
LECTURE 15: FUNCTION AND DERIVATIVE INTERPOLATION

1. Interpolation in function and derivative values - Hermite interpolation

In addition to sampling of the function f :���, information on the derivatives of f might also be available, as in the

data set
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The extended data set can again be interpolated by a polynomial, this time of degree 2n+1 given in the monomial,

Lagrange or Newton form.

Monomial form of interpolating polynomial. Using the monomial basis
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The above suggests constructing a basis set of monomials and their derivatives
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is obtained.

For general n,t is of full rank for distinct sample points with a determinant reminiscent of that of the Vandermonde

matrix
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The interpolation conditions lead to the linear system
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whose solution requires ª([2(n+1)]
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The above approach generalizes to higher-order derivatives, e.g., for
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the basis set is
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Lagrange form of interpolating polynomial. As in the function value interpolation case, a basis set that evaluates

to an identity matrix when sampled at ���

n+1

is obtained by LU-factorization of the sampled monomial matrix
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� As, an example, consider the LU-factorization of matrixt=3
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� The functions that result
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The procedure can be extended to derivatives of arbitrary order, e.g., the data set�
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Newton form of interpolating polynomial. As before, inverting only one factor of the3

2n+1

2

(t) =�

2n+1

2

(t)s|

mapping yields a triangular basis set®

2

(t)=[
s

0

(t) s

1

(t) s

2

(t) . . .
]

3

2n+1

2

(t)|

�1

=®

2n+1

2

(t) .

� The �rst six basis polynomials obtained for n=2 are

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

1,

t�x

0

x

1

�x

0

,

(t�x

0

) (t�x

1

)

(x

2

�x

0

)(x

2

�x

1

)

,

(t�x

0

) (t�x

1

) (t�x

2

)

(x

2

�x

0

) (x

1

�x

0

)

,

(t�x

0

)

2

(t�x

1

) (t�x

2

)

(x

1

�x

0

)

2

(x

1

�x

2

)

,

(t�x

0

)

2

(t�x

1

)

2

(t�x

2

)

(x

2

�x

0

)

2

(x

2

�x

1

)

2

}

}

}

}

}

}

}

}

}

}

}

}
}

}

}

}

}

}

}

}

}

}

}

}

.

� A closer link to divided di�erence and di�erential calculus is obtained by permuting rows oft, e.g., for n=2
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The �rst six basis polynomials thus obtained are

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

1, t�x

0

,

(t�x

0

)

2

(x

1

�x

0

)

2

,

(t�x

0

)

2

(t�x

1

)

(x

1

�x

0

)

2

,

(t�x

0

)

2

(t�x

1

)

2

(x

2

�x

0

)

2

(x

2

�x

1

)

2

,

(t�x

0

)

2

(t�x

1

)

2

(t�x

2

)

(x

2

�x

0

)

2

(x

2

�x

1

)

2

}

}

}

}

}

}

}

}

}

}

}

}
}

}

}

}

}

}

}

}

}

}

}

}

.

and upon rescaling generalize to the basis set

©

2n+1

2

(t)=[
n

0

(t) n

1

(t) . . . n

2n+1

(t)
],

with

n

2k

(t)=w

j=0

k�1

(t�x

j

)

2

,n

2k+1

(t)=(t�x

k

)n

2k

(t),k=0,1, . . . ,n

known as the Newton basis set with repetitions.

The interpolating polynomial in Newton divided di�erence form is

p(t)=[y

0

]+[y

0

,y

0

](t�x

0

)+[y

1

,y

0

,y

0

](t�x

0

)

2

+ Å Å Å+[y

n

,y

n

, . . . ,y

0

,y

0

](t�x

0

)

2

. . .(t�x

n�1

)

2

(t�x

n

).

Divided di�erence with repeated values are replaced by their, limits, i.e., the derivatives

[y

k

,y

k

]= lim

x

k�1

�x

k

y

k

�y

k�1

x

k

�x

k�1

=y

k

2

.
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The forward substitution can again be organized in a table.

i x

i

[y

i

] [y

i

,y

i�1

] [y

i

,y

i�1

,y

i�2

]

0 x

0

y

0

� �

0 x

0

y

0

y

0

2

1 x

1

y

1

y

1

�y

0

x

1

�x

0

1

x

1

�x

0

Ý

y

1

�y

0

x

1

�x

0

�y

0

2

Þ

1 x

1

y

1

y

1

2

1

x

1

�x

0

Ýy

1

2

�

y

1

�y

0

x

1

�x

0

Þ

2 x

2

y

2

y

2

�y

1

x

2

�x

1

1

x

2

�x

1

Ý

y

2

�y

1

x

2

�x

1

�y

1

2

Þ
Å

Å

Å

2 x

2

y

2

y

2

2

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

n x

n

y

n

y

n

2

1

x

n

�x

n�1

Ý
y

n

2

�

y

n

�y

n�1

x

n

�x

n�1

Þ
. . .

[y

n

, . . . ,y

1

]� [y

n�1

, . . . ,y

0

]

x

n

�x

0

Table 1. Table of repeated divided di�erences. The Newton basis coe�cients are the diagonal terms.

Interpolation of data containing higher derivatives, or di�ering orders of derivative information at each node are

poissible. For multiple repeated values arising in the limit x

i+k

� x

i

of sample points x

i

}x

i+1

} Å Å Å}x

i+k

the divided

di�erence is determined by

[y

i+k

,y

i+k�1

, . . . ,y

i

]=
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{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
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{

{

{

{

{
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{

{

{

{

{

{

[y

i+k

,y

i+k�1

, . . . ,y

i+1

]� [y

i+k�1

,y

i+k�1

, . . . ,y

i

]

x

i+k

�x

i

x

i

<x

i+k

y

i

(k)

k!

x

i

=x

i+k
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