
LECTURE 12: THE EIGENVALUE PROBLEM

1. De�nitions

Linear endomorphisms � :�

m

��

m

, represented by h��

m×m

, can exhibit invariant directions �`Î for which

� (�)=h�=��,

known as eigenvectors, with associated eigenvalue ���. Eigenvectors are non-zero elements of the null space of

h��p,

(h��p)�=Î,

and the null-space is referred to as the eigenspace of h for eigenvalue �, 0

h

(�)=N(h��p).

Non-zero solutions are obtained if h��p is rank-de�cient (singular), or has linearly dependent columns in which case
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From the determinant de�nition as �sum of all products choosing an element from row/column'', it results that

det(�p�h)=�

m

+c

1

�

m�1

+ . . . +c

m�1

�+c

m

= p

A

(�),

known as the characteristic polynomial associated with the matrix h, and of degreem. The characteristic polynomial is

monic, meaning that the coe�cient of the highest power �

m

is equal to one. The fundamental theorem of algebra states

that p

A

(�) of degree m has m roots, hence h��

m×m

has m eigenvalues (not necessarily distinct), and m associated

eigenvectors. This can be stated in matrix form as

h�=�²,

with

�=[
�

1

. . . �

m

],²=diag(�

1

, . . . ,�

m

),

the eigenvector matrix and eigenvalue matrix, respectively. By de�nition, the matrix h is diagonalizable if � is of full

rank, in which case the eigendecomposition of h is

h=�²�

�1

.

1.1. Coordinate transformations

The statement h�=��, that eigenvector � is an invariant direction of the operator h along which the e�ect of operator

is scaling by �, suggests that similar behavior would be obtained under a coordinate transformation { �= p�= �.

Assuming { is of full rank and introducing i={

�1

h{, this leads to

h�=h{ �=��=�{ �Ò{

�1

h{�=��.

Upon coordinate transformation, the eigenvalues (scaling factors along the invariant directions) stay the same. Metric-

preserving coordinate transformations are of particular interest, in which case the transformation matrix is unitary

i=x

�

hx.

DEFINITION. Matrices h,i��

m×m

are said to be similar, i<h, if there exists some full rank matrix {��

m×m

such

that i={

�1

h{.

PROPOSITION. Similar matrices h,i��

m×m

, i={

�1

h{, have the same eigenvalues, and eigenvectors � of h, � of

i are related through �={ �.

Since the eigenvalues of i<h are the same, and a polynomial is completely speci�ed by its roots and coe�cient of

highest power, the characteristic polynomials of h,i must be the same

p

h

(�)=w

k=1

m

(���

k

)= p

i

(�).
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This can also be veri�ed through the determinant de�nition

p

i

(t)=det(�p�i)=det(�{

�1

{ �{

�1

h{)=det({

�1

(�p�h){)=det({

�1

)det(�p�h)det({)= p

h

(�),

since det({

�1

)=1/det({).

1.2. Paradigmatic eigenvalue problem solutions

� Re�ection matrix. The matrix

o= p�2��

T

��

2×2

, ���=1,

is the two-dimensional Householder re�ector across N(�

T

). Vectors colinear with � change direction along the

same orientation upon re�ection, while vectors orthogonal to � (i.e., in the null space u(�

T

)) are unchanged. It is

therefore to be expected that �

1

=�1, �

1

=�, and �

2

=1, �

T

�

2

=0. This is readily veri�ed

o�=(p�2��

T

)�=��2�=��,

o�

2

=(p�2��

T

)�

2

=�

2

.

�

C(�) N(�

T

)
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o�

Figure 1. Re�ector in two dimensions

� Rotation matrix. The matrix

y(�)=ã

cos� �sin�

sin� cos�

ä,

represents the isometric rotation of two-dimensional vectors. If �= 0, y= p with eigenvalues �

1

=�

2

= 1, and

eigenvector matrix � = p. For �=�, the eigenvalues are �

1

=�

2

=�1, again with eigenvector matrix � = p. If

sin�`0, the orientation of any non-zero ���

2

changes upon rotation by �. The characteristic polynomial has

complex roots

p(�)=(��cos�)

2

+sin

2

�Ò�

1,2

=cos�± i sin�=e

±i�

and the directions of invariant orientation have complex components (are outside the real plane�

2

)

�=ã

1 �1

i i

ä,y�=
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.

