
THE EIGENVALUE PROBLEM

1. Definitions
Linear endomorphisms 𝒇 :ℂm →ℂm, represented by 𝑨∈ℂm×m, can exhibit invariant directions 𝒙≠𝟎 for which

𝒇 (𝒙)=𝑨𝒙=𝜆𝒙,

known as eigenvectors, with associated eigenvalue 𝜆 ∈ ℂ. Eigenvectors are non-zero elements of the null space of
𝑨−𝜆𝑰,

(𝑨−𝜆𝑰)𝒙=𝟎,

and the null-space is referred to as the eigenspace of 𝑨 for eigenvalue 𝜆, ℰ𝑨(𝜆)=N(𝑨−𝜆𝑰).
Non-zero solutions are obtained if 𝑨−𝜆𝑰 is rank-deficient (singular), or has linearly dependent columns in which case

det(𝑨−𝜆𝑰)=0⇒det(𝜆𝑰 −𝑨)=
|||||||||||||||||
|||||||||||||||||
|
|
| 𝜆−a11 a12 . . . a1m

a21 𝜆−a22 . . . a2m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . 𝜆−amm |||||||||||||||||
|||||||||||||||||
|
|
|
=0.

From the determinant definition as “sum of all products choosing an element from row/column'', it results that

det(𝜆𝑰 −𝑨)=𝜆m +c1𝜆m−1 + . . . +cm−1𝜆+cm= pA(𝜆),

known as the characteristic polynomial associated with the matrix 𝑨, and of degree m. The characteristic polynomial is
monic, meaning that the coefficient of the highest power 𝜆m is equal to one. The fundamental theorem of algebra states
that pA(𝜆) of degree m has m roots, hence 𝑨 ∈ ℂm×m has m eigenvalues (not necessarily distinct), and m associated
eigenvectors. This can be stated in matrix form as

𝑨𝑿 =𝑿𝚲,
with

𝑿 =[ 𝒙1 . . . 𝒙m ],𝚲=diag(𝜆1, . . . ,𝜆m),

the eigenvector matrix and eigenvalue matrix, respectively. By definition, the matrix 𝑨 is diagonalizable if 𝑿 is of full
rank, in which case the eigendecomposition of 𝑨 is

𝑨=𝑿𝚲𝑿−1 .

1.1. Coordinate transformations
The statement 𝑨𝒙=𝜆𝒙, that eigenvector 𝒙 is an invariant direction of the operator 𝑨 along which the effect of operator
is scaling by 𝜆, suggests that similar behavior would be obtained under a coordinate transformation 𝑻 𝒚 = 𝑰𝒙 = 𝒙.
Assuming 𝑻 is of full rank and introducing 𝑩=𝑻−1𝑨𝑻, this leads to

𝑨𝒙=𝑨𝑻 𝒚=𝜆𝒙=𝜆𝑻 𝒚⇒𝑻−1𝑨𝑻𝒚=𝜆𝒚.

Upon coordinate transformation, the eigenvalues (scaling factors along the invariant directions) stay the same. Metric-
preserving coordinate transformations are of particular interest, in which case the transformation matrix is unitary
𝑩=𝑸∗𝑨𝑸.

DEFINITION. Matrices 𝑨,𝑩∈ℂm×m are said to be similar, 𝑩∼𝑨, if there exists some full rank matrix 𝑻 ∈ℂm×m such
that 𝑩=𝑻−1𝑨𝑻.

PROPOSITION. Similar matrices 𝑨, 𝑩∈ ℂm×m, 𝑩 = 𝑻−1𝑨𝑻, have the same eigenvalues, and eigenvectors 𝒙 of 𝑨, 𝒚 of
𝑩 are related through 𝒙=𝑻 𝒚.

Since the eigenvalues of 𝑩 ∼𝑨 are the same, and a polynomial is completely specified by its roots and coefficient of
highest power, the characteristic polynomials of 𝑨,𝑩 must be the same

p𝑨(𝜆)=�
k=1

m

(𝜆−𝜆k)= p𝑩(𝜆).
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This can also be verified through the determinant definition

p𝑩(t)=det(𝜆𝑰 −𝑩)=det(𝜆𝑻−1𝑻 −𝑻−1𝑨𝑻)=det(𝑻−1(𝜆𝑰 −𝑨)𝑻)=det(𝑻−1)det(𝜆𝑰 −𝑨)det(𝑻)= p𝑨(𝜆),

since det(𝑻−1)=1/det(𝑻).

