
LECTURE 14: INTERPOLATION

The linear algebra concepts arising from study of linear mappings between vector spaces � :U�V , � (ü�+ý�) =

üf (�)+ý � (�), are widely applicable to nonlinear functions also. The study of nonlinear approximation starts with the

simplest case of approximation of a function with scalar values and arguments, f :��� through additive corrections.

1. Function spaces

An immediate application of the linear algebra framework is to construct vector spaces of real functions1=(F,+, Å),

with F={ f | f :���}, and the addition and scaling operations induced from�,

(ü f +ýg)(t)=ü f (t)+g(t), f ,g�F,ü,ý��.

Comparing with the real vector space (�

m

,+, Å) in which the analogous operation is ü�+ý�,�,���

m

,ü,ý��, or

componentwise

(ü�+ý�)

i

=üu

i

+ýv

i

, i=1,2, . . . ,m,

the key di�erence that arises is the dimension of the set of vectors. Finite-dimensional vectors within �

m

can be

regarded as functions de�ned on a �nite set �Ôu: {1, 2, . . . ,m}��, with u(i)=u

i

. The elements of F are however

functions de�ned on�, a set with cardinality  =2

5

0

, with 5

0

the cardinality of the naturals�. This leads to a review

of the concept of a basis for this in�nite-dimensional case.

1.1. In�nite dimensional basis set

In the �nite dimensional case i��

m×m

constituted a basis if any vector ���

m

could be expressed uniquely as a linear

combination of the column vectors of

����

m

,�!���

m

such that�=i�=c

1

�

1

+ Å Å Å+c

m

�

m

.

While the above �nite sum is well de�ned, there is no consistent de�nition of an in�nite sum of vectors. As a simple

example, in the vector space of real numbers�

1

=(�,+, Å), any �nite sum of reals is well de�ned, for instance

S

n

=y

k=0

n

(�1)

k

=

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

1 if neven

0 if nodd

but the limit S

n��

cannot be determined. This leads to the necessity of seeking �nite-dimensional linear combinations

to span a vector space ±=(V ,S, +, Å). First, de�ne linear independence of an in�nite (possibly uncountable) set of

vectors,={v

þ

|þ��,v

þ

�V}, where � is some indexing set.

DEFINITION. The vector set,={v

þ

|þ��,v

þ

�V}, is linearly independent if the only n�� scalars, x

1

,...,x

n

�S, that

satisfy

x

1

v

þ

1

+ . . . +x

n

v

þ

n

=0,þ

i

�� (1)

are x

1

=0, x

2

=0,...,x

n

=0.

The important aspect of the above definition is that all finite vector subsets are linearly independent. The same

approach is applied in the de�nition of a spanning set.

DEFINITION. Vectors within the set,={v

þ

|þ��,v

þ

�V}, span V, stated as V =span(,), if for any u�V there exist

n�� scalars, x

1

, . . . ,x

n

�S, such that

x

1

v

þ

1

+ . . . +x

n

v

þ

n

=u,þ

i

��. (2)

This now allows a generally-applicable de�nition of basis and dimension.

DEFINITION. The vector set,={v

þ

|þ��,v

þ

�V} is a basis for vector space±=(V ,S,+, Å) if

1. , is linearly independent;

2. span(,)=V.
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DEFINITION. The dimension of a vector space±=(V ,S,+, Å) is the cardinality of a basis set,, dim(±)= |,|.

The use of �nite sums to de�ne linear independence and bases is not overly restrictive since it can be proven that every

vector space has a basis. The proof of this theorem is based on Zorn's lemma from set theory, and asserts exsitence of

a basis, but no constructive procedure. The di�culty in practical construction of bases for in�nite dimensional vector

spaces is ascertained through basic examples.

Example. �

�

. As a generalization of�

m

=(�

m

,�, +, Å), consider the vector space of real sequences
{
x

n

}

n��

rep-

resented as a vectors with a countably in�nite number of components �=[
x

1

x

2

x

3

. . .
]

T

. Linear combinations are

de�ned by

ü�+ý�=[

üx

1

+ýy

1

üx

2

+ýy

2

üx

3

+ýy

3

. . .

