LU Factorization of Structured Matrices

The special structure of a matrix can be exploited to obtain more efficient factorizations. Evaluation of the linear combination $\boldsymbol{A} \boldsymbol{x}=x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n}$ requires $m n$ floating point operations (flops) for $\boldsymbol{A} \in \mathbb{C}^{m \times n}$. Evaluation of p linear combinations $\boldsymbol{A} \boldsymbol{X}, \boldsymbol{X} \in \mathbb{C}^{n \times p}$ requires $m n p$ flops. If it is possible to evaluate $\boldsymbol{A} \boldsymbol{x}$ with fewer operations, the matrix is said to be structured. Examples include:

- Banded matrices $\boldsymbol{A}=\left[a_{i j}\right], a_{i j}=0$ if $i-j>l$ or $j-i>u$, with l, u denoting the lower and upper bandwidths. If $l=u=0$ the matrix is diagonal. If $l=u=b$ the matrix is said to have bandwidth $B=2 b+1$, i.e., for $b=1$, the matrix is tridiagonal, and for $b=2$ the matrix is pentadiagonal. Lower triangular matrices have $u=0$, while upper triangular matrices have $l=0$. The $\boldsymbol{A} \boldsymbol{x}$ product requires $(l+u+1) m$ flops.
- Sparse matrices have r non-zero elements per row or c non-zero elements per column. The $\boldsymbol{A} \boldsymbol{x}$ product requires $r m$ or $c n$ flops
- Circulant matrices $\boldsymbol{A}=\left[a_{i j}\right]$ are sqaure and have $a_{i j}=f(i-j)$, a property that can be exploited to compute $\boldsymbol{A} \boldsymbol{x}$ using $\mathcal{O}(m \log m)$ operations
- For square, rank-deficient matrices $\boldsymbol{A} \in \mathbb{C}^{m \times m}, \operatorname{rank}(\boldsymbol{A})=r, \boldsymbol{A} \boldsymbol{x}$ can be evaluated in $\mathcal{O}(k m)$ flops
- When $\boldsymbol{A}, \boldsymbol{X}$ are symmetric (hence square), $\boldsymbol{A} \boldsymbol{X}$ requires $\mathcal{O}\left(m^{3} / 2\right)$ flops instead of m^{3}.

1. Cholesky factorization of positive definite hermitian matrices

1.1. Symmetric matrices, hermitian matrices

Special structure of a matrix is typically associated with underlying symmetries of a particular phenomenon. For example, the law of action and reaction in dynamics (Newton's third law) leads to real symmetric matrices, $\boldsymbol{A} \in \mathbb{R}^{m \times m}$, $\boldsymbol{A}^{T}=\boldsymbol{A}$. Consider a system of m point masses with nearest-neighbor interactions on the real line where the interaction force depends on relative position. Assume that the force exerted by particle $i+1$ on particle i is linear

$$
f_{i+1, i}=f\left(u_{i+1}-u_{i}\right)=k\left(u_{i+1}-u_{i}\right),
$$

with u_{i} denoting displacement from an equilibrium position. The law of action and reaction then states that

$$
f_{i, i+1}=-f_{i+1, i}=k\left(u_{i}-u_{i+1}\right) .
$$

If the same force law holds at all positions, then

$$
f_{i-1, i}=k\left(u_{i-1}-u_{i}\right) .
$$

The force on particle i is given by the sum of forces from neighboring particles $i-1, i+1$

$$
f_{i}=f_{i-1, i}+f_{i+1, i}=k\left(u_{i-1}-u_{i}\right)+k\left(u_{i+1}-u_{i}\right)=k\left(u_{i+1}-2 u_{i}+u_{i-1}\right) .
$$

Introducing $\boldsymbol{f}, \boldsymbol{u} \in \mathbb{R}^{m}$, and assuming $u_{0}=u_{m+1}=0$, the above is stated as

$$
f=\boldsymbol{K} \boldsymbol{u},
$$

with $\boldsymbol{K}=k \operatorname{diag}\left(\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]\right)$ is a symmetric matrix, $\boldsymbol{K}=\boldsymbol{K}^{T}$, a direct consequence of the law of action and reaction. The matrix \boldsymbol{K} is in this case tridiagonal as a consequence of the assumption of nearest-neighbor interactions. Recall that matrices represent linear mappings, hence

$$
\boldsymbol{K}=\left[\begin{array}{llll}
\boldsymbol{f}\left(\boldsymbol{e}_{1}\right) & \boldsymbol{f}\left(\boldsymbol{e}_{2}\right) & \ldots \boldsymbol{f}\left(\boldsymbol{e}_{m}\right)
\end{array}\right],
$$

with $\boldsymbol{f}(\boldsymbol{u})$ the force-displacement linear mapping, Fig. 1, obtaining the same symmetric, tri-diagonal matrix.

Figure 1. Image of $\boldsymbol{e}_{\boldsymbol{i}}$ through mapping representing a linear force is $\boldsymbol{f}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=k\left[\begin{array}{llll}\ldots & 1 & -2 & 1\end{array} \ldots\right]^{T}$.