1.2. Paradigmatic eigenvalue problem solutions
∘ Reflection matrix. The matrix

𝑯 =𝑰 −2𝒒𝒒T ∈ℝ2×2, ‖𝒒‖=1,

is the two-dimensional Householder reflector across N(𝒒T). Vectors colinear with 𝒒 change direction along the
same orientation upon reflection, while vectors orthogonal to 𝒒 (i.e., in the null space 𝑵(𝒒T)) are unchanged. It is
therefore to be expected that 𝜆1=−1, 𝒙1 =𝒒, and 𝜆2=1, 𝒒T𝒙2 =0. This is readily verified

𝑯𝒒=(𝑰 −2𝒒𝒒T)𝒒=𝒒−2𝒒=−𝒒,

𝑯𝒙2=(𝑰 −2𝒒𝒒T)𝒙2 =𝒙2.

𝒒

C(𝒒) N(𝒒T)𝒛

𝑯𝒛

Figure 1. Reflector in two dimensions

∘ Rotation matrix. The matrix
𝑹(𝜃)=� cos𝜃 −sin𝜃

sin𝜃 cos𝜃 �,

represents the isometric rotation of two-dimensional vectors. If 𝜃 = 0, 𝑹 = 𝑰 with eigenvalues 𝜆1 = 𝜆2 = 1, and
eigenvector matrix 𝑿 = 𝑰. For 𝜃 = 𝜋, the eigenvalues are 𝜆1 = 𝜆2 = −1, again with eigenvector matrix 𝑿 = 𝑰. If
sin 𝜃 ≠0, the orientation of any non-zero 𝒙∈ ℝ2 changes upon rotation by 𝜃. The characteristic polynomial has
complex roots

p(𝜆)=(𝜆−cos𝜃)2+sin2𝜃⇒𝜆1,2 =cos𝜃± i sin𝜃=e±i𝜃

and the directions of invariant orientation have complex components (are outside the real plane ℝ2)

𝑿 =� 1 −1
i i �,𝑹𝑿 =[[[[[[[[[[[[ e−i𝜃 −e i𝜃

ie−i𝜃 ie i𝜃 ]]]]]]]]]]]]=� 1 −1
i i �[[[[[[[[[[[[ e−i𝜃 0

0 e i𝜃 ]]]]]]]]]]]].

∘ Second-order differentiation matrix. Eigenvalues of matrices arising from discretization of continuum operators
can be obtained from the operator eigenproblem. The second-order differentiation operator ∂x

2 has eigenvalues −𝜉2

associated with eigenfunctions sin(𝜉x)
∂x

2 sin(𝜉x)=−𝜉2 sin(𝜉x).

Sampling of sin(𝜉x) at xk = kh, k = 1, . . . , m, h = 𝜋/(m + 1) leads to the vector 𝒖 ∈ ℝm with components uk =
sin(𝜉kh). The boundary conditions at the sampling interval end-points affect the eigenvalues. Imposing sin(𝜉x)=
0, at x =0 and x =𝜋 leads to 𝜉∈ℤ. The derivative can be approximated at the sample points through

uk′′≅ sin[𝜉(xk +h)]−2sin[𝜉xk]+sin[𝜉(xk −h)]
h2 = 2

h2 (cos(𝜉h)−1)sin(𝜉kh)=− 4
h2 sin2�𝜉h

2 �sin(𝜉kh) .



The derivative approximation vector 𝒖′′=[uk′′]k=1, . . .m results from a linear mapping 𝒖′′=𝑫𝒖, and the matrix

𝑫= 1
h2 diag([ 1 −2 1 ]),

has eigenvectors 𝒖 and eigenvalues −(4/h2)sin2(𝜉h/2), 𝜉=1,2, . . . ,m . In the limit of an infinite number of sam-
pling points the continuum eigenvalues are obtained, exemplifying again the correspondence principle between
discrete and continuum representations

lim
h→0

− 4
h2 sin2�𝜉h

2 �=−𝜉2.

1.3. Matrix eigendecomposition

A solution 𝑿, 𝚲 to the eigenvalue problem 𝑨𝑿 = 𝑿𝚲 always exists, but the eigenvectors of 𝑨 do not always form a
basis set, i.e., 𝑿 is not always of full rank. The factorized form of the characteristic polynomial of 𝑨∈ℂm×m is

p𝑨(𝜆)=det(𝜆𝑰 −𝑨)=�
k=1

K

(𝜆−𝜆k)mk,

with K ⩽ m denoting the number of distinct roots of p𝑨(𝜆), and mk is the algebraic multiplicity of eigenvalue 𝜆k,
defined as the number of times the root 𝜆k is repeated. Let ℰk denote the associated eigenspace ℰk = ℰ𝑨(𝜆k) =
N(𝑨−𝜆k 𝑰). The dimension of ℰk denoted by nk is the geometric multiplicity of eigenvalue 𝜆k. The eigenvector matrix
is of full rank when the vector sum of the eigenspaces covers ℂm, as established by the following results.

PROPOSITION. The geometric multiplicity is at least 1, nk ⩾1.

