
LECTURE 16: PIECEWISE INTERPOLATION

1. Splines

Instead of adopting basis functions de�ned over the entire sampling interval [x

0

,x

n

] as exempli�ed by the monomial

or Lagrange bases, approximations of f :��� can be constructed with di�erent branches over each subinterval, by

introducing S

i

: [x

i�1

,x

i

]��, and the approximation
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The interpolation conditions p(x

i

)=y

i

lead to constraints

S

i

(x

i�1

)=y

i�1

.

The form of S(t) can be freely chosen, and though most often S(t) is a low-degree polynomial, the spline functions

may have any convenient form, e.g., trigonometric or arcs of circle. The accuracy of the p(t) approximant is deter-

mined by the choice of form of S(t), and by the sample points. It is useful to introduce a quantitative measure of the

sampling through the following de�nitions.

DEFINITION. {x

0

,x

1

, . . . ,x

n

} is a partition of the interval [a,b]�� if x

i

��, i=0,1, . . . ,n, satisfy

a=x

0

<x

1

< Å Å Å<x

n�1

<x

n

=b.

DEFINITION. The norm of partition X={x

0

,x

1

, . . . ,x

n

} of the interval [a,b]�� is

�X�= max

1}i}n

|x

i

�x

i�1

| .

Constant splines (degree 0). A simple example is given by the constant functions S

i

(t)=y

i�1

. Arbitrary accuracy of

the approximation can be achieved in the limit of n��, �X��0. Over each subinterval the polynomial error formula

gives

f (t)�S

i

(t)= f

2

(	

t

)(t�x

i�1

),

so overall

| f (t)� p(t)|} � f

2

�

�

�X�,

which becomes

| f (t)� p(t)|} � f

2

�

�

h,

for equidistant partitions x

i

=x

0

+ ih, h=(x

n

�x

0

)/n. The interpolant p(t) converges to f (t) linearly (order of conver-

gence is 1)

Linear splines (degree 1). A piecewise linear interpolant is obtained by

S

i

(t)=

t�x

i�1

x

i

�x

i�1

(y

i

�y

i�1

)+y

i�1

.

The interpolation error is bounded by

| f (t)� p(t)|}

1

2

� f

2

�

�

h

2

,

for an equidistant partition, exhibiting quadratic convergence.

Quadratic splines (degree 2). A piecewise quadratic interpolant is formulated as

S

i

(t)=b

i

(t�x

i�1

)

2

+c

i

(t�x

i�1

)+y

i�1

.
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The interpolation conditions are met since S

i

(
x

i�1

)
=y

i�1

. The additional parameters of this higher order spline inter-

polant can be determined by enforcing additional conditions, typically continuity of function and derivative at the

boundary between two subintervals

S

i

(x

i

)=b

i

h

i

2

+c

i

h

i

=y

i

, i=1,2, . . . ,n

S

i

2

(x

i

)=2b

i

h

i

+c

i

=2b

i+1

h

i+1

+c

i+1

=S

i+1

2

(x

i

) i=1,2, . . . ,n�1

.

An additional condition is required to close the system, for example S

n

2

(x

i

)=y

n

2

(known end slope), or S

n

2

(x

i

)=0 (zero

end slope), or S

n

2

(x

i

)=S

n

2

(x

i�1

) (constant end-slope). The coe�cients b

i

,c

i

are conveniently determined by observing

that S

i

2

(t) is linear over interval [x

i�1

,x

i

] of length h

i

=x

i

�x

i�1

, and is given by

S

i

2

(t)=

t�x

i�1

h

i

(s

i

� s

i�1

)+ s

i�1

=

s

i�1

h

i

(x

i

� t)+

s

i

h

i

(t�x

i�1

),

with s

i

=y

i

2

, the slope of the interpolant at x

i

. The continuity of �rst derivative conditions S

i

2

(x

i

)=S

i+1

2

(x

i

) are satis�ed,

and integration gives

S

i

(t)=

s

i

2h

i

(t�x

i�1

)

2

�

s

i�1

2h

i

(x

i

� t)

2

+A

i

.

