
LU FACTORIZATION OF STRUCTURED MATRICES

The special structure of a matrix can be exploited to obtain more efficient factorizations. Evaluation of the linear
combination 𝑨𝒙=x1𝒂1+ ⋅⋅ ⋅ +xn 𝒂n requires mn floating point operations (flops) for 𝑨∈ℂm×n. Evaluation of p linear
combinations 𝑨𝑿, 𝑿 ∈ ℂn×p requires mnp flops. If it is possible to evaluate 𝑨𝒙 with fewer operations, the matrix is
said to be structured. Examples include:

• Banded matrices 𝑨=[aij], aij =0 if i − j > l or j − i >u, with l,u denoting the lower and upper bandwidths. If
l = u= 0 the matrix is diagonal. If l =u =b the matrix is said to have bandwidth B =2b +1, i.e., for b =1, the
matrix is tridiagonal, and for b = 2 the matrix is pentadiagonal. Lower triangular matrices have u = 0, while
upper triangular matrices have l =0. The 𝑨𝒙 product requires (l +u+1)m flops.

• Sparse matrices have r non-zero elements per row or c non-zero elements per column. The 𝑨𝒙 product requires
rm or cn flops

• Circulant matrices 𝑨=[aij] are sqaure and have aij = f (i − j), a property that can be exploited to compute 𝑨𝒙
using 𝒪(m logm) operations

• For square, rank-deficient matrices 𝑨∈ℂm×m, rank(𝑨)= r, 𝑨𝒙 can be evaluated in 𝒪(km) flops

• When 𝑨,𝑿 are symmetric (hence square), 𝑨𝑿 requires 𝒪(m3/2) flops instead of m3.

1. Cholesky factorization of positive definite hermitian matrices
1.1. Symmetric matrices, hermitian matrices
Special structure of a matrix is typically associated with underlying symmetries of a particular phenomenon. For
example, the law of action and reaction in dynamics (Newton's third law) leads to real symmetric matrices, 𝑨∈ℝm×m,
𝑨T =𝑨. Consider a system of m point masses with nearest-neighbor interactions on the real line where the interaction
force depends on relative position. Assume that the force exerted by particle i +1 on particle i is linear

fi+1,i= f (ui+1 −ui)=k(ui+1 −ui),

with ui denoting displacement from an equilibrium position. The law of action and reaction then states that

fi,i+1=− fi+1,i =k(ui−ui+1).

If the same force law holds at all positions, then
fi−1,i =k(ui−1−ui).

The force on particle i is given by the sum of forces from neighboring particles i −1, i +1

fi= fi−1,i + fi+1,i =k(ui−1−ui)+k(ui+1−ui)=k(ui+1−2ui+ui−1).

Introducing 𝒇 ,𝒖∈ℝm, and assuming u0=um+1=0, the above is stated as
𝒇 =𝑲𝒖,

with 𝑲 =kdiag([ 1 −2 1 ]) is a symmetric matrix, 𝑲 =𝑲T , a direct consequence of the law of action and reaction. The
matrix 𝑲 is in this case tridiagonal as a consequence of the assumption of nearest-neighbor interactions. Recall that
matrices represent linear mappings, hence

𝑲 =[ 𝒇 (𝒆1) 𝒇 (𝒆2) . . . 𝒇 (𝒆m) ],

with 𝒇 (𝒖) the force-displacement linear mapping, Fig. 1, obtaining the same symmetric, tri-diagonal matrix.
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Figure 1. Image of 𝒆i through mapping representing a linear force is 𝒇 (𝒆i) =k[ . . . 1 −2 1 . . . ]T .
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This concept can be extended to complex matrices 𝑨∈ℂm×m through 𝑨∗=𝑨, in which case 𝑨 is said to be self-adjoint
or hermitian. Again, this property is often associated with desired physical properties, such as the requirement of real
observable quantitites in quantum mechanics. Diagonal elements of a hermitian matrix must be real, and for any 𝒙,
𝒚∈ℂm, the computation

𝒙∗𝑨𝒚=(𝒙∗𝑨𝒚)∗=𝒚∗𝑨∗𝒙=𝒚∗𝑨𝒙,
implies for 𝒙=𝒚 that

𝒙∗ 𝑨𝒙=𝒙∗ 𝑨𝒙,
hence 𝒙∗𝑨𝒙 is real.

1.2. Positive-definite matrices

The work (i.e., energy stored in the system) done by all the forces in the above point mass system is

𝒲= 1
2 𝒖T 𝑲𝒖,

and physical considerations state that 𝒲⩾0. This leads the following definitions.

DEFINITION. A hermitian matrix 𝑨∈ℂm×m is positive definite if for any non-zero 𝒙∈ℂm, 𝒙∗ 𝑨𝒙>0.

DEFINITION. A hermitian matrix 𝑨∈ℂm×m is positive semi-definite if for any non-zero 𝒙∈ℂm, 𝒙∗ 𝑨𝒙⩾0.

If 𝑨 is hermitian positive definite, then so is 𝑿∗𝑨𝑿 for any 𝑿 ∈ℂm×n. Choosing

𝑿 =[ 𝒆1 . . . 𝒆n ]∈ℂm×n

gives 𝑨n =𝑿∗ 𝑨𝑿, the nth principal submatrix of 𝑨, itself a hermitian positive definite matrix. Choosing 𝑿 =𝒆jshows
that the jth diagonal element of 𝑨 is positive, ajj =𝒆j

T 𝑨𝒆j >0

1.3. Symmetric factorization of positive-definite hermitian matrices

The structure of a hermitian positive definite matrix 𝑨∈ℂm×m, can be preserved by modification of LU-factorization.
The resulting algorithm is known as Cholesky factorization, and its first stage is stated as

𝑨=� a11 𝒘∗

𝒘 𝑩 �=[[[[[[[ 𝛼 𝟎
𝒘/𝛼 𝑰 ]]]]]]][[[[[[[ 1 𝟎∗

𝟎 𝑪 ]]]]]]][[[[[[[ 𝛼 𝒘∗/𝛼
𝟎 𝑰 ]]]]]]]=[[[[[[[ 𝛼 𝟎

𝒘/𝛼 𝑰 ]]]]]]][[[[[[[ 𝛼 𝒘∗/𝛼
𝟎 𝑪 ]]]]]]]=� a11 𝒘∗

𝒘 𝑪+𝒘𝒘∗/a11
�,

whence 𝑪=𝑩−𝒘𝒘∗/a11. Repeating the stage-1 step

𝑨=𝑳1𝑨1 𝑳1
∗,

leads to
𝑨=𝑳1𝑳2 𝑨2 𝑳2

∗ 𝑳1
∗ = ⋅ ⋅ ⋅ =𝑳𝑳∗,𝑳=𝑳1𝑳2. . .𝑳m.

The resulting Cholesky algorithm is half as expensive as standard LU-factorization.

Algorithm (Cholesky factorization, A=LL∗)

𝑳=𝑨
for i =1:m
for j = i +1:m

L[ j:m, j]=L[ j:m, j]−L[ j:m, i] L̄[ j, i]/L[i, i]
L[i:m, i]=L[i:m, i]/ L[i, i]�

2. iLU-factorization of sparse matrices
The two-dimensional extension of the nearest-neighbor interacting point mass system
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