
LECTURE 13: POWER ITERATIONS

1. Reduction to triangular form
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suggests that algorithms that construct powers of h might reveal eigenvalues. This is indeed the case and leads to a

class of algorithms of wide applicability in scienti�c computation. First, observe that taking condition numbers gives
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are the eigenvalues of maximum and minimum absolute values. While these express an intrinsic

property of the operator h, the factor �
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(�) is associated with the conditioning of a change of coordinates, and a

natural question is whether it is possible to avoid any ill-conditioning associated with a basis set � that is close to linear

dependence. The answer to this line of inquiry is given by the following result.
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then shows that { is indeed triangular. ¡

The eigenvalues of an upper triangular matrix are simply its diagonal elements, so the Schur factorization is an eigen-

value-revealing factorization.

2. Power iteration for real symmetric matrices

When the operator h expresses some physical phenomenon, the principle of action and reaction implies that h��
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is symmetric, h=h
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expressed in matrix form as �

¨

=h�, with h symmetric.
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For a real symmetric matrix the Schur theorem states that
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and since a symmetric triangular matrix is diagonal, the Schur factorization is also an eigendecomposition, and the
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This gives a procedure for �nding one eigenvector of a matrix, and the Schur theorem proof suggests a recursive

algorithm to �nd all eigenvalues can be de�ned.
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2.2. Rayleigh quotient

To estimate the eigenvalue revealed by power iteration, formulate the least squares problem
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is known as the Rayleigh quotient which, evaluated for an eigenvector, gives r(�)=�. To determine how well the

eigenvalue is approximated, carry out a Taylor series in the vicinity of an eigenvector �
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Compute the gradient through di�erentiation of the Rayleigh quotient
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To compute �
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Gathering the above results

�

�

(�

T

�)=2�,�

�

(�

T

h�)=2h�,

gives the following gradient of the Rayleigh quotient

�

�

r(�)=

2

�

T

�

(h�� r(�)�) .
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2.3. Re�ning the power iteration idea

Power iteration furnishes the largest eigenvalue. Further eigenvalues can be found by use of the following properties:

� (�,�) eigenpair of hÒ (���,�) eigenpair of h��p;

� (�,�) eigenpair of hÒ (1/�,�) eigenpair of h
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leads to a sequence of Rayleigh quotients �(�
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) that converges quadratically to an eigenvalue close to �. An important

re�nement of the idea is to change the shift at each iteration which leads to cubic order of convergence

Algorithm (Rayleigh quotient iteration)

Given �,h
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for i=1 to n
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if |���| <� exit
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end

return �,�
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Power iteration can be applied simultaneously to multiple directions at once

Algorithm (Simultaneous iteration)

Given h

x= p; A=diag(h)

for i=1 to n

max

}=hx (power iteration applied to multiple directions)

xy=} (orthogonalize new directions)

@=diag(x

T

hx)

if �@�A�<� exit

end

return @,x
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