝑹𝒖,𝑹=𝑩T 𝑨𝑩.

Since 𝑩 is assumed to be orthogonal, the projector onto C(𝑩) is 𝑷𝑩 =𝑩𝑩T . Applying the projector on the inital model

𝑷𝑩 𝒚=𝑷𝑩 𝑨𝒙

leads to 𝑩𝑩T 𝒚=𝑩𝑩T 𝑨𝒙, and since 𝒗=𝑩T 𝒚 the relation 𝑩𝒗=𝑩𝑩T 𝑨𝑩𝒖 is obtained, and conveniently grouped as

𝑩𝒗=𝑩(𝑩T 𝑨𝑩)𝒖⇒𝑩𝒗=𝑩(𝑹𝒖),

again leading to the reduced model 𝒗=𝑩𝒖. The above calculation highlights that the reduced model is a projection of
the full model 𝒚=𝑨𝒙 on C(𝑩).

1.2. Dynamical system model reduction

An often encountered situation is the reduction of large-dimensional dynamical system

𝑴 �̈�+𝑫�̇�+𝑲𝒙=𝒇 ,𝑴,𝑫,𝑲 ∈ℝm×m, 𝒙, 𝒇 :ℝ+ →ℝm, (2)

�̇�= d𝒙
dt , �̈�= d�̇�

dt ,

a generalization to multiple degrees of freedom of the damped oscillator equation

mẍ +d ẋ +kx = f .

In (2), 𝒙(t) are the time-depenent coordinates of the system, 𝒇 (t) the forces acting on the system, and 𝑴,𝑫,𝑲 are the
mass, drag, stiffness matrices, respectively.
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When m≫1, a reduced description is sought by linear combination of n≪m basis vectors

𝒙≅�̃�=𝑩𝒚⇒𝑴𝑩 𝒚+𝑫𝑩 𝒚+𝑲𝑩 𝒚=𝒇

Choose 𝑩 ∈ ℝm×n to have orthonormal columns, and project (2) onto C(𝑩) by multiplication with the projector 𝑷 =
𝑩𝑩T

𝑩𝑩T𝑴𝑩 𝒚+𝑩𝑩T𝑫𝑩 𝒚+𝑩𝑩T𝑲𝑩 𝒚=𝑩𝑩T 𝒇 ⇒

𝑩(𝑩T𝑴𝑩 𝒚+𝑩T𝑫𝑩 𝒚+𝑩T𝑲𝑩 𝒚−𝑩T 𝒇 )=𝟎⇔𝑩𝒛 =𝟎.

Since N(𝑩)={𝟎}, deduce 𝒛 =𝟎, hence

𝑩T𝑴𝑩 𝒚+𝑩T𝑫𝑩 𝒚+𝑩T𝑲𝑩 𝒚=𝑩T 𝒇 .

Introduce notations

�̃�=𝑩T𝑴𝑩, �̃�=𝑩T𝑫𝑩, �̃� =𝑩T𝑲𝑩

for the reduced mass, drag, stiffness matrices, with �̃�, �̃�,�̃� ∈ℝn×n of smaller size. The reduced coordinates and forces
are

𝒇 =𝑩T 𝒇 , 𝒚, 𝒇 ∈ℝn.

The resulting reduced dynamical system is

�̃� 𝒚+�̃� 𝒚+�̃� 𝒚=𝒇 .

2. Reduced bases
One elemenet is missing from the description of model reduction above: how is 𝑩 determined? Domain-specific
knowledge can often dictate an appropriate basis (e.g., Fourier basis fo periodic phenomena). An alternative approach
is to extract an appropriate basis from observations of a phenomenon, known as data-driven modeling.

2.1. Correlation matrices

Correlation coefficient. Consider two functions x1,x2:ℝ→ℝ, that represent data streams in time of inputs x1(t) and
outputs x2(t) of some system. A basic question arising in modeling and data science is whether the inputs and outputs
are themselves in a functional relationship. This usually is a consequence of incomplete knowledge of the system, such
that while x1, x2 might be assumed to be the most relevant input, output quantities, this is not yet fully established. A
typical approach is to then carry out repeated measurements leading to a data set D={(x1(ti),x2(ti))| i =1,. . . ,N}, thus
defining a relation. Let 𝒙1, 𝒙2 ∈ℝN denote vectors containing the input and output values. The mean values 𝜇1,𝜇2 of
the input and output are estimated by the statistics

𝜇1 ≅ x̄1 = 1
N�

i=1

N

x1(ti)=E [x1],𝜇2≅ x̄2= 1
N�

i=1

N

x2(ti)=E [x2],

where E is the expectation seen to be a linear mapping, E:ℝN →ℝ whose associated matrix is

𝑬= 1
N[ 1 1 . . . 1 ],

and the means are also obtained by matrix vector multiplication (linear combination),

x̄1 =𝑬𝒙1, x̄2 =𝑬𝒙2.

Deviation from the mean is measured by the standard deviation defined for x1,x2 by

𝜎1 = E[(x1 −𝜇1)2]� , 𝜎2 = E[(x2−𝜇2)2]� .

Note that the standard deviations are no longer linear mappings of the data.



