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LECTURE 12: THE EIGENVALUE PROBLEM

1. Definitions
Linear endomorphisms f: C" — C™, represented by A € C"™™  can exhibit invariant directions x # 0 for which
fx)=Ax=2x,
known as eigenvectors, with associated eigenvalue 1 € C. Eigenvectors are non-zero elements of the null space of
A-21,
A-1Dx=0,
and the null-space is referred to as the eigenspace of A for eigenvalue 1, E4(1)=N(A-11I).
Non-zero solutions are obtained if A — A1 is rank-deficient (singular), or has linearly dependent columns in which case

A-ap ap ... A
det(A-AD)=0=det(Al-A)=| 921 A702 - am |_g
aml am2 e A —Amm

From the determinant definition as “sum of all products choosing an element from row/column”, it results that
det(AI-A) ="+ A" '+ ..o+ o1 A+ Cn=pa(A),

known as the characteristic polynomial associated with the matrix A, and of degree m. The characteristic polynomial is
monic, meaning that the coefficient of the highest power A" is equal to one. The fundamental theorem of algebra states
that pa(A) of degree m has m roots, hence A € C™*" has m eigenvalues (not necessarily distinct), and m associated
eigenvectors. This can be stated in matrix form as
AX=XA,
with
X=[x1 ... xp ], A=diag(Ay,..., 1n),

the eigenvector matrix and eigenvalue matrix, respectively. By definition, the matrix A is diagonalizable if X is of full
rank, in which case the eigendecomposition of A is

A=XAX"

1.1. Coordinate transformations

The statement Ax = Ax, that eigenvector x is an invariant direction of the operator A along which the effect of operator
is scaling by A, suggests that similar behavior would be obtained under a coordinate transformation Ty =Ix =x.
Assuming T is of full rank and introducing B=T"'AT, this leads to

Ax=ATy=ix=2Ty=T'ATy=1y.

Upon coordinate transformation, the eigenvalues (scaling factors along the invariant directions) stay the same. Metric-
preserving coordinate transformations are of particular interest, in which case the transformation matrix is unitary

B=0"AQ.

DEFINITION. Matrices A,B € C™" are said to be similar, B ~ A, if there exists some full rank matrix T € C™"™ such
that B=T'AT.

PROPOSITION. Similar matrices A,B< C™™ B =T AT, have the same eigenvalues, and eigenvectors x of A, y of
B are related throughx=Ty.

Since the eigenvalues of B ~ A are the same, and a polynomial is completely specified by its roots and coefficient of
highest power, the characteristic polynomials of A, B must be the same

m

pa() =[] (A=20) =pa(2).
k=1



This can also be verified through the determinant definition

pe(t) =det(AI -B) =det(AT'T-T'AT) =det(T~" (A1 -A)T) =det(T~")det(AI —A)det(T) = ps(1),

since det(T~) = 1/det(T).

1.2. Paradigmatic eigenvalue problem solutions

o

Reflection matrix. The matrix
H=1-2qq" eR>?|q| =1,

is the two-dimensional Householder reflector across N (g?). Vectors colinear with g change direction along the
same orientation upon reflection, while vectors orthogonal to ¢ (i.e., in the null space N (g7)) are unchanged. It is
therefore to be expected that 11=-1,x;=¢, and 1,=1, qsz =0. This is readily verified

Hq=(I-2qq")q=q-29=—q,
Hx;=(I-2qq")x;=x>.

