
LECTURE 17: SPECTRAL APPROXIMATIONS

1. Trigonometric basis

The monomial basis {1, t, t

2

, . . .} for the vector space of all polynomials P(�), and its derivatives (Lagrange, Newton,

B� spline) allow the de�nition of an approximant p�P(�) for real functions f :���, e.g., for smooth functions

f �C

�

(�). A di�erent approach to approximation in in�nite-dimensional vector spaces such as P(�) or C

�

(�) is

to endow the vector space with a scalar product ( f ,g) and associated norm � f �=( f , f )

1/2

. The availability of a norm

allows de�nition of convergence of sequences and series.

DEFINITION. A sequence { f

n

}

n��

of elements of the normed vector space 1= (F,�, +, Å) converges to f, f

n

� f if

��>0, �N(�) such that � f

n

� f �<� for all n>N(�).

DEFINITION. The vector space1=(F,�,+, Å) with a scalar product

(

,

)

:F ×F�� is a Hilbert space if the limit of all

Cauchy sequences is an element of F.

All Hilbert spaces have orthonormal bases, and of special interest are bases that arise Sturm-Liouville problems of

relevance to the approximation task.

1.1. Fourier series - Fast Fourier transform

The L

2

([0, 2�]) space of periodic, square-integrable functions is a Hilbert space (L

2

is the only Hilbert space among

the L

p

function spaces), and has a basis

á

1

2

, cos t, sin t, . . . , coskt, sinkt, . . .â

that is orthonormal with respect to the scalar product

( f ,g)=

1

�

5

0

2�

f (t)g(t)dt.

An element f �L

2

([0,2�]) can be expressed as the linear combination

f (t)=

a

0

2

+y

k=1

�

[a

k

coskt+b

k

sinkt].

An alternative orthonormal basis is formed by the exponentials

{e

±int

},n��,

with respect to the scalar product

( f ,g)=

1

2�

5

0

2�

f (t)g(t)dt.

The partial sum

S

N

f (t)= y

k=�N

N

c

k

e

ikt

has coe�cients c

k

determined by projection

c

k

=( f ,e

ikt

)=

1

2�

5

0

2�

f (t)e

�ikt

dt,

that can be approximated by the Darboux sum on the partition t

j

=2� j/N

c

k

E

1

N

y

j=1

N

f

j

e

�ikt

j

=

1

N

y

j=1

N

f

j

�

N

�jk

with

�=expã

2�i

N

ä,

denoting the N

th

root of unity. The Fourier coe�cients are obtained through a linear mapping

�=~ � ,
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with �, � ��

N

, and~��

N×N

with elements

~ =[�

� jk

]

1} j,k}N

.

The above discrete Fourier transform can be seen as a change of basis from the basis p in which the coe�cients of f

are � to the basis~ in which the coe�cients are � .

1.2. Fast Fourier transform

Carrying out the matrix vector product ~ � directly would require ª(N

2

) operations, but the cyclic structure of the

~ matrix arising from the exponentiation of � can be exploited to reduce the computational e�ort. Assume N =2P

and separate even and odd indexed components of �

c

k

=y

j=1

N

f

j

�

N

� jk

=y

j=1

P

� f

2 j�1

�

N

�(2 j�1)k

+ f

2 j

�

N

�2 jk

�=y

j=1

P

f

2 j

�

P

� jk

+�

k

y

j=1

P

f

2 j�1

�

P

� jk

.

Through the above, theª(N

2

)matrix-vector product is reduced to two smaller matrix-vector products, each requiring

ª(N

2

/4) operations. For N =2

q

, recursion of the above procedure reduces the overall operation count toª(qN), or

in general for N composed of a small numer of prime factors,ª(N logN). The overall algorithm is known as the fast

Fourier transform or FFT.