The interpolation condition S

i

(x

i�1

)=y

i�1

, determines the constant of integration A

i

A

i

�
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2

=y

i�1

ÒA
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=y

i�1

+

s

i�1

h
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2

,

Imposing the continuity of function condition S

i

(x

i

)=S

i+1

(x

i

) gives

s

i

h

i

2

+y
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+

s
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=�
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,

or

s

i�1

+ s

i

=

2

h

i

(y

i

�y

i�1

), i=1,2, . . . ,n,

a bidiagonal system for the slopes that is solved by backward substituion in ª(2n) operations. For i=1, the s

0

value

arising in the system has to be given by an end condition, and the overall system i�=� is de�ned by

i=
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The interpolation error is bounded by

| f (t)� p(t)|}

1
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� f
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,

for an equidistant partition, exhibiting quadratic convergence.

Cubic splines (degree 3). The approach outlined above can be extended to cubic splines, of special interest since

continuity of curvature is achieved at the nodes, a desirable feature in many applications. The second derivative is

linear

S

i

22

(t)=

z

i�1

h

i

(x

i

� t)+

z

i

h

i

(t�x

i�1

),

with z

i�1

=S

i

22

(x

i�1

), z

i

=S

i

22

(x

i

) the curvature at the endpoints of the [x

i�1

,x

i

] subinterval. Double integration gives

S

i

(t)=

z

i�1

6h

i

(x

i

� t)

3

+

z

i

6h

i

(t�x

i�1

)

3

+A

i

(t�x

i�1

)+B

i

(x

i

� t).

The interpolation conditions S

i

(x

i�1

)=y

i�1

, S

i�1

(x

i

)=y

i

, gives the integration constants
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=
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=
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�
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and continuity of �rst derivative, S

i

2

(x

i

)=S

i+1

2

(x

i

), subsequently leads to a tridiagonal system for the curvatures

h

i

z

i�1

+2(h

i

+h

i�1

)z

i

+h

i+1

z

i+1

=

6(y

i+1

�y

i

)

h

i+1

�

6(y

i

�y

i�1

)

h

i

, i=1,2, . . . ,n�1.

End conditions are required to close the system. Common choices include:

1. Zero end-curvature, also known as the natural end conditions: z

0

= z

n

=0.

2. Curvature extrapolation: z

0

= z

1

, z

n

= z

n�1

3. Analytical end conditions given by the function curvature: z

0

= f

22

(x

0

), z

n

= f

22

(x

n

).

2. B-splines

The above analytical approach becomes increasingly unwieldy for higher degree piecewise polynomials. An alterna-

tive approach is to systematically generate basis sets of desired polynomial degree over each subinterval. The starting

point in this basis-spline (B� spline) approach is the piecewise constant functions

B

j,0

(t)=

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

1 x

j

} t<x

j+1

0 otherwise

,

leading to the interpolant

f (t)E p(t)=y

j=0

n

y

j

B

j,0

(t), (1)

of f :���, as sampled by data set�={(x

i

,y

i

= f (x

i

)), i=0,1, . . . ,n}, a=x

0

<x

1

< Å Å Å<x

n

=b. The set

,

0

(t;�)={B

0,0

(t),B

1,0

(t), . . . ,B

n,0

(t)}

constitutes a basis for all piecewise constant approximants of real functions on the interval [x

0

,x

n

]. Higher degree basis

sets,

k

(t;�), k>0, are de�ned recursively through

B

j,k

(t)=w

j,k

(t)B

j,k�1

(t)+(1�w

j+1,k

(t))B

j+1,k�1

(t),

with the weight function

w

j,k

(t)=

t�x

j

x

j+k

�x

j

.
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Figure 1. B-spline sets,

0

,,

1

,,

2

,,

3

,,

4

with �=[ 0 1 2 3 4 5 ]