]

T

.

Let �

i

denote the vector of all zeros except the i

th

position. In �

m

, the identity matrix p=[
�

1

. . . �

m

] was a basis,

but this does not generalize to �

�

; for example the vector �= [
1 1 1 . . .

]

T

cannot be obtained by �nite linear

combination of the �

i

vectors. In fact, there is no countable set of vectors that spans�

�

.

Example. P(�). The vector space of polynomials P(�)={p| p(t)=c

n

t

n

+c

n�1

t

n�1

+ Å ÅÅ+c

0

,n��,c

i

��, i=0,1,. .. ,

N} on the real line has an easily constructed basis, namely the set of the monomials

,(t)={t

n

|n��},

an in�nite set with the cardinality as the naturals |,|= |�|=5

0

.

1.2. Alternatives to the concept of a basis

The di�culty in ascribing signi�cance to an in�nite sum of vectors �

i=1

�

�

i

can be resolved by endowing the vector

space with additional structure, in particular a way to de�ne convergence of the partial sums

�

n

=y

i=1

n

�

i

to a limit lim

n��

�

n

=�.

Fourier series. One approach is the introduction of an inner product (�, �) and the associated norm ���=(�, �)

1/2

.

A considerable advantage of this approach is that it not only allows in�nite linear combinations, but also de�nition of

orthonormal spanning sets. An example is the vector space of continuous functions de�ned on [��,�] with the inner

product

( f ,g)=

1

�

5

��

�

f (t)g(t)dt,

and norm � f �=( f , f )

1/2

. An orthonormal spanning set for C[��,�] is given by

á

1

2

â
õ

{cos(nx)|n��

+

}
õ

{sin(nx)|n��

+

}.

Vector spaces with an inner product are known as Hilbert spaces.

Taylor series. Convergence of in�nite sums can be determined through a norm, without the need of an inner product.

An example is the space of real-analytic functions with the inf-norm

� f �

�

=sup

x

| f (t)|,

for which a spanning set is given by the monomials {1, t, t

2

, . . . }, and the in�nite exapnsion

f (t)=y

k=0

�

a

k

(t�c)

k

is convergent, with coe�cients given by the Taylor series

f (t)= f (c)+

f

2

(c)

1!

(t�c)+ Å Å Å,a

k

=

f

(k)

(c)

k!

.



Note that orthogonality of the spanning set cannot be established, absent an inner product.

1.3. Common function spaces

Several function spaces �nd widespread application in scienti�c computation. An overview is provided in Table 1.

B(�) bounded functions

C(�) continuous functions C

r

(�) with continuous derivatives up to r

C

c

(�) with compact support C

c

r

(�) and compact support

C

0

(�) that vanish at in�nity C

�

(�) smooth functions

L

p

(�) with �nite p-norm W

k,p

(�) Sobolev space, with norm

� f �

p

=(
+

��

�

| f (t)|

2

dt)

1/p

� f �

k,p

=��

i=0

k

� f

(i)

�

p

p

�

1/p

Table 1. Common vector spaces of functions

2. Interpolation

The interpolation problem seeks the representation of a function f known only through a sample data set �={(x

i

,

y

i

= f (x

i

))|i=0,.. . ,m}��×�, by an approximant p(t), obtained through combination of elements from some family

of computable functions,,={b

0

, . . . ,b

n

|b

k

:���}. The approximant p(t) is an interpolant of� if

p(x

i

)= f (x

i

)=y

i

, i=0, . . . ,m,

or p(t) passes through the known poles (x

i

,y

i

) of the function f . The objective is to use p(t) thus determined to approx-

imate the function f at other points. Assuming x

0

<x

1

< Å Å Å<x

m

, evaluation of p(t) at t� (x

0

,x

m

) is an interpolation,

while evaluation at t<x

0

or t>x

m

, is an extrapolation. The basic problems arising in interpolation are:

" choice of the family from which to build the approximant p(t);

" choice of the combination technique;

" estimation of the error of the approximation given some knowledge of f .

