
POWER ITERATION

1. Reduction to triangular form
The relevance of eigendecompositions 𝑨=𝑿𝚲𝑿−1 to repeated application of the linear operator 𝑨∈ℂm×m as in

𝒆t𝑨 =𝑰 + 1
1! t 𝑨+ 1

2! t2𝑨2 + ⋅ ⋅ ⋅ =𝑿e t𝚲 𝑿−1,

suggests that algorithms that construct powers of 𝑨 might reveal eigenvalues. This is indeed the case and leads to a
class of algorithms of wide applicability in scientific computation. First, observe that taking condition numbers gives

𝜇(𝑨)=𝜇(𝑿𝚲𝑿−1)⩽𝜇2(𝑿)𝜇(𝚲)=(|𝜆|max/|𝜆|min),

where |𝜆|max, |𝜆|min are the eigenvalues of maximum and minimum absolute values. While these express an intrinsic
property of the operator 𝑨, the factor 𝜇2(𝑿) is associated with the conditioning of a change of coordinates, and a
natural question is whether it is possible to avoid any ill-conditioning associated with a basis set 𝑿 that is close to linear
dependence. The answer to this line of inquiry is given by the following result.

SCHUR THEOREM. For any 𝑨∈ℂm×m there exists 𝑸 unitary and 𝑻 upper triangular such that 𝑨=𝑸𝑻𝑸∗.

Proof. Proceed by induction, starting from an arbitrary eigenvalue 𝜆 and eigenvector 𝒙. Let 𝒖1 = 𝒙/‖𝒙‖, the first
column vector of a unitary matrix 𝑼 =[ 𝒖1 𝑽 ]. Then

𝑼∗𝑨𝑼 =[[[[[[[ 𝒖1
∗

𝑽∗ ]]]]]]]𝑨[ 𝒖1 𝑽 ]=[[[[[[[ 𝒖1
∗

𝑽∗ ]]]]]]][ 𝑨𝒖1 𝑨𝑽 ]=[[[[[[[ 𝒖1
∗

𝑽∗ ]]]]]]][ 𝜆𝒖1 𝑨𝑽 ]=[[[[[[[[[[ 𝜆1 𝒃∗

𝟎 𝑪 ]]]]]]]]]],

with 𝑪 ∈ ℂ(m−1)×(m−1) that by the inductive hypothesis can be written as 𝑪 = 𝑾 𝑺𝑾∗, with 𝑾 unitary, 𝑺 upper trian-
gular. The matrix

𝑸=𝑼[[[[[[[ 1 𝟎
𝟎 𝑾 ]]]]]]]

is a product of unitary matrices, hence itself unitary. The computation

𝑸∗𝑨𝑸=((((((((((𝑼[[[[[[[ 1 𝟎
𝟎 𝑾 ]]]]]]]))))))))))

∗
𝑨𝑼[[[[[[[ 1 𝟎

𝟎 𝑾 ]]]]]]]=[[[[[[[ 1 𝟎
𝟎 𝑾 ∗ ]]]]]]]𝑼∗ 𝑨𝑼[[[[[[[ 1 𝟎

𝟎 𝑾 ]]]]]]]=[[[[[[[ 1 𝟎
𝟎 𝑾∗ ]]]]]]][[[[[[[[[[ 𝜆1 𝒃∗

𝟎 𝑪 ]]]]]]]]]][[[[[[[ 1 𝟎
𝟎 𝑾 ]]]]]]]=[[[[[[[[[[ 𝜆1 𝒃∗

𝟎 𝑺 ]]]]]]]]]]=𝑻,

then shows that 𝑻 is indeed triangular. □

The eigenvalues of an upper triangular matrix are simply its diagonal elements, so the Schur factorization is an eigen-
value-revealing factorization.

2. Power iteration for real symmetric matrices
When the operator 𝑨 expresses some physical phenomenon, the principle of action and reaction implies that 𝑨∈ℝm×m

is symmetric, 𝑨 = 𝑨T and has real eigenvalues. Componentwise, symmetry of 𝑨 = [aij] implies aij = aji. Consider
𝑨𝒙 = 𝜆𝒙, and take the adjoint to obtain 𝒙T 𝑨T = �̄� 𝒙T , or 𝒙T 𝑨 = �̄� 𝒙T since 𝑨 is symmetric. Form scalar products
𝒙T 𝑨𝒙=𝜆𝒙T 𝒙, 𝒙T 𝑨T 𝒙=�̄�𝒙T 𝒙, and subtract to obtain

0=(𝜆− �̄�)𝒙T 𝒙⇒𝜆=�̄�⇒𝜆∈ℝ,

since 𝒙≠𝟎, an eigenvector.