Figure 1. Reflector in two dimensions

Rotation matrix. The matrix
cosf —sin@
sinf cos@

R(O):[

>

represents the isometric rotation of two-dimensional vectors. If 6 =0, R =1 with eigenvalues 1, =4,=1, and
eigenvector matrix X =I. For 0 = s, the eigenvalues are 1| = A, =—1, again with eigenvector matrix X =1. If
sin @ 0, the orientation of any non-zero x € R? changes upon rotation by 6. The characteristic polynomial has
complex roots

p(A1)=(A—-cos0)>+sin0 = 11 ,=cos0 +isin 0 = e*?
and the directions of invariant orientation have complex components (are outside the real plane R?)

e—iﬁ _eiﬁ 3 1 -1 e—i(} 0
ie—ib‘ iei() i 0 eib‘ -

1 -1

X:[.. ],RX:
i

Second-order differentiation matrix. Eigenvalues of matrices arising from discretization of continuum operators
can be obtained from the operator eigenproblem. The second-order differentiation operator 87 has eigenvalues —&>
associated with eigenfunctions sin(&x)

02sin(&x) =—&2sin(&x).
Sampling of sin(&x) at xy =kh, k=1,...,m, h=m/(m+ 1) leads to the vector u € R"™ with components u; =

sin(&kh). The boundary conditions at the sampling interval end-points affect the eigenvalues. Imposing sin(&x) =
0, at x =0 and x = 77 leads to ¢ € Z. The derivative can be approximated at the sample points through

M]:’/ ~ Sin[é’(Xk +h)] _2Sinl/l:2§)(fk] + Sin[é’()ﬂ(_h)] — % (COS(é’l’Z) _ 1)sm(§kh) =_I/;izsin2(§2_h) s1n(§kh) .
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The derivative approximation vector #”” = [u; Jx=1....,» results from a linear mapping #’" = Du, and the matrix

1 ..
D:ﬁdlag([l =210,

has eigenvectors u and eigenvalues —(4/h%) sin®(£h/2), £=1,2,...,m. In the limit of an infinite number of sam-

pling points the continuum eigenvalues are obtained, exemplifying again the correspondence principle between
discrete and continuum representations

Y 4 h) _ e
}}_}mo 5l sin (—2 =-£°
1.3. Matrix eigendecomposition

A solution X, A to the eigenvalue problem A X = X A always exists, but the eigenvectors of A do not always form a
basis set, i.e., X is not always of full rank. The factorized form of the characteristic polynomial of A € C™™ is

K
PA(l) =det(lI—A) = l—l (l_lk)rn‘,
k=1

with K <m denoting the number of distinct roots of ps (1), and my is the algebraic multiplicity of eigenvalue Ay,
defined as the number of times the root A, is repeated. Let &, denote the associated eigenspace &; = €4(Ay) =
N(A—-2AI). The dimension of &, denoted by ny is the geometric multiplicity of eigenvalue 1. The eigenvector matrix
is of full rank when the vector sum of the eigenspaces covers C™, as established by the following results.

PROPOSITION. The geometric multiplicity is at least 1, ni > 1.
Proof. By contradiction if n; =dim &y, then & = {0}, but eigenvectors cannot be null. |
PROPOSITION. If A;# A;then &;N&;={0} (the eigenspaces of distinct eigenvalues are disjoint)

Proof. Letx € €;, hence Ax = 1;x and x € &}, hence Ax = 1;x. Subtraction gives

Ax-Ax=0=(1;-1j)x.
Since A;# A; it results that x =0. O
PROPOSITION. The geometric multiplicity of an eigenvalue is less or equal to its algebraic multiplicity,

O<ny=dim(N(A—- A1) <my.

Proof. Let V e C™" be an orthonormal basis for N (A — A4I). By definition of a null space, ye N(A— Al)
A-Al)y=0=>Ay= 1y,
i.e., every vector of the eigenspace is an eigenvector with eigenvalue A;. Then

Af/:A[vl Vo Wy |=[AVvE Ay L Av = A v, .