� Algorithms for interpolation of real functions can readily be extended to more complicated objects, e.g., interpo-

lation of matrix representations of operators. Implementation is aided by programming language polymorphism

as in Julia.

2.1. Additive corrections

As to be expected, a widely used combination technique is linear combination,

p(t)=c

0

b

0

(t)+c

1

b

1

(t)+ Å Å Å+c

n

b

n

(t).

The idea is to capture the nonlinearity of f (t) through the functions b

0

(t),. . . ,b

n

(t), while maintaining the framework

of linear combinations. Sampling of b

j

(t) at the poles x

i

of a data set�, constructs the vectors

�

j

=b

j

(�)= �

b

j

(x

0

) . . . b

j

(x

m

)

�

T

��

m+1

,

which gathered together into a matrix leads to the formulation of the interpolation problem as

i�=�= p �,i��

(m+1)×(n+1)

. (3)

Before choosing some speci�c function set,, some general observations are useful.

1. The function values y

i

= f (x

i

), i=0, . . . ,m, are directly incorporated into the interpolation problem (3). Any

estimate of the error at other points requires additional information on f . Such information can be furnished

by bounds on the function values, or knowledge of its derivatives for example.

2. A solution to (3) exists if ��C(i). Economical interpolations would use n<m functions in the set,, hope-

fully njm.
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2.2. Polynomial interpolation

Monomial form of interpolating polynomial. As noted above, the vector space of polynomials P(�) has an easily

constructed basis, that of the monomials m

j

(t)= t

j

which shall be organized as a row vector of functions

3(t)=�

1 t t

2

. . .

�.

With3

n+1

(t) denoting the �rst n+1 monomials

3

n+1

(t)=[
1 t . . . t

n

],

a polynomial of degree n is the linear combination

p(t)=3

n+1

(t)�=[
1 t . . . t

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

0

a

1

Å

Å

Å

a

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=a

0

+a

1

t+ Å Å Å+a

n

t

n

.

Let t��

(m+1)×(n+1)

denote the matrix obtained from evaluation of the �rst n+1 monomials at the sample points

�=[
x

0

x

1

. . . x

m

]

T

,

t=3

n+1

(�).

The above notation conveys that a �nite-dimensional matrix t��

(m+1)×(n+1)

is obtained from evaluation of the

row vector of the monomial basis function3(x):���

n+1

, at the column vector of sample points ���

m+1

. The

interpolation condition p(�)=� leads to the linear system

t�=�. (4)

For a solution to exist for arbitrary �,tmust be of full rank, hence m=n, in which caset becomes the Vandermonde

matrix

t=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 x

0

. . . x

0

n

1 x

1

Å Å Å x

1

n

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

1 x

n

. . . x

n

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

known to be ill-conditioned. Sincet is square and of full rank, (4) has a unique solution.

Finding the polynomial coe�cients by solving the above linear system requires ª(n

3

/3) operations. Evaluation of

the monomial form is economically accomplished inª(n) operations through Horner's scheme

p(t)=a

0

+(a

1

+ Å Å Å+(a

n�2

+(a

n�1

+a

n

t) Å t) Å t) Å t. (5)
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Figure 1. Monomial basis over interval [��,�]



� Algorithm (Horner's scheme)

Input: t��,���

n+1

Output: p(t)=a

0

+a

1

t+ Å Å Å+a

n

t

n

p=a

n

for k=n�1 downto 0

p=a

k

+ p Å t

end

return p

Lagrange form of interpolating polynomial. It is possible to reduce the operation count to �nd the interpolating

polynomial by carrying out an LU decomposition of the monomial matrixt,

3

n+1

(�)=t=s| .

