
STABILIZED ORTHOGONAL FACTORIZATIONS

1. Conditioning of linear algebra problems
Recall that the relative condition number of a mathematical problem f :X →Y characterizes the amplification by f of
perturbations in its argument

𝜅= lim
𝜀→0

sup
‖𝛿x‖⩽𝜀

�‖ f (x +𝛿x)− f (x)‖
‖ f (x)‖ / ‖𝛿x‖

‖x‖ �.

Linear combination. The basic operation of linear combination 𝑨𝒙, 𝑨∈ℂm×n, seen as the problem ℂn →→→→→→→
𝒇

ℂm has the
condition number

𝜅=sup
𝛿x

�‖𝑨𝛿𝒙‖
‖𝑨𝒙‖ / ‖𝛿𝒙‖

‖𝒙‖ �=sup
𝛿x

�‖𝑨𝛿𝒙‖
‖𝛿𝒙‖ � ‖𝒙‖

‖𝑨𝒙‖ =‖𝑨‖ ‖𝒙‖
‖𝑨𝒙‖ .

The matrix norm property ‖𝑨𝒚‖⩽ ‖𝑨‖ ‖𝒚‖ can be used to obtain

‖𝒙‖=‖𝑰n 𝒙‖=‖𝑨+ 𝑨𝒙‖⩽ ‖𝑨+‖ ‖𝑨𝒙‖⇒ ‖𝒙‖
‖𝑨𝒙‖ ⩽ ‖𝑨+‖

leading to
𝜅⩽‖𝑨‖ ‖𝑨+‖=𝜅(𝑨),

where 𝜅(𝑨) is the condition number of the matrix 𝑨. If 𝑨 is of full rank with m>n, the 2-norm condition number is
given by the ratio of largest to smallest singular values.

‖𝑨‖=𝜎1, ‖𝑨+‖=1/𝜎n ⇒𝜅(𝑨)=𝜎1/𝜎n ⩾1.

By convention, if 𝑨 is singular, the condition number 𝜅(𝑨)=∞.

Coordinate transformation. For 𝑨∈ℂm×m of full rank, the coordinates of vector 𝒃∈ℂm expressed in the 𝑰 basis can
be transformed its coordinates 𝒙∈ℂm in the 𝑨 basis by solving the linear system 𝑨𝒙=𝑰𝒃, with the solution 𝒙=𝑨−1𝒃
(so written formally, even though the inverse is almost never explicitly computed). This is simply another linear
combination of the columns of 𝑨−1, hence the problem 𝒇 :ℂm→Cm, 𝒇 (𝒃)=𝑨−1𝒃 again has a condition number bounded
by the condition number of the matrix 𝑨.

𝜅⩽‖𝑨−1‖ ‖𝑨‖=𝜅(𝑨)=𝜅(𝑨−1).

Operator perturbation. Instead of changing the input data as above, the linear mapping represented by the matrix
𝑨∈ℂm×n might itself be perturbed. Two mathematical problems may now be formulated:

1. For fixed 𝒃∈ℂm, 𝒇 :ℂm×n→ℂn, 𝒇 (𝑨,𝒃)=𝑨+𝒃=𝒙. Perturbation of the input 𝑨 induces perturbation of 𝒙 in order
for 𝒃 to be kept fixed

(𝑨+𝛿𝑨)(𝒙+𝛿𝒙)=𝒃.

Using 𝑨𝒙=𝒃, and assuming that 𝛿𝑨𝛿𝒙 is negligible gives

𝑨𝛿𝒙+𝛿𝑨𝒙=𝟎⇒𝛿𝒙=−𝑨+ 𝛿𝑨𝒙,

hence the relative condition number is

𝜅= ‖𝑨+ 𝛿𝑨 𝒙‖
‖𝒙‖ ⋅ ‖𝑨‖

‖𝛿𝑨‖ ⩽ ‖𝑨+‖ ‖𝛿𝑨 𝒙‖
‖𝒙‖ ⋅ ‖𝑨‖

‖𝛿𝑨‖ ⩽ ‖𝑨+‖ ‖𝛿𝑨‖ ‖𝒙‖
‖𝒙‖ ⋅ ‖𝑨‖

‖𝛿𝑨‖ =𝜅(𝑨).