Example. Consider a linear array of identical mass-springs. The i th point mass obeys the dynamics

mẍi=k(xi+1−xi)−k(xi −xi−1)=k(xi+1 −2xi+xi−1),

expressed in matrix form as �̈�=𝑨𝒙, with 𝑨 symmetric.
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For a real symmetric matrix the Schur theorem states that

𝑨=𝑨T ⇒(𝑸𝑻𝑸T)=𝑸𝑻T 𝑸T ⇒𝑻 =𝑻T ,

and since a symmetric triangular matrix is diagonal, the Schur factorization is also an eigendecomposition, and the
eigenvector matrix 𝑸 is a basis, C(𝑸)=ℝm.

2.1. The power iteration idea

Assume initially that the eigenvalues are distinct and ordered |𝜆1| > |𝜆2| > ⋅ ⋅ ⋅ > |𝜆m|. Repeated application of 𝑨 on an
arbitrary vector 𝒗=𝑸𝒄∈ℝm=C(𝑸) is expressed as

𝑨n 𝒗=(𝑸𝚲𝑸T)n 𝑸𝒄=(𝑸𝚲𝑸T)(𝑸𝚲𝑸T). . .(𝑸𝚲𝑸T)𝑸𝒄=𝑸𝚲n 𝒄,

a linear combination of the columns of 𝑸 (eigenvectors of 𝑨) with coefficients 𝚲n 𝒄=[ 𝜆1
n c1 𝜆2

n c2 . . . 𝜆m
n cm ]T .

∘ For large enough n, |𝜆1|> |𝜆k|, k =2, . . . ,n, leads to a dominant contribution along the direcion of eigenvector 𝒒1

𝑨n 𝒗=𝑸𝚲n 𝒄=𝜆1
n c1𝒒1+ ⋅ ⋅ ⋅ +𝜆m

n cm𝒒m ≅𝜆1
n c1𝒒1.

This gives a procedure for finding one eigenvector of a matrix, and the Schur theorem proof suggests a recursive
algorithm to find all eigenvalues can be defined.

The sequence of normalized eigenvector approximants 𝒗n =𝑨n 𝒗/‖𝑨n 𝒗‖ is linearly convergent at rate r = |𝜆2/𝜆1|.

2.2. Rayleigh quotient

To estimate the eigenvalue revealed by power iteration, formulate the least squares problem

min
c

‖𝑨𝒗−𝒗c‖,

that seeks the best approximation of one power iteration 𝑨𝒗 as a linear combination of the initial vector 𝒗. Of course,
if 𝒗=𝒒 is an eigenvector, then the solution would be c=𝜆, the associated eigenvalue. The projector onto C(𝒗) is

𝑷= 𝒗𝒗T

𝒗T 𝒗,
that when applied to 𝑨𝒗 gives the equation

𝑷𝑨𝒗= 𝒗𝒗T

𝒗T 𝒗 𝑨𝒗= 𝒗T 𝑨𝒗
𝒗T 𝒗 𝒗=c𝒗⇒ c= 𝒗T 𝑨𝒗

𝒗T 𝒗 .
The function r:ℝm→ℝ,

r(𝒗)= 𝒗T 𝑨𝒗
𝒗T 𝒗 ,

is known as the Rayleigh quotient which, evaluated for an eigenvector, gives r(𝒒) = 𝜆. To determine how well the
eigenvalue is approximated, carry out a Taylor series in the vicinity of an eigenvector 𝒒

r(𝒗)= r(𝒒)+ 1
1![∇𝒗 r(𝒒)]T (𝒗−𝒒)+𝒪(‖𝒗−𝒒‖2),

where ∇𝒗 r is the gradient of r(𝒗)

∇𝒗 r =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ ∂r
∂v1
⋅⋅⋅
∂r

∂vm ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]

]

]
.

Compute the gradient through differentiation of the Rayleigh quotient

∇𝒗 r(𝒗)= ∇𝒗(𝒗T 𝑨𝒗)
𝒗T 𝒗 − (𝒗T 𝑨𝒗)

(𝒗T 𝒗)2 ∇𝒗 (𝒗T 𝒗).