Let�

n+1

(t)=[
�

0

(t) �

1

(t) . . . �

n

(t)
] denote another set of basis functions that evaluates to the identity matrix at the

sample points �, such that�

n+1

(�)= p,

3

n+1

(�)=t=s|= ps|=�

n+1

(�)s|.

For arbitrary t, the relationship

3

n+1

(t)=�

n+1

(t)s|,

describes a linear mapping between the monomials3

n+1

(t) and the�

n+1

(t) functions, a mapping which is invertible

sincet=s| is of full rank

�

n+1

(t)=3

n+1

(t)|

�1

s

�1

.

Note that organization of bases as row vectors of functions leads to linear mappings expressed through right factors.

� The LU factorization of the Vandermonde matrix can be determined analytically, as exempli�ed for n=3 by
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)

)
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)
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� The functions that result for n=3
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3

)

(x

2

�x

0

) (x

2

�x

1

) (x

2

�x

3

)

,

(t�x

0

) (t�x

1
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1
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LECTURE 14: INTERPOLATION 5



can be generalized as

�

i

(t)=w

j=0

n

2

t�x

j

x

i

�x

j

,

known as the Lagrange basis set, where the prime on the product symbol skips the index j= i. Note that each

member of the basis is a polynomial of degree n.

By construction, through the condition�

n+1

(�)= p, a Lagrange basis function evaluated at a sample point is

�

i

(x

j

)=ÿ

ij

=

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

1 i= j

0 i` j

.

A polynomial of degree n is expressed as a linear combinations of the Lagrange basis functions by

p(t)=�

n+1

(t)�=[
�

0

(t) �

1

(t) . . . �

n

(t)
]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

c

0

c

1

Å

Å

Å

c

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=c

0

�

0

(t)+c

1

�

1

(t)+ . . .c

n

�

n

(t).

The interpolant of data {(x

i

,y

i

= f (x

i

)), i=0,1, . . . ,n} is determined through the conditions

p(�)=�=�

n+1

(�)�= p�=�Ò�=�,

i.e., the linear combination coe�cients are simply the sampled function values c

i

=y

i

= f (x

i

).

p(t)=y

i=0

n

y

i

�

i

(t)=y

i=0

n

y

i

w

j=0

n

2

t�x

j

x

i

�x

j

. (7)

Determining the linear combination coe�cients may be without cost, but evaluation of the Lagrange form (7) of the

interpolating polynomial requires ª(n

2

) operations, signi�cantly more costly than the ª(n) operations required by

Horner's scheme (5)

" Algorithm (Lagrange evaluation)

Input: �,���

n+1

, t��

Output: p(t)=�

i=0

n

y

i

�

j=0

n

2

(t�x

j

)/(x

i

�x

j

)

p=0

for i=0 to n

w=1

for j=0 to n

if j` i then w=w (t�x

j

)/(x

i

�x

j

)

end

p= p+w Åy

i

end

return p

4 function Lagrange(t,x,y)

n=length(x)-1; p=0

for i=1:n+1

w=1

for j=1:n+1

if (i!=j) w=w*(t-x[j])/(x[i]-x[j]); end

end

p = p + w*y[i]

end

return p

end;



4 p2(t)=3*t^2-2*t+1;

4 x=[-2 0 2]; y=p2.(x);

4 t=-3:3; [p2.(t) Lagrange.(t,Ref(x),Ref(y))]

[
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]

]
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]

(8)

4

"

−3 −2 −1 0 1 2 3
t

−1.0

−0.5

0.0

0.5

1.0

l(i
,t)

Lagrange basis

Figure 2. Lagrange basis for n=6 for sin(x) over interval [��,�]

4 n=6; x=range(-À,À,length=n+1); y=sin.(x);

4 t=range(-À,À,length=10*n);

4 M=ones(length(t),length(x));

4 function lagrange(j,t,x,y)

n=length(x)-1; l=1

for i=1:n+1

if (i!=j) l = l*(t-x[i])/(x[j]-x[i]); end

end

return l

end;