For all above linear algebra problems the condition number is bounded by the associated matrix condition number.
Unitary matrices 𝑸∈ℂm×m have 𝜅(𝑸)=1, and define an orthonormal basis for ℂm. A rank-deficient matrix 𝒁∈ℂm×m

has 𝜅(𝒁) = ∞, and corresponds to a linearly dependent vector set {𝒛1, . . . , 𝒛m}. The behavior of many numerical
approximation procedures based upon linear combinations is determined by condition number of the basis set.
• Monomial basis with uniform sampling. Sampling the monomial basis on interval [a, b] at ti = ih + a, i = 0, m,

h=(b−a)/(m−1) leads to the Vandermonde matrix

𝑽 =[ 𝟏 𝒕 . . . 𝒕m ],
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an extremely ill-conditioned matrix (Fig. ). This can readily be surmised from the example a=0, b=1, in which
case for large m the last columns of 𝑽 become ever more colinear to the same 𝒆m vector. Series expansions based
on the monomials such as the Taylor series

f (t)= f (0)+ f ′(0)t + ⋅ ⋅ ⋅ + f (n)(0)
n! tn + ⋅ ⋅ ⋅

are highly sensitive to pertubations, small changes in f (t) lead to large changes in the coordinates { f (0), f ′(0),...}.

∴ function Vandermonde(a,b,m)
t=LinRange(a,b,m); v=ones(m,1); V=copy(v)
for j=2:m

v = v .* t; V=[V v]
end
return V

end;

∴

• Monomial basis with Chebyshev sampling. Changing the sampling so that points are clustered towards the interval
endpoints reduces the condition number at fixed number of sampling points m, but the same limiting behavior for
large m is obtained.

∴ function VandermondeC(m)
δ=π/(2*m); ϴ=LinRange(δ,π-δ,m)
t=cos.(ϴ)
v=ones(m,1); V=copy(v)
for j=2:m

v = v .* t; V=[V v]
end
return V

end;

∴

• Triangular basis with uniform sampling. LU-factorization of the monomial basis leads to a different family of
polynomials, known as a triangular basis

{1, t −x1, (t −x1) ⋅ (t −x2), . . . , (t −x1) ⋅ . . . ⋅ (t −xm−1)},

where {x1, . . . , xm} are known as the nodes of the system. These can be chosen to uniformly sample an interval.
As to be expected, applying a sequence of non-unitary linear transformations onto an ill-conditioned basis yields
even worse conditioning.

∴ function Triangular(a,b,m)
x=LinRange(a,b,m); T=ones(m,1); Tj=copy(T); t=copy(x)
for j=2:m

Tj = Tj .* (t .- x[j-1]); T=[T Tj]
end
return T

end;

∴

• Triangular basis with Chebyshev sampling. Adopting Chebyshev sampling ameliorates the conditioning, but only
marginally.



∴ function TriangularC(m)
δ=π/(2*m); ϴ=LinRange(δ,π-δ,m)
x=cos.(ϴ); T=ones(m,1); Tj=copy(T); t=copy(x)
for j=2:m

Tj = Tj .* (t .- x[j-1]); T=[T Tj]
end
return T

end;

∴

•
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Figure 1. Monomial basis with: (o) uniform sampling, (x) Chebyshev sampling. Triangular basis with: (+) uniform sampling, (*)
Chebyshev sampling.