� Second-order di�erentiationmatrix. Eigenvalues of matrices arising from discretization of continuum operators

can be obtained from the operator eigenproblem. The second-order di�erentiation operator �

x

2

has eigenvalues �	

2

associated with eigenfunctions sin(	x)

�

x

2

sin(	x)=�	

2

sin(	x).

Sampling of sin(	x) at x

k

= kh, k =1, . . . ,m, h=�/(m+1) leads to the vector ���

m

with components u

k

=

sin(	kh). The boundary conditions at the sampling interval end-points a�ect the eigenvalues. Imposing sin(	x)=

0, at x=0 and x=� leads to 	�$. The derivative can be approximated at the sample points through

u

k

22

E

sin[	(x

k

+h)]�2sin[	x

k

]+sin[	(x

k

�h)]

h

2

=

2

h

2

(cos(	h)�1)sin(	kh)=�

4

h

2

sin

2

Ý

	h

2

Þ
sin(	kh) .



The derivative approximation vector �

22

=[u

k

22

]

k=1, . . .m

results from a linear mapping �

22

=k�, and the matrix

k=

1

h

2

diag([
1 �2 1

]),

has eigenvectors � and eigenvalues �(4/h

2

) sin

2

(	h/2), 	=1,2, . . . ,m . In the limit of an in�nite number of sam-

pling points the continuum eigenvalues are obtained, exemplifying again the correspondence principle between

discrete and continuum representations

lim

h�0

�

4

h

2

sin

2

Ý

	h

2

Þ
=�	

2

.

1.3. Matrix eigendecomposition

A solution �,² to the eigenvalue problem h�=�² always exists, but the eigenvectors of h do not always form a

basis set, i.e., � is not always of full rank. The factorized form of the characteristic polynomial of h��

m×m

is

p

h

(�)=det(�p�h)=w

k=1

K

(���

k

)

m

k

,

with K }m denoting the number of distinct roots of p

h

(�), and m

k

is the algebraic multiplicity of eigenvalue �

k

,

de�ned as the number of times the root �

k

is repeated. Let 0

k

denote the associated eigenspace 0

k

=0

h

(�

k

) =

N(h��

k

p). The dimension of0

k

denoted by n

k

is the geometric multiplicity of eigenvalue�

k

. The eigenvector matrix

is of full rank when the vector sum of the eigenspaces covers �

m

, as established by the following results.

PROPOSITION. The geometric multiplicity is at least 1, n

k

~1.

Proof. By contradiction if n

k

=dim0

k

, then 0

k

={Î}, but eigenvectors cannot be null. ¡

PROPOSITION. If �

i

`�

j

then 0

i

)0

j

={Î} (the eigenspaces of distinct eigenvalues are disjoint)

Proof. Let ��0

i

, hence h�=�

i

� and ��0

j

, hence h�=�

j

�. Subtraction gives

h��h�=Î=(�

i

��

j

)�.

Since �

i

`�

j

it results that �=Î. ¡

PROPOSITION. The geometric multiplicity of an eigenvalue is less or equal to its algebraic multiplicity,

0<n

k

=dim(N(h��

k

p))}m

k

.

Proof. Let }

Æ

��

m×n

k

be an orthonormal basis for N(h��

k

p). By de�nition of a null space, ��N(h��

k

p)

(h��

k

p)�=ÎÒh�=�

k

�,

i.e., every vector of the eigenspace is an eigenvector with eigenvalue �

k

. Then

h}

Æ

=h�

�

1

�

2

. . . �

n

k

�= �

h�

1

h�

2

. . . h�

n

k

�=��

�

1

�

2

. . . �

n

k

�.

Form the unitary matrix }= ¡

}

Æ

�

¢��

m×m

, and compute

}

�

h}=
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¡
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Æ
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�
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Æ
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�
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Æ

�

�
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.

Since } is unitary, obtain
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Æ

�
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Æ
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�
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. . . �
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�=Î,

where p

n

k

is the n

k

×n

k

identity matrix, and in the above Î denotes a (m�n

k

)×n

k

matrix of zeros. The matrix

i=}

�

h}=

[

[

[

[

[

[

[

�p j

Î k

]

]

]

]

]

]

]
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is similar to h and has the same eigenvalues. Since det(zp�i)=det((z��)p)det
(
k
)
, the algebraic multiplicity of �

must be at least n

k

, i.e., n

k

}m

k

. ¡

DEFINITION 1. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be

defective.