Noting that ∇𝒗 vi =𝒆i, the i th column of 𝑰, the gradient of 𝒗T 𝒗 is

∇𝒗 (𝒗T 𝒗)=∇𝒗�
i=1

m

vi
2=�

i=1

m

∇𝒗 vi
2 =�

i=1

m

2vi∇𝒗 vi=2�
i=1

m

vi𝒆i =2𝒗.



To compute ∇𝒗(𝒗T 𝑨𝒗), let 𝒖=𝑨𝒗, and since 𝑨 is symmetric 𝒖T =𝒗T 𝑨T =𝒗T 𝑨, leading to

∇𝒗(𝒗T 𝑨𝒗)=∇𝒗(𝒖T 𝒗)=�
i=1

m

∇𝒗 (ui vi )=�
i=1

m

ui∇𝒗 vi+�
i=1

m

vi∇𝒗 ui.

Use ui =∑j=1
m aij vj also expressed as uj =∑i=1

m aji vi by swapping indices to obtain

∇𝒗 ui=�
j=1

m

aij ∇𝒗 vj =�
j=1

m

aij 𝒆j

and therefore

�
i=1

m

vi∇𝒗 ui=�
i=1

m

vi �
j=1

m

aij 𝒆j = �
j=1

m

�
i=1

m

aij vi 𝒆j = �
j=1

m

�
i=1

m

aij vi 𝒆j.

Use symmetry of 𝑨 to write

�
i=1

m

aij vi =�
i=1

m

a ji vi =uj,

and substitute above to obtain

�
i=1

m

vi∇𝒗 ui =�
j=1

m

uj 𝒆j =𝒖=𝑨𝒗.

Gathering the above results

∇𝒗 (𝒗T 𝒗)=2𝒗,∇𝒗(𝒗T 𝑨𝒗)=2𝑨𝒗,

gives the following gradient of the Rayleigh quotient

∇𝒗 r(𝒗)= 2
𝒗T 𝒗(𝑨𝒗− r(𝒗)𝒗) .

When evaluated at 𝒗=𝒒, obtain ∇𝒗 r(𝒒)=𝟎, implying that near an eigenvector the Rayleigh quotient approximation of
an eigenvalue is of quadratic accuracy,

r(𝒗)−𝜆=𝒪(‖𝒗−𝒒‖2).

2.3. Refining the power iteration idea

Power iteration furnishes the largest eigenvalue. Further eigenvalues can be found by use of the following properties:

− (𝜆, 𝒒) eigenpair of 𝑨⇒(𝜆−𝜇,𝒒) eigenpair of 𝑨−𝜇𝑰;

− (𝜆, 𝒒) eigenpair of 𝑨⇒(1/𝜆,𝒒) eigenpair of 𝑨−1.

If 𝜇 is a known initial approximation of the eigenvalue then the inverse power iteration 𝒗n =(𝑨 − 𝜇𝑰)−1𝒗n−1, actually
implemented as successive solution of linear systems

(𝑨−𝜇𝑰)𝒗n =𝒗n−1,

leads to a sequence of Rayleigh quotients 𝒓(𝒗n) that converges quadratically to an eigenvalue close to 𝜇. An important
refinement of the idea is to change the shift at each iteration which leads to cubic order of convergence

Algorithm (Rayleigh quotient iteration)

Given 𝒗,𝑨
𝜇=𝒗T 𝑨𝒗/𝒗T𝒗
for i =1 to nmax

𝒘=(𝑨−𝜇𝑰)\𝒗 (solve linear system)
𝒗=𝒘/‖𝒘‖
𝜆=𝒗T 𝑨𝒗
if |𝜆−𝜇|<𝜀 exit
𝜇=𝜆

end
return 𝜆,𝒗
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Power iteration can be applied simultaneously to multiple directions at once

Algorithm (Simultaneous iteration)

Given 𝑨
𝑸=𝑰; 𝝁=diag(𝑨)
for i =1 to nmax

𝑽 =𝑨𝑸 (power iteration applied to multiple directions)
𝑸𝑹=𝑽 (orthogonalize new directions)
𝝀=diag(𝑸T 𝑨𝑸)
if ‖𝝀−𝝁‖<𝜀 exit

end
return 𝝀,𝑸
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