Form the unitary matrix V = [ vV Z ] e C™" and compute

. Vi lare Vil e VAV V*AZ
VAV=_ (Al V Z|=|,. ||AV AZ |= A .
Since V is unitary, obtain

vi z{

PATPN vy AT 4

VAV=2| .7 |[vi w2 ... v |= A1, Z°AV = 4] " [vi 2 ... », ]=0,
VVTA zl’:l—ll;\

where I, is the ny x ny identity matrix, and in the above 0 denotes a (m —ny) x n matrix of zeros. The matrix

Al C

B=V*AV = 0 D




is similar to A and has the same eigenvalues. Since det(zI —B) =det((z—A)I) det(D), the algebraic multiplicity of 4
must be at least ny, i.e., ny <my. |

DEFINITION 1. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be
defective.

o Example. Non-defective matrices exist, for example

00
A= 20
03

1
0 X=I,A=diag([1 2 3]).
0

o Example. Non-defective matrices with repeated eigenvalues exist, for example

100
010
001

A= X=I,A=diag([1 1 1]).

o Example. Defective matrices exist, for example

A=

>

311
031
003

has eigenvalue A =3 with algebraic multiplicity m; = 3. Reduction to row-echelon form of A — 11 leads to

011
001
000

A-2I=

>

and N(A - A1) = (ey), i.e., the geometric multiplicity is equal to 1. The above is known as a Jordan block.

PROPOSITION 2. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal to the algebraic
multiplicity of that eigenvalue.

Proof. Recall that A is diagonalizable if the eigenvector matrix X is of full rank. Since the eigenspaces &; of the K
distinct eigenvalues are disjoint, the column space of X is the direct vector sum of the eigenspaces

CX)=¢®...0%.

The dimension of C(X) is therefore given by the sum of the eigenspace dimensions

K
Z my =m.
k=1

Since ny < my, the only possibility for X to be of full rank, dim C(X) =m, is for ny =my. O

N

K
dim C(X) =Z ny
k=1

1.4. Matrix properties from eigenvalues

Eigenvalues as roots of the characteristic polynomial
m
Pa(A) =det(AI-A) = 2"+, 2"+ + ey A+ e =] | (A=A
k=1
reveal properties of a matrix A € C"™". The evaluation of p4(0) leads to

det(-A) = (=1)"det (A) = (<1)"[ | A
k=1
hence the determinant of a matrix is given by the product of its eigenvalues

det(A) =[] A
k=1
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The trace of a matrix is the sum of its diagonal elements is equal to the sum of its eigenvalues

tr(A) = Z gk = Z Ak
k=1 =1

a relationship established by the Vieta formulas.

1.5. Matrix eigendecomposition applications

Whereas the SVD, QR, LU decompositions can be applied to general matrices A € C™*" with m not necessarily equal
to n, the eigendecomposition requires A € C"™*™, and hence is especially relevant in the characterization of endomor-
phisms. A generic time evolution problem is stated as

Oru=u,=f(u),u(0)=up,u:R,->C",

stating that the rate of change in the state variables u characterizing some system is a function of the current state
through the function f: C" — C™, an endomorphism. An approximation of f is furnished by the MacLaurin series

@ =v+dusOul)v=r0).4=Lo).

Truncation at first order gives a linear ODE system u, =v + Au, that can be formally integrated to give

u(t)=vi+euy.
The matrix exponential ¢’ is defined as

e’A:I+LtA + %(tA)2+

T (tA)?+....

1
3!
Evaluation of A" requires 7 — 1 matrix multiplications or (n—1)m? floating point operations. However, if the eigende-
composition of A = X AX~! is available the matrix exponential can be evaluate in only 2m* operations since

AF=(XAX HXAX D). .(XAX H=XA X1,
leads to

ed=XeA X1,

2. Computation of the SVD

The existence of the SVD A =U X V* was establish by a constructive procedure by complete induction. However the
proof depends on determining the singular values, e.g., o1 = |A|. The existence of the singular values was established
by an argument from analysis, that the norm function on a compact domain must attain its extrema. This however
leaves open the problem of effectively determining the singular values. In practive the singular values and vectors are
determined by solving the eigenvalue problem for AA* and A*A

A*A=(UXVH*(ULV*)=VETU*ULV*=VETXV*s (A*A)V=VZITX,
AA*=(UZVHWUZVH*=UZV*VETU*=UZX"U*= (AAU=UZX".

From the above the left singular vectors U are eigenvectors of A A*, and the right singular vectors are eigenvectors of
A*A. Both AA* and A*A have the same eigenvalues that are the squared singular values.
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