Proof. By contradiction if nk =dimℰk, then ℰk ={𝟎}, but eigenvectors cannot be null. □

PROPOSITION. If 𝜆i ≠𝜆j then ℰi ∩ℰj ={𝟎} (the eigenspaces of distinct eigenvalues are disjoint)

Proof. Let 𝒙∈ℰi, hence 𝑨𝒙=𝜆i𝒙 and 𝒙∈ℰj, hence 𝑨𝒙=𝜆j 𝒙. Subtraction gives

𝑨𝒙−𝑨𝒙=𝟎=(𝜆i −𝜆j)𝒙.
Since 𝜆i≠𝜆j it results that 𝒙=𝟎. □

PROPOSITION. The geometric multiplicity of an eigenvalue is less or equal to its algebraic multiplicity,

0<nk =dim(N(𝑨−𝜆k𝑰))⩽mk.

Proof. Let �̂� ∈ℂm×nk be an orthonormal basis for N(𝑨−𝜆k𝑰). By definition of a null space, 𝒚∈N(𝑨−𝜆k𝑰)

(𝑨−𝜆k𝑰)𝒚=𝟎⇒𝑨𝒚=𝜆k 𝒚,

i.e., every vector of the eigenspace is an eigenvector with eigenvalue 𝜆k. Then

𝑨�̂� =𝑨� 𝒗1 𝒗2 . . . 𝒗nk �=� 𝑨𝒗1 𝑨𝒗2 . . . 𝑨𝒗nk �=𝜆� 𝒗1 𝒗2 . . . 𝒗nk �.

Form the unitary matrix 𝑽 =� �̂� 𝒁 �∈ℂm×m, and compute

𝑽∗𝑨𝑽 =[[[[[[[[[[[[ �̂�∗

𝒁∗ ]]]]]]]]]]]]𝑨� �̂� 𝒁 �=[[[[[[[[[[[[ �̂�∗

𝒁∗ ]]]]]]]]]]]]� 𝑨�̂� 𝑨𝒁 �=[[[[[[[[[[[[[[ �̂�∗𝑨�̂� �̂�∗𝑨𝒁
𝒁∗𝑨�̂� 𝒁∗𝑨𝒁 ]]]]]]]]]]]]]].

Since 𝑽 is unitary, obtain

�̂�∗𝑨�̂� =𝜆
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ 𝒗1

∗

𝒗2
∗

⋅⋅⋅
𝒗nk

∗ ]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]
]
� 𝒗1 𝒗2 . . . 𝒗nk �=𝜆𝑰nk,𝒁∗𝑨�̂� =𝜆

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ 𝒛1

∗

𝒛2
∗

⋅⋅⋅
𝒛m−nk

∗ ]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]
]
� 𝒗1 𝒗2 . . . 𝒗nk �=𝟎,

where 𝑰nk is the nk ×nk identity matrix, and in the above 𝟎 denotes a (m−nk)×nk matrix of zeros. The matrix

𝑩=𝑽∗𝑨𝑽 =[[[[[[[ 𝜆𝑰 𝑪
𝟎 𝑫 ]]]]]]]
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is similar to 𝑨 and has the same eigenvalues. Since det(z𝑰 −𝑩)=det((z −𝜆)𝑰)det(𝑫), the algebraic multiplicity of 𝜆
must be at least nk, i.e., nk ⩽mk. □

DEFINITION 1. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be
defective.

∘ Example. Non-defective matrices exist, for example

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 1 0 0

0 2 0
0 0 3 ]]]]]]]]]]]]]]]]]

]]]
]
],𝑿 =𝑰,𝚲=diag([ 1 2 3 ]).

∘ Example. Non-defective matrices with repeated eigenvalues exist, for example

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 1 0 0

0 1 0
0 0 1 ]]]]]]]]]]]]]]]]]

]]]
]
],𝑿 =𝑰,𝚲=diag([ 1 1 1 ]).

∘ Example. Defective matrices exist, for example

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 3 1 1

0 3 1
0 0 3 ]]]]]]]]]]]]]]]]]

]]]
]
],

has eigenvalue 𝜆=3 with algebraic multiplicity m1=3. Reduction to row-echelon form of 𝑨−𝜆𝑰 leads to

𝑨−𝜆𝑰 =[[[[[[[[[[[[[[[[[
[[[
[
[ 0 1 1

0 0 1
0 0 0 ]]]]]]]]]]]]]]]]]

]]]
]
],

and N(𝑨−𝜆𝑰)=⟨𝒆1⟩, i.e., the geometric multiplicity is equal to 1. The above is known as a Jordan block.

PROPOSITION 2. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal to the algebraic
multiplicity of that eigenvalue.