This concept can be extended to complex matrices $\boldsymbol{A} \in \mathbb{C}^{m \times m}$ through $\boldsymbol{A}^{*}=\boldsymbol{A}$, in which case \boldsymbol{A} is said to be self-adjoint or hermitian. Again, this property is often associated with desired physical properties, such as the requirement of real observable quantitites in quantum mechanics. Diagonal elements of a hermitian matrix must be real, and for any \boldsymbol{x}, $\boldsymbol{y} \in \mathbb{C}^{m}$, the computation

$$
\overline{x^{*} A y}=\left(x^{*} A y\right)^{*}=y^{*} A^{*} x=y^{*} A x
$$

implies for $\boldsymbol{x}=\boldsymbol{y}$ that

$$
\overline{\boldsymbol{x}^{*} \boldsymbol{A x}}=\boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{x}
$$

hence $\boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{x}$ is real.

1.2. Positive-definite matrices

The work (i.e., energy stored in the system) done by all the forces in the above point mass system is

$$
\mathscr{W}=\frac{1}{2} \boldsymbol{u}^{T} \boldsymbol{K} \boldsymbol{u}
$$

and physical considerations state that $\mathscr{W} \geqslant 0$. This leads the following definitions.
DEFINITION. A hermitian matrix $\boldsymbol{A} \in \mathbb{C}^{m \times m}$ is positive definite if for any non-zero $\boldsymbol{x} \in \mathbb{C}^{m}, \boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{x}>0$.
DEFINITION. A hermitian matrix $\boldsymbol{A} \in \mathbb{C}^{m \times m}$ is positive semi-definite iffor any non-zero $\boldsymbol{x} \in \mathbb{C}^{m}, \boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{x} \geqslant 0$.
If \boldsymbol{A} is hermitian positive definite, then so is $\boldsymbol{X}^{*} \boldsymbol{A} \boldsymbol{X}$ for any $\boldsymbol{X} \in \mathbb{C}^{m \times n}$. Choosing

$$
\boldsymbol{X}=\left[\begin{array}{lll}
\boldsymbol{e}_{1} & \ldots & \boldsymbol{e}_{n}
\end{array}\right] \in \mathbb{C}^{m \times n}
$$

gives $\boldsymbol{A}_{n}=\boldsymbol{X}^{*} \boldsymbol{A} \boldsymbol{X}$, the $n^{\text {th }}$ principal submatrix of \boldsymbol{A}, itself a hermitian positive definite matrix. Choosing $\boldsymbol{X}=\boldsymbol{e}_{j}$ shows that the $j^{\text {th }}$ diagonal element of \boldsymbol{A} is positive, $a_{j j}=\boldsymbol{e}_{j}^{T} \boldsymbol{A} \boldsymbol{e}_{j}>0$

1.3. Symmetric factorization of positive-definite hermitian matrices

The structure of a hermitian positive definite matrix $\boldsymbol{A} \in \mathbb{C}^{m \times m}$, can be preserved by modification of $L U$-factorization. The resulting algorithm is known as Cholesky factorization, and its first stage is stated as

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a_{11} & \boldsymbol{w}^{*} \\
\boldsymbol{w} & \boldsymbol{B}
\end{array}\right]=\left[\begin{array}{ll}
\alpha & \mathbf{0} \\
\boldsymbol{w} / \alpha & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{ll}
1 & \mathbf{0}^{*} \\
\mathbf{0} & \boldsymbol{C}
\end{array}\right]\left[\begin{array}{ll}
\alpha & \boldsymbol{w}^{*} / \alpha \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]=\left[\begin{array}{ll}
\alpha & \mathbf{0} \\
\boldsymbol{w} / \alpha & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{ll}
\alpha & \boldsymbol{w}^{*} / \alpha \\
\mathbf{0} & \boldsymbol{C}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & \boldsymbol{w}^{*} \\
\boldsymbol{w} & \boldsymbol{C}+\boldsymbol{w} \boldsymbol{w}^{*} / a_{11}
\end{array}\right]
$$

whence $\boldsymbol{C}=\boldsymbol{B}-\boldsymbol{w} \boldsymbol{w}^{*} / a_{11}$. Repeating the stage-1 step

$$
\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{A}_{1} \boldsymbol{L}_{1}^{*},
$$

leads to

$$
\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{L}_{2} \boldsymbol{A}_{2} \boldsymbol{L}_{2}^{*} \boldsymbol{L}_{1}^{*}=\cdots=\boldsymbol{L} \boldsymbol{L}^{*}, \boldsymbol{L}=\boldsymbol{L}_{1} \boldsymbol{L}_{2} \ldots \boldsymbol{L}_{m}
$$

The resulting Cholesky algorithm is half as expensive as standard $L U$-factorization.

```
Algorithm (Cholesky factorization, \(A=L L^{*}\) )
    \(L=\boldsymbol{A}\)
    for \(i=1\) : \(m\)
    for \(j=i+1\) : \(m\)
        \(L[j: m, j]=L[j: m, j]-L[j: m, i] \bar{L}[j, i] / L[i, i]\)
    \(L[i: m, i]=L[i: m, i] / \sqrt{L[i, i]}\)
```


2. $\boldsymbol{i} \boldsymbol{L} \boldsymbol{U}$-factorization of sparse matrices

The two-dimensional extension of the nearest-neighbor interacting point mass system