∴ mr=5:5:100; κVDMU=log10.(cond.(Vandermonde.(-1,1,mr)));

∴ κVDMC=log10.(cond.(VandermondeC.(mr)));

∴ κTU=log10.(cond.(Triangular.(-1,1,mr)));

∴ κTC=log10.(cond.(TriangularC.(mr)));

∴

∴ x=collect(mr); clf();

∴ plot(x,κVDMU,"o-",x,κVDMC,"x-",κTU,"+-",κTC,"*-");

∴ grid("on"); title("Condition number κ of polynomial bases");

∴ xlabel("Number of sample points"); ylabel("lg(κ)");

∴ pre=homedir()*"/courses/MATH661/images/";

∴ savefig(pre*"PolyBasesCondNr.eps");

∴
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2. Orthogonal factorization through Householder reflectors
The Gram-Schmidt procedure constructs an orthogonal factorization by linear combinations of the column vectors of
𝑨∈ℂm×n, m⩾n, rank(𝑨)=n

𝑨𝑹1 𝑹2 . . .𝑹n =𝑸⇒𝑨=𝑸𝑹,𝑹=𝑹n
−1. . .𝑹1

−1.

In exact arithmetic C(𝑸) =C(𝑨) by construction, and 𝜅(𝑸) = 1, but the sequence of multiplications with 𝑹1, . . . , 𝑹n

might amplify perturbations in 𝑨 (due for example to floating point representation errors or inherent uncertainty in
knowledge of 𝑨). The problem 𝒇 :ℂm×n →Cm×n ×ℂn×n, 𝑨 →→→→→→→

𝒇
𝑸,𝑹 has condition number

𝜅= ‖𝛿𝑸‖
‖𝑸‖ ⋅ ‖𝑨‖

‖𝛿𝑨‖ + ‖𝛿𝑹‖
‖𝑹‖ ⋅ ‖𝑨‖

‖𝛿𝑨‖,

and numerical experimentation (Fig. 2) readily exhibits large condition numbers.
An alternative approach is to obtain an orthogonal factorization through unitary transformations

𝑸n . . .𝑸1 𝑨=𝑹⇒𝑨=𝑸𝑹,𝑸=𝑸1
∗ . . .𝑸n

∗.

Unitary transformations do not modify vector 2-norms or relative orientations

‖𝑸𝒙‖2 =𝒙∗𝑸∗𝑸𝒙=‖𝒙‖2, (𝑸𝒚)∗(𝑸𝒙)=𝒚∗𝒙,

and are hence said to be isometric. In Euclidean space reflections and rotations are isometric.

∘
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Figure 2. QR-conditioning: (o) modified Gram-Schmidt, (x) Householder.

Construction of an isometric reflection transformation suitable for a QR factorization is represented in Fig. 3. Let
vector 𝒙 ∈ ℂm+1−k represent the portion of the k th column from the diagonal downwards in stage k of reduction of
𝑨∈ℂm×n to upper triangular form

𝑸k−1 . . .𝑸1𝑨=[[[[[[[ 𝑹 𝑪
𝟎 𝑩 ]]]]]]],𝑩=[ 𝒙 𝒃2 . . . 𝒃n−k ].

The next stage of in reduction to upper triangular form is the isometric transformation of 𝒙 into ±‖𝒙‖ 𝒆1, with 𝒆1 ∈
ℂm+1−k the unit vector along the first direction. With 𝒗=±‖𝒙𝒆1‖−𝒙, 𝒒=𝒗/‖𝒗‖, the projection of 𝒙 onto the span of 𝒗,
C(𝒗) is

𝒚=𝑷𝒗 𝒙=𝒒𝒒∗𝒙,
and its complementary projector onto N(𝒗∗) is

𝒛 =𝑷⊥𝒗 =(𝑰 −𝒒𝒒∗)𝒙.



The reflector transforming 𝒙 into ±‖𝒙‖𝒆1 is obtained by doubling the above displacements, and is known as a House-
holder reflector

𝑯 =𝑰 −2𝒒𝒒∗.
Of the two possibilities ±‖𝒙‖𝒆1, the choice

𝒗=−sign(x1)‖𝒙‖𝒆1 −𝒙,

avoids loss of floating accuracy 𝒙≅‖𝒙‖𝒆1. For 𝒙∈ℂm+1−k, sign(x1)=exp(arg(x1)).

