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LECTURE 13: POWER ITERATIONS

1. Reduction to triangular form

The relevance of eigendecompositions A = X A X~! to repeated application of the linear operator A € C"*"" as in
ed=1+ %rA + %r2A2+ o=Xe™A X!,

suggests that algorithms that construct powers of A might reveal eigenvalues. This is indeed the case and leads to a
class of algorithms of wide applicability in scientific computation. First, observe that taking condition numbers gives

1A= XAX™H <2 (X)) (A) = ([ Amax/ | 2lmin),

where |Almax, |4 |min are the eigenvalues of maximum and minimum absolute values. While these express an intrinsic
property of the operator A, the factor x*(X) is associated with the conditioning of a change of coordinates, and a
natural question is whether it is possible to avoid any ill-conditioning associated with a basis set X that is close to linear
dependence. The answer to this line of inquiry is given by the following result.

SCHUR THEOREM. For any A € C"™ ™ there exists Q unitary and T upper triangular such that A = QT Q*.

Proof. Proceed by induction, starting from an arbitrary eigenvalue A and eigenvector x. Let u\=x/|x|, the first
column vector of a unitary matrix U= u, V). Then

Atu vI=[ 4L

b*
MulAV]=[§1C],

with C € C"=V*=1 that by the inductive hypothesis can be written as C=W SW*, with W unitary, S upper trian-
gular. The matrix

10
Q‘U[o W
is a product of unitary matrices, hence itself unitary. The computation
A 10 1) 107 710 . 107 710 Ab*|[10 ] | A Dd7]_
QAQ‘(U 0 W])AU 0w ‘[0 W*]U AU[o wl=|o W*HO C Ho W]_[O S ]‘T’
then shows that T is indeed triangular. O

The eigenvalues of an upper triangular matrix are simply its diagonal elements, so the Schur factorization is an eigen-
value-revealing factorization.

2. Power iteration for real symmetric matrices

When the operator A expresses some physical phenomenon, the principle of action and reaction implies that A € R
is symmetric, A =A”" and has real eigenvalues. Componentwise, symmetry of A = [a;;] implies a; = a;. Consider
Ax = 2x, and take the adjoint to obtain x” AT = 2 x”, or x” A = 2 x7 since A is symmetric. Form scalar products
xTAx=2x"x,x" ATx=Jx"x, and subtract to obtain

0=(1-A)xTx=>1=1=1€R,
since x # 0, an eigenvector.
Example. Consider a linear array of identical mass-springs. The i point mass obeys the dynamics
mx;=k(xir1—x;) —k(x;—xi-1) =k(xie1—2x; + X;-1),

expressed in matrix form as X = Ax, with A symmetric.



For a real symmetric matrix the Schur theorem states that
A=AT= (QTQ") =0T Q"=>T=TT,
and since a symmetric triangular matrix is diagonal, the Schur factorization is also an eigendecomposition, and the
eigenvector matrix @ is a basis, C(Q) = R"™.
2.1. The power iteration idea

Assume initially that the eigenvalues are distinct and ordered |4 >|42|> -+ >|4,|. Repeated application of A on an
arbitrary vector v=0c € R" = C(Q) is expressed as

A'v=(QAQ")"Qc=(QAQ")(QAQ")...(QAQT) Qc=QA"c,

a linear combination of the columns of Q (eigenvectors of A) with coefficients A’c=[ Xic; Pcy ... Vem
o For large enough n, |11|> 4], k=2,...,n, leads to a dominant contribution along the direcion of eigenvector ¢

]T

Alv=QAN'c=Xiciqi+ -+ A cugmz=Aiciq..

This gives a procedure for finding one eigenvector of a matrix, and the Schur theorem proof suggests a recursive

algorithm to find all eigenvalues can be defined.
The sequence of normalized eigenvector approximants v, =A"v/||A"v| is linearly convergent at rate r = |15/ 1|
2.2. Rayleigh quotient
To estimate the eigenvalue revealed by power iteration, formulate the least squares problem

min|Av-vc|,
c

that seeks the best approximation of one power iteration Av as a linear combination of the initial vector v. Of course,
if v=g¢ is an eigenvector, then the solution would be c = 1, the associated eigenvalue. The projector onto C(v) is

T
vy
P=T,
vy
that when applied to Av gives the equation
T T T
2% v Ay v Ay
PAy=——Av=——v=cv=c=—F—.
vy viy vy
The function : R > R,
T
v Ay
r(v)= ,
() Ty

is known as the Rayleigh quotient which, evaluated for an eigenvector, gives r(q) = 2. To determine how well the
eigenvalue is approximated, carry out a Taylor series in the vicinity of an eigenvector ¢

r0) =r(g) + IV r@)) (v—g) + O (v —gIP),
where V, r is the gradient of r(v)
or
vy
Vyr=1|:
or
vy,

Compute the gradient through differentiation of the Rayleigh quotient

T T
er(v) _ Vv(:va) _ ((VVTI:)VZ) Vv (VTV).

Noting that V,v;=e¢;, the i th column of I, the gradient of vIiyis

Vi (v7') =Vvi vi= Z Vvv%=i 2vinvi=2i vie;=2v.
i=1 i=1 i=1 i=1
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To compute V,(vT Av), let u=Av, and since A is symmetric u? =y’ AT =T A, leading to
m m

V,(vT Av) =V, (ulv) Z V, (u;v;) Z u,-V,,v,-+Z v Vyu.
i=1 i=1

Use u;= Y., a;v; also expressed as u; = 3" | a;;v; by swapping indices to obtain

m

Z ajjVyvi= Z aje;

m m m m m

Zv Voui= ZV,Z a,/e/—z Z a,/v,ej—z Z ajvie.

i=1 j=1 i=
m m
Z a,-jv,-:z aj,-vf:uj,
i=1 i=1
m m
Z V,‘Vvld,'= Z ujej=u=Av.
i=1 j=1

and therefore

Use symmetry of A to write

and substitute above to obtain

Gathering the above results
V, (vTv) =29, V,(vT Av) =2Av,

gives the following gradient of the Rayleigh quotient
2
V,,r(v) = W(AV—F(V) V) .

When evaluated at v =g, obtain V, r(q) =0, implying that near an eigenvector the Rayleigh quotient approximation of
an eigenvalue is of quadratic accuracy,

rv)=i=0(v-ql?).

2.3. Refining the power iteration idea

Power iteration furnishes the largest eigenvalue. Further eigenvalues can be found by use of the following properties:
- (4,q) eigenpair of A = (41— u,q) eigenpair of A — ul;
—  (A,q) eigenpair of A= (1/ 4,q) eigenpair of A~'.

If u is a known initial approximation of the eigenvalue then the inverse power iteration v, = (A — ul)~ Y1, actually
implemented as successive solution of linear systems

(A - ,UI)VVI =Vn-1»

leads to a sequence of Rayleigh quotients r(v,) that converges quadratically to an eigenvalue close to . An important
refinement of the idea is to change the shift at each iteration which leads to cubic order of convergence

Algorithm (Rayleigh quotient iteration)

Givenv,A
w=vIiAv/vTy
for i =1 to nmax
= (A —ul)\v (solve linear system)
v=w/|wl|
A=vl Ay
if |1 —pl < € exit
n=21
end
return A,v



Power iteration can be applied simultaneously to multiple directions at once

Algorithm (Simultaneous iteration)

Given A
Q=I; p=diag(A)
for i=1 to nyax
V=AQ (power iteration applied to multiple directions)
OR=V (orthogonalize new directions)
2 =diag(Q" AQ)
it |4 —pll< e exit
end
return 4,Q
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