4

4 for j=1:n+1

M[:,j] = lagrange.(j,t,Ref(x),Ref(y))

end
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4 figure(1); clf();

4 for j=1:n+1

plot(t,M[:,j])

end

4 xlabel("t"); ylabel("l(i,t)"); grid("on"); title("Lagrange basis");

4 imdir=home*"/courses/MATH661/images/";

4 savefig(imdir*"L18LagrangeBasis.eps")

4

A reformulation of the Lagrange basis can however reduce the operation count. Let �(t)=�

k=0

n

(t�x

k

), and rewrite

�

i

(t) as

�

i

(t)=w

j=0

n

2

t�x

j

x

i

�x

j

= �(t)

w

i

t�x

i

,

with the weights

w

i

=w

j=0

n

2

1

x

i

�x

j

,

depending only on the function sample arguments x

i

, but not on the function values y

i

. The interpolating polynomial

is now

p(t)=y

i=0

n

y

i

�

i

(t)= �(t)y

i=0

n

y

i

w

i

t�x

i

.

Interpolation of the function g(t)=1 would give

1=�(t)y

i=0

n

w

i

t�x

i

,

and taking the ratio yields

p(t)=

�

i=0

n

y

i

w

i

t�x

i

�

i=0

n

w

i

t�x

i

, (9)

known as the barycentric Lagrange formula (by analogy to computation of a center of mass). Evaluation of the weights

w

i

costs ª(n

2

) operations, but can be done once for any set of x

i

. The evaluation of p(t) now becomes an ª(2n)

process, comparable in cost to Horner's scheme.

" Algorithm (Barycentric Lagrange evaluation)

Input: �,���

n+1

, t��

Output: p(t)=Ý�

i=0

n

y

i

w

i

t�x

i

Þ

/

Ý�

i=0

n

w

i

t�x

i

Þ

for i=0 to n

w

i

=1

for j=0 to n

if j` i w

i

=w

i

/(x

i

�x

j

)

end

end

q= r=0

for i=0 to n

s=w

i

/(t�x

i

); q=q+y

i

s; r= r+ s

end

p=q/r



return p

4 function BaryLagrange(t,x,y)

n=length(x)-1; w=ones(size(x));

for i=1:n+1

w[i]=1

for j=1:n+1

if (i!=j) w[i]=w[i]/(x[i]-x[j]); end

end

end

q=r=0

for i=1:n+1

d=t-x[i]

if dH0 return y[i]; end

s=w[i]/d; q=q+y[i]*s; r=r+s

end

return q/r

end;

4 p2(t)=3*t^2-2*t+1;

4 x=[-2 0 2]; y=p2.(x);

4 t=-3:3; [p2.(t) BaryLagrange.(t,Ref(x),Ref(y))]

[
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]

]

]

]

]
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]

]

(10)

4

Newton form of interpolating polynomial. Inverting only one factor of the3

n+1

(t)=�

n+1

(t)s| mapping yields

yet another basis set®(t)=[
N

0

(t) N

1

(t) N

2

(t) . . .
]

3

n+1

(t)|

�1

=�

n+1

(t)s=®

n+1

(t) .

� The �rst four basis polynomials are

á1,

t�x

0

x

1

�x

0

,

(t�x

0

) (t�x

1

)

(x

2

�x

0

) (x

2

�x

1

)

,

(t�x

0

) (t�x

1

) (t�x

2

)

(x

3

�x

0

) (x

3

�x

1

) (x

3

�x

2

)

â,

with N

0

(t)=1, and in general

N

k

(t)=w

j=0

k�1

t�x

j

x

k

�x

j

,

for k>0.