𝒙

‖𝒙‖𝒆1−‖𝒙‖ 𝒆1

𝒗=‖𝒙‖ 𝒆1−𝒙

C(𝒗)

N(𝒗∗)

𝒚 𝒛

𝒚=𝑷𝒗𝒗= 𝒗𝒗∗

𝒗∗𝒗 𝒙

𝒛 =𝑷⊥𝒗 =�𝑰 − 𝒗𝒗∗

𝒗∗ 𝒗�𝒙

‖𝒙‖𝒆1 =𝒙+2(𝒛 −𝒙)=

�𝑰 −2𝒗𝒗∗

𝒗∗𝒗�𝒙

Figure 3. Geometry of Householder reflector

The resulting Householder QR-factorization is given
Input: 𝑨∈ℂm×n

𝑸=𝟎m,n
for k =1:n

𝒙=𝑨[k:m, k]
𝒗=sign(x1) ‖𝒙‖+𝒙
𝒒=𝒗/‖𝒗‖; 𝑸[k:m,k]=𝒒
for j =k:n

𝑨[k:m, j]=𝑨[k:m, j]−2𝒒 (𝒒∗𝑨[k:m, j])

∴ function HouseholderQR(A)
m,n=size(A)
Q=zeros(m,n); R=copy(A)
for k=1:n

x=R[k:m,k]
e1=zeros(size(x)); e1[1]=1
v=sign(x[1])*norm(x)*e1+x
q=v/norm(v); Q[k:m,k]=q
for j=k:n

aj=R[k:m,j]; c=2*q'*aj
R[k:m,j]=aj.-c*q

end
end
return Q,R

end;

∴

Note that the above implementation does not return the 𝑸 matrix, but rather the 𝑸1, . . . , 𝑸n reflectors from which 𝑸
can be reconstructed if needed. Usually though, the 𝑸 matrix itself is not required, but rather the product 𝑸𝒖 which
can readily be evaluated as 𝑸n . . .𝑸1𝒖. The Householder reflector algorithm is typically the default procedure in QR-
factorizations implemented in software systems, and as seen in (Fig. 2), leads to much better conditioning.

3. Orthogonal factorization through Given rotators
An alternative approach to orthogonal factorization utilizes isometric rotation transformations of the form

𝑹(i, k,𝜃)=𝑰 +(cos𝜃−1)(𝒆i𝒆i
∗ +𝒆k 𝒆k

∗)− sin𝜃(𝒆i 𝒆k
∗−𝒆k 𝒆i

∗),
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with the rotation angle 𝜃 chosen to nullify the subdiagonal element (i,k), i >k

(𝑹(i, k,𝜃) 𝑨)ik =akk sin𝜃+aik cos𝜃=0⇒𝜃ik =arctan�− aik
akk

�.

Composition of repeated rotations 𝑸ik =𝑹(i,k, 𝜃ik) can be organized to lead to an upper triangular matrix

𝑸mn . . .𝑸32 𝑸m1 . . .𝑸31 𝑸21𝑨=𝑹.

Whereas Householder reflectors work on entire vectors, Givens rotators nullify individual subdiagonal elements. For
full matrices Householder reflectors typically require fewer floating point operations, but the special structure of a
sparse matrix is better exploited by use of Givens rotators.
Input: 𝑨∈ℂm×n

𝑸=𝟎m,n
for k =1:n
for i =k +1:m
𝜃=arctan(−aik/akk)
c=cos(𝜃); s=sin(𝜃)
for j =k:n
u=akj; v=aij

akj =cu− sv
aij = su+cv

∴ function GivensQR(A)
m,n=size(A)
Q=zeros(m,n); R=copy(A)
for k=1:n
for i=k+1:m

θ = atan(-R[i,k],R[k,k]); Q[i,k]=
c = cos(θ); s = sin(θ)
for j=k:n

u = R[k,j]; v = R[i,j]
R[k,j]=c*u-s*v
R[i,j]=s*u+c*v

end
end

end
return Q,R

end;

∴

As in the Householder implementation the above implementation returns data to reconstruct 𝑸 if needed.
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