Proof. Recall that 𝑨 is diagonalizable if the eigenvector matrix 𝑿 is of full rank. Since the eigenspaces ℰj of the K
distinct eigenvalues are disjoint, the column space of 𝑿 is the direct vector sum of the eigenspaces

C(𝑿)=ℰ1 ⊕ . . . ⊕ℰK.

The dimension of C(𝑿) is therefore given by the sum of the eigenspace dimensions

dimC(𝑿)=�
k=1

K

nk ⩽�
k=1

K

mk =m.

Since nk ⩽mk, the only possibility for 𝑿 to be of full rank, dimC(𝑿)=m, is for nk =mk. □

1.4. Matrix properties from eigenvalues

Eigenvalues as roots of the characteristic polynomial

pA(𝜆)=det(𝜆𝑰 −𝑨)=𝜆m+c1𝜆m−1 + . . . +cm−1𝜆+cm =�
k=1

m

(𝜆−𝜆k)

reveal properties of a matrix 𝑨∈ℂm×m. The evaluation of pA(0) leads to

det(−𝑨)=(−1)mdet (𝑨)=(−1)m�
k=1

m

𝜆k,

hence the determinant of a matrix is given by the product of its eigenvalues

det(𝑨)=�
k=1

m

𝜆k.



The trace of a matrix is the sum of its diagonal elements is equal to the sum of its eigenvalues

tr(𝑨)=�
k=1

m

akk =�
k=1

m

𝜆k,

a relationship established by the Vieta formulas.

1.5. Matrix eigendecomposition applications

Whereas the SVD, QR, LU decompositions can be applied to general matrices 𝑨∈ℂm×n with m not necessarily equal
to n, the eigendecomposition requires 𝑨∈ℂm×m, and hence is especially relevant in the characterization of endomor-
phisms. A generic time evolution problem is stated as

∂t 𝒖=𝒖t =𝒇 (𝒖),𝒖(0)=𝒖0, 𝒖:ℝ+ →ℂm,

stating that the rate of change in the state variables 𝒖 characterizing some system is a function of the current state
through the function 𝒇 :ℂm →ℂm, an endomorphism. An approximation of 𝒇 is furnished by the MacLaurin series

𝒇 (𝒖)=𝒗+𝑨𝒖+𝒪(‖𝒖‖2), 𝒗=𝒇 (𝟎), 𝑨= ∂𝒇
∂𝒖(𝟎).

Truncation at first order gives a linear ODE system 𝒖t =𝒗+𝑨𝒖, that can be formally integrated to give

𝒖(t)=𝒗t +e t𝑨 𝒖0 .
The matrix exponential et𝑨 is defined as

e t𝑨 =𝑰 + 1
1! t 𝑨+ 1

2! (t 𝑨)2 + 1
3! (t 𝑨)3+ . . . .

Evaluation of 𝑨n requires n−1 matrix multiplications or (n−1)m3 floating point operations. However, if the eigende-
composition of 𝑨=𝑿𝚲𝑿−1 is available the matrix exponential can be evaluate in only 2m3 operations since

𝑨k =(𝑿𝚲𝑿−1)(𝑿𝚲𝑿−1). . .(𝑿𝚲𝑿−1)=𝑿𝚲k 𝑿−1,

leads to
e t𝑨 =𝑿e t𝚲 𝑿−1.

2. Computation of the SVD
The existence of the SVD 𝑨=𝑼𝚺𝑽∗ was establish by a constructive procedure by complete induction. However the
proof depends on determining the singular values, e.g., 𝜎1=‖𝑨‖. The existence of the singular values was established
by an argument from analysis, that the norm function on a compact domain must attain its extrema. This however
leaves open the problem of effectively determining the singular values. In practive the singular values and vectors are
determined by solving the eigenvalue problem for 𝑨𝑨∗ and 𝑨∗𝑨

𝑨∗ 𝑨=(𝑼𝚺𝑽∗)∗(𝑼𝚺𝑽∗)=𝑽𝚺T 𝑼∗𝑼𝚺𝑽∗=𝑽𝚺T 𝚺𝑽∗ ⇒(𝑨∗ 𝑨)𝑽 =𝑽 𝚺T 𝚺,

𝑨𝑨∗ =(𝑼𝚺𝑽∗)(𝑼𝚺𝑽∗)∗=𝑼𝚺𝑽∗𝑽𝚺T 𝑼∗=𝑼𝚺𝚺T 𝑼∗⇒(𝑨𝑨∗)𝑼 =𝑼𝚺𝚺T .

From the above the left singular vectors 𝑼 are eigenvectors of 𝑨𝑨∗, and the right singular vectors are eigenvectors of
𝑨∗𝑨. Both 𝑨𝑨∗ and 𝑨∗𝑨 have the same eigenvalues that are the squared singular values.
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