Computation of the scaling factors w

k

=1/�

j=0

k�1

(x

k

�x

j

) would require ª(n

2

/2) operations, but can be avoided by

rede�ning the basis set as©(t)=[
n

0

(t) n

1

(t) n

2

(t) . . .
], with n

0

(t)=1, and

n

k

(t)=w

j=0

k�1

(t�x

j

),
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known as the Newton basis. As usual, the coe�cients ���

n+1

of the linear combination of Newton polynomials

p(t)=©

n+1

(t)�=[
n

0

(t) n

1

(t) . . . n

n

(t)
]

[
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]
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0
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0

(t)+d

1
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(t)+ . . . +d

n

n

n

(t),

are determined from the interpolation conditions p(�)=�. The resulting linear system is of triangular form,
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and readily solved by forward substitution.

� The �rst few coe�cients are

d

0

=y

0

, d

1

=

y

1

�d

0

x

1

�x

0

=

y

1

�y

0

x

1

�x

0
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=
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� (x
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0
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)(x
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=
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1
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0
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�x

0

�y

0

(x

2
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)(x
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=
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�

y

1
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0
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1
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0
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2
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.

The forward substitution is e�ciently expressed through the de�nition of divided di�erences

[y

i

]=y

i

, [y

i+1

,y

i

]=

[y

i+1

]� [y

i

]

x

i+1

�x

i

=

y

i+1

�y

i

x

i+1

�x

i

, [y

i+2

,y

i+1

,y

i

]=

[y

i+2

,y

i+1

]� [y

i+1

,y

i

]

x

i+2

�x

i

,

or in general, the k

th

divided di�erence

[y

i+k

,y

i+k�1

, . . . ,y

i

]=

[y

i+k

,y

i+k�1

, . . . ,y

i+1

]� [y

i+k�1

,y

i+k�1

, . . . ,y

i

]

x

i+k

�x

i

,

given in terms of the (k �1) divided di�erences. The forward substitution computations are conveniently organized

in a table, useful both for hand computation and also for code implementation.

i x

i

[y

i

] [y

i

,y

i�1

] [y

i

,y

i�1

,y

i�2

]

0 x

0

y

0

� �

1 x

1

y

1

y

1

�y

0

x

1

�x

0

�

2 x

2

y

2

y

2

�y

1

x

2

�x

1

[y

2

,y

1

]� [y

1

,y

0

]

x

2

�x

0

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

n x

n

y

n

y

n

�y

n�1

x

n

�x

n�1

[y

n

,y

n�1

]� [y

n�1

,y

n�2

]

x

n

�x

n�2

. . .

[y

n

, . . . ,y

1

]� [y

n�1

, . . . ,y

0

]

x

n

�x

0

Table 2. Table of divided di�erences. The Newton basis coe�cients � are the diagonal terms.

� Algorithm (Forward substitution, Newton coe�cients)

Input: �,���

n+1

Output: ���

n+1

�=�

for i=1 to n

for j=n downto i

d

j

=(d

j

�d

j�1

)/(x

j

�x

j�i

)

end

end



The above algorithm requires onlyª(n) operations, and the Newton form of the interpolating polynomial

p(t)=[y

0

] Å1+[y

1

,y

0

] Å (t�x

0

)+[y

1

,y

0

] Å (t�x

0

)(t�x

1

)+ Å Å Å+[y

n

,y

n�1

, . . . ,y

0

] Å (t�x

0

) Å (t�x

1

) Å . . . Å (t�x

n�1

),

can also be evaluated inª(n) operations

� Algorithm (Newton polynomial evaluation)

Input: �,���

n+1

, t��

Output: p(t)=d

0

+d

1

t+ Å Å Å+d

n

t

n

p=d

0

; r=1

for k=1 to n

r= r Å (t�x

k�1

)

p= p+d

k

Å r

end

return p

�

−3 −2 −1 0 1 2 3
t

0

200

400

600

800

l(i
,t)

Newton basis

Figure 3. Newton basis for n=6 for sin(x) over interval [��,�]

3. Interpolation error

As mentioned, a polynomial interpolant of f :��� already incorporates the function values y

i

= f (x

i

), i=0,. . . ,n, so

additional information on f is required to estimate the error

e(t)= f (t)� p(t),

when t is not one of the sample points. One approach is to assume that f is smooth, f �C