� Example. Non-defective matrices exist, for example

h=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0

0 2 0

0 0 3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,�= p,²=diag([
1 2 3

]).

� Example. Non-defective matrices with repeated eigenvalues exist, for example

h=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0

0 1 0

0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,�= p,²=diag([
1 1 1

]).

� Example. Defective matrices exist, for example

h=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

3 1 1

0 3 1

0 0 3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

has eigenvalue �=3 with algebraic multiplicity m

1

=3. Reduction to row-echelon form of h��p leads to

h��p=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 1 1

0 0 1

0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

and N(h��p)= è�

1

é, i.e., the geometric multiplicity is equal to 1. The above is known as a Jordan block.

PROPOSITION 2. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal to the algebraic

multiplicity of that eigenvalue.

Proof. Recall that h is diagonalizable if the eigenvector matrix � is of full rank. Since the eigenspaces 0

j

of the K

distinct eigenvalues are disjoint, the column space of � is the direct vector sum of the eigenspaces

C(�)=0

1

� . . .�0

K

.

The dimension of C(�) is therefore given by the sum of the eigenspace dimensions

dimC(�)=y

k=1

K

n

k

}y

k=1

K

m

k

=m.

Since n

k

}m

k

, the only possibility for � to be of full rank, dimC(�)=m, is for n

k

=m

k

. ¡

1.4. Matrix properties from eigenvalues

Eigenvalues as roots of the characteristic polynomial

p

A

(�)=det(�p�h)=�

m

+c

1

�

m�1

+ . . . +c

m�1

�+c

m

=w

k=1

m

(���

k

)

reveal properties of a matrix h��

m×m

. The evaluation of p

A

(0) leads to

det(�h)=(�1)

m

det (h)=(�1)

m

w

k=1

m

�

k

,

hence the determinant of a matrix is given by the product of its eigenvalues

det(h)=w

k=1

m

�

k

.



The trace of a matrix is the sum of its diagonal elements is equal to the sum of its eigenvalues

tr(h)=y

k=1

m

a

kk

=y

k=1

m

�

k

,

a relationship established by the Vieta formulas.

1.5. Matrix eigendecomposition applications

Whereas the SVD, QR, LU decompositions can be applied to general matrices h��

m×n

with m not necessarily equal

to n, the eigendecomposition requires h��

m×m

, and hence is especially relevant in the characterization of endomor-

phisms. A generic time evolution problem is stated as

�

t

�=�

t

= � (�),�(0)=�

0

,�:�

+

��

m

,

stating that the rate of change in the state variables � characterizing some system is a function of the current state

through the function � :�

m

��

m

, an endomorphism. An approximation of � is furnished by the MacLaurin series

� (�)=�+h�+ª(���

2

),�= � (Î),h=

��

��

(Î).

Truncation at �rst order gives a linear ODE system �

t

=�+h�, that can be formally integrated to give

�(t)=�t+e

th

�

0

.

The matrix exponential e

th

is de�ned as

e

th

= p+

1

1!

th+

1

2!

(th)

2

+

1

3!

(th)

3

+ . . . .

Evaluation of h

n

requires n�1 matrix multiplications or (n�1)m

3

�oating point operations. However, if the eigende-

composition of h=�²�

�1

is available the matrix exponential can be evaluate in only 2m

3

operations since

h

k

=(�²�

�1

)(�²�

�1

). . .(�²�

�1

)=�²

k

�

�1

,

leads to

e

th

=�e

t²

�

�1

.

2. Computation of the SVD

The existence of the SVD h=|º}

�

was establish by a constructive procedure by complete induction. However the

proof depends on determining the singular values, e.g., �

1

= �h�. The existence of the singular values was established

by an argument from analysis, that the norm function on a compact domain must attain its extrema. This however

leaves open the problem of e�ectively determining the singular values. In practive the singular values and vectors are

determined by solving the eigenvalue problem for hh

�

and h

�

h

h

�

h=(|º}

�

)

�

(|º}

�

)=}º

T

|

�

|º}

�

=}º

T

º}

�

Ò (h

�

h)}=}º

T

º,

hh

�

=(|º}

�

)(|º}

�

)

�

=|º}

�

}º

T

|

�

=|ºº

T

|

�

Ò (hh

�

)|=|ºº

T

.

From the above the left singular vectors | are eigenvectors of hh

�

, and the right singular vectors are eigenvectors of

h

�

h. Both hh

�

and h

�

h have the same eigenvalues that are the squared singular values.
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