Assume that the origin is chosen such that x̄1= x̄2=0. One tool to estalish whether the relation D is also a function is
to compute the correlation coefficient

𝜌(x1,x2)= E[x1x2]
𝜎1 𝜎2

= E[x1x2]
E[x1

2]E[x2
2]�

,

that can be expressed in terms of a scalar product and 2-norm as

𝜌(x1,x2)= 𝒙1
T 𝒙2

‖𝒙1‖ ‖𝒙2‖
.

Squaring each side of the norm property ‖𝒙1+𝒙2‖⩽‖𝒙1‖+ ‖𝒙2‖, leads to

(𝒙1 +𝒙2)T(𝒙1 +𝒙2)⩽𝒙1
T 𝒙1 +𝒙2

T 𝒙2 +2‖𝒙1‖ ‖𝒙2‖⇒𝒙1
T 𝒙2 ⩽‖𝒙1‖ ‖𝒙2‖,

known as the Cauchy-Schwarz inequality, which implies −1⩽𝜌(x1,x2)⩽1. Depending on the value of 𝜌, the variables
x1(t),x2(t) are said to be:

1. uncorrelated, if 𝜌=0;

2. correlated, if 𝜌=1;

3. anti-correlated, if 𝜌=−1.

The numerator of the correlation coefficient is known as the covariance of x1,x2

cov(x1,x2)=E[x1x2].

The correlation coefficient can be interpreted as a normalization of the covariance, and the relation

cov(x1, x2)=𝒙1
T 𝒙2 =𝜌(x1,x2) ‖𝒙1‖ ‖𝒙2‖,

is the two-variable version of a more general relationship encountered when the system inputs and outputs become
vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters 𝒙∈ℝn, 𝒚∈ℝm thought
to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful
description is furnished by 𝒖 ∈ ℝq, 𝒗 ∈ ℝp with fewer components p < m, q < n. Applying the same ideas as in the
correlation coefficient, a sequence of N measurements is made leading to data sets

𝑿 =[ 𝒙1 𝒙2 . . . 𝒙n ]∈ℝN×n, 𝒀 =[ 𝒚1 𝒚2 . . . 𝒚n ]∈ℝN×m.

Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero

E[𝒙]=𝟎,E[𝒚]=𝟎.

Covariance matrices can be constructed by

𝑪𝑿 =𝑿T𝑿 =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[
[
[ 𝒙1

T

𝒙2
T

⋅⋅⋅
𝒙n

T ]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]
]
]
[ 𝒙1 𝒙2 . . . 𝒙n ]=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[
[
[ 𝒙1

T 𝒙1 𝒙1
T 𝒙2 . . . 𝒙1

T 𝒙n
𝒙2

T 𝒙1 𝒙2
T 𝒙2 . . . 𝒙2

T 𝒙n
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

𝒙n
T 𝒙1 𝒙n

T 𝒙2 . . . 𝒙n
T 𝒙n ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]
]
]

∈ℝn×n.

Consider now the SVDs of C𝑿 =𝑵𝚲𝑵T , 𝑿 =𝑼𝚺𝑺T , and from

𝑪𝑿 =𝑿T𝑿 =(𝑼𝚺𝑺T)T 𝑼𝚺𝑺T =𝑺𝚺T 𝑼T𝑼𝚺𝑺T =𝑺𝚺T 𝚺𝑺T =𝑵𝚲𝑵T ,

identify 𝑵 =𝑺, and 𝚲=𝚺T 𝚺.

Recall that the SVD returns an order set of singular values 𝜎1 ⩾𝜎2 ⩾ ⋅ ⋅ ⋅ ⩾ , and associated singular vectors. In many
applications the singular values decrease quickly, often exponentially fast. Taking the first q singular modes then gives
a basis set suitable for mode reduction

𝒙=𝑺q 𝒖=� 𝒔1 𝒔2 . . . 𝒔q �𝒖.

MODEL REDUCTION 3



3. Stochastic systems - Karhunen-Loève theorem
The data reduction inherent in SVD representations is a generic feature of natural phenomena. A paradigm for phys-
ical systems is the evolution of correlated behavior against a backdrop of thermal enery, typically represented as a
form of noise.
One mathematical technique to model such systems is the definition of a stochastic process {Xt}a⩽t⩽b, where for each
fixed t, Xt is a random variable, i.e., a measurable function X:Ω→E from a set of possible outcomes Ω to a measurable
space E. The set Ω is the sample space of a probability triple (Ω,ℱ,P), where for ∀S ⊆E

P(X ∈S)=P({𝜔∈Ω}|X(𝜔)∈S|).

A measurable space is a set coupled with procedure to determine measurable subsets, known as a 𝜎-algebra.

THEOREM. Let Xt be a zero-mean (𝔼[Xt] = 0), square-integrable stochastic process defined over probability space
(Ω,ℱ,P) indexed by t ∈ℝ, a⩽ t ⩽b. Then Xt admits a representation

Xt =�
k=1

∞

Zk ek(t),

with

Zk =�
a

b
Xt ek(t)dt,𝔼[Zk]=0,𝔼[Zi,Zj]=𝛿ij 𝜎j.
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