�

(�), in which case the

error is given by

f (t)� p(t)=

f

(n+1)

(	

t

)

(n+1)!

w

i=0

n

(t�x

i

)=

f

(n+1)

(	

t

)

(n+1)!

w(t), (13)

for some 	

t

�[x

0

,x

n

], assuming x

0

<x

1

< ÅÅÅ<x

n

. The above error estimate is obtained by repeated application of Rolle's

theorem to the function

¦(u)= f (u)� p(u)�

f (t)� p(t)

w(t)

w(u),

that has n+2 roots at t,x

0

,x

1

, .. . ,x

n

, hence its (n+1)-order derivative must have a root in the interval (x

0

,x

n

), denoted

by 	

t

¦

(n+1)

(	

t

)=

d

n+1

¦

du

n+1

(	

t

)=0= f

(n+1)

(	

t

)�

f (t)� p(t)

w(t)

(n+1)!,
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establishing (13). Though the error estimate seems promising due to the (n+1)! in the denominator, the derivative

f

(n+1)

can be arbitrarily large even for a smooth function. This is the behavior that arises in the Runge function

f (t)=1/[1+(5t)

2

] (Fig. 4), for which a typical higher-order derivative appears as

� f

(10)

=

35437500000000 (107421875 t

10

�64453125 t

8

+7218750 t

6

�206250 t

4

+1375 t

2

�1)

(25 t

2

+1)

11

,� f

(10)

�

�

E3.5×10

13

.

The behavior might be attributable to the presence of poles of f in the complex plane at t

1,2

=±i/5, but the interpolant

of the holomorphic function g(t)=exp(�(5t)

2

), with a similar power series to f ,

�

f (t)E1�25 t

2

+625 t

4

�15625 t

6

+O(t

7

),

g(t)E1�25 t

2

+

625 t

4

2

�

15625 t

6

6

+O(t

7

),

also exhibits large errors (Fig. 4), and also has a high-order derivative of large norm �g�

�

E3×10

11

.

� g

(10)

(t)=1562500000e

�25t

2

(62500000 t

10

�56250000 t

8

+15750000 t

6

�1575000 t

4

+47250 t

2

�189),

"

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
t

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Interpolant of f

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
t

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Interpolant of g

Figure 4. Interpolants of f (t)=1/[1+(5t)

2

], g(t)==exp(�(5t)

2

), based on equidistant sample points.

4 function MonomialBasis(t,n)

m=size(t)[1]; A=ones(m,1);

for j=1:n-1

A = [A t.^j]

end

return A

end;

4 function plotInterp(a,b,f,Basis,m,n,M,txt)

data=sample(a,b,f,m); t=data[1]; y=data[2]

Data=sample(a,b,f,M); T=Data[1]; Y=Data[2]

A = Basis(t,n); x = A\y; z = Basis(T,n)*x

plot(t,y,"ok",T,z,"-r",T,Y,"-b"); grid("on");

xlabel("t"); ylabel("y");

title(txt)

end;

4 function sample(a,b,f,m)

t = LinRange(a,b,m); y = f.(t)

return t,y

end;



4 f(t)=1/(1+25*t^2); g(t)=exp(-(5*t)^2);

4 FigPrefix=homedir()*"/courses/MATH661/images/L19";

4 clf(); plotInterp(-1,1,f,MonomialBasis,10,10,100,"Interpolant of f");

4 savefig(FigPrefix*"Fig01a.eps")

4 clf(); plotInterp(-1,1,g,MonomialBasis,10,10,100,"Interpolant of g");

4 savefig(FigPrefix*"Fig01b.eps")

4

3.1. Error minimization - Chebyshev polynomials

Since � f

(n+1)