As the degree k increases, the support of B

j,k

(t) increases to the interval [x

j

,x

j+k+1

]. This is the B-spline analog of the

additional end conditions in traditional spline formulations, and leads to the set

,

k

(t;�)={B

0,k

(t),B

1,k

(t), . . . ,B

n,k

(t)}
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de�ning a basis for splines of degree k only on a subinterval within [x

0

,x

n

]. Consider the piecewise linear case k=1,

(Fig. 2). The set,

1

forms a basis for piecewise linear functions if over each subinterval [x

j

,x

j+1

] an arbitrary linear

function S

1

(t) can be expressed as a linear combination

S

1

(t)=a+bt=y

i=0

n

c

i

B

i,1

(t).

Over [x

j

,x

j+1

] only B

j�1,1

(t),B

j

(t) are not identically zero, hence

S

1

(t)=c

j�1

B

j�1,1

(t)+c

j

B

j,1

(t).

For the end interval [x

0

,x

1

], a de�nition of B

�1,1

(t) would be required,

S

1

(t)=c

�1

B

�1,1

(t)+c

0

B

0,1

(t),

not available within the chosen � data set. At the other end interval [x

n�1

,x

n

],

S

1

(t)=c

n�1

B

n�1,1

(t)+c

n

B

n,1

(t),

invokes B

n,1

which requires B

n+1,0

(t), again not available within the chosen data set. One can either include samples

outside the [a,b] interval or restrict the spline domain of de�nition. Again, this is analogous with the treatment of end

conditions in traditional splines:

1. Sampling outside of the [a,b] range seeks additional information on the function being interpolated f , as for

instance imposed by the condition S

2

(a)= f (a) in traditional splines;

2. Restricting the de�nition domain corresponds to inferring information on the behavior of f in the end intervals

as in the condition S

2

(x

0

)=S

2

(x

1

) in traditional splines.

Denote by®

k

(t;�) the set of splines S: [x

0

,x

n

]��, that are piecewise polynomials of degree k on the partition � of

[x

0

,x

n

]. The k=0, piecewise constant interpolant (1) is speci�ed by n+1 coe�cients, the components of ���

n+1

,

hence

dim®

0

(t;�)=n+1,

i.e., the dimension of the space of piecewise-constant splines is equal to the number of sample points. As the degree

k increases, additional end conditions are required to specify a spline interpolation and

dim®

k

(t;�)=n+1+k,

requiring a basis set

,

.

(t;�)={B

�k,k

(t), . . . ,B

0,k

(t),B

1,k

(t), . . . ,B

n,k

(t)}.

�
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1.0

Figure 2. B-spline set,

1

for �=[ 0 1 2 3 4 5 ]



� Algorithm B-spline evaluation (ine�cient, does not account for known zero values of B)

Input: K��, ���

m

, ���

k+n+1

i=Î��

m×(k+n+1)

for i=1:m

for j=1:k+n

if x

j

} t

i

<x

j+1

then B[i, j]=1 end

end

if t

i

Hx

k+n+1

then B[i,k+n+1]=1 end

end

for k=1:K

for j=1:k+n

w=(t�x

j

)/(x

j+k

�x

j

)

B[:, j]=wB[:, j]+(1�w)B[:, j+1]

end

end

return i

A B-spline interpolant of degree k is given by a linear combination of the basis set,

k

(t;�)

f (t)E p

k

(t)=y

j=�k

n

c

i

B

j,k

(t) .

� The interpolation conditions y

i

= p(x

i

) lead to an underdetermined linear system for k>0

i�=�,i=[

B

�k,k

(�) . . . B

0,k

(�) . . . B

n,k

(�)

]��

(n+1)×(k+n+1)

,

analogous to the k degrees of freedom in speci�cation of end conditions for®

k

(�).
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