�

�

is problem-speci�c, the remaining avenue to error control suggested by formula (13) is a favorable

choice of the sample points x

i

, i=0, . . . ,n. The w(t) polynomial

w(t)=w

i=0

n

(t�x

i

)

is monic (coe�cient of highest power is unity), and any interval [a,b]�� can be mapped to the [�1, 1] interval by

t=2(s�a)/(b�a)�1, leading to consideration of the problem

min

�

�w�

�

=min

�

max

�1}t}1

|w(t)|,

i.e., �nding the sample points or roots of w(t) that lead to the smallest possible inf-norm of w(t). Plots of the Lagrange

basis (L18, Fig. 2), or Legendre basis, suggest study of basis functions that have distinct roots in the interval [�1,1]

and attain the same maximum. The trigonometric functions satisfy these criteria, and can be used to construct the

Chebyshev family of polynomials through

T

n

(x)=cos[ncos

�1

x]=cos(n�), cos�=x,�=cos

�1

x.

The trigonometric identity

cos[(n+1)�]+cos[(n�1)�]=2cos�cos(n�)

leads to a recurrence relation for the Chebyshev polynomials

T

n+1

(x)=2xT

n

(x)�T

n�1

(x),T

0

(x)=1,T

1

(x)=x.

The de�nition in terms of the cosine function easily leads to the roots, T

n

(x

i

)=0,

cos[n�]=0Òn�

i

=(2i�1)

�

2

Ò�

i

=

2i�1

2n

�Òx

i

=cosã

2i�1

2n

�ä, i=1, . . . ,n,

and extrema x

j

, T

n

(
x

j

)
=
(
�1

)

j

cos[n�]=±1Òn�

j

= j�Òx

j

=cosã

j�

n

ä, j=0,1, . . . ,n.

The Chebyshev polynomials are not themselves monic, but can readily be rescaled through

P

n

(x)=2

1�n

T

n

(x),n>0,P

0

(x)=1.

Since |T

n

(x)| = |cos(n�)|, the above suggests that the monic polynomials P

n

have �P

n

�

�

=2

1�n

, small for large n, and

are indeed among all possible monic polynomials de�ned on [�1,1] the ones with the smallest inf-norm.

THEOREM. The monic polynomial p: [�1,1]�� of degree n has a inf-norm lower bound

�p�

�

= max

�1}t}1

|p(t)|~2

1�n

.

Proof. By contradiction, assume the monic polynomial p: [�1,1]�� has �p�

�

<2

1�n

. Construct a comparison with

the Chebyshev polynomials by evaluating p at the extrema x

j

=cos( j�/n),

(�1)

j

p(x

j

)} |p(x

j

)|<2

1�n

=(�1)

j

P

n

(x

j

)=(�1)

j

2

1�n

T

n

(x

j

).
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Since the above states (�1)

j

p(x

j

)<(�1)

j

P

n

(x

j

) deduce

(�1)

j

[p(x

j

)�P

n

(x

j

)]<0, for j=0,1, . . . ,n (14)

However, p,P

n

both monic implies that p(x

j

)�P

n

(x

j

) is a polynomial of degree n�1 that would change signs n times

to satisfy (14), and thus have n roots contradicting the fundamental theorem of algebra. ¡

�

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Tn
(x

)
Chebyshev polynomials

Figure 5. First n=6 Chebyshev polynomials

3.2. Best polynomial approximant

Based on the above, the optimal choice of n+1 sample points is given by the roots x

j

=cos(�

j

) of the Chebyshev

polynomial of (n+1)

th

degree T

n+1

(x), for which cos[(n+1)�]=0,

x

j

=cosã

�

n+1

Ý

1

2

+ jÞä, j=0, . . . ,n,

For this choice of sample points the interpolation error has the bound

| f (t)� p

n

(t)|=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

f

(n+1)

(	

t

)

(n+1)!

w

i=0

n

(t�x

i

)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

}

| f

(n+1)

(	

t

)|

(n+1)!

�P

n+1

�

�

}

� f

(n+1)

�

�

(n+1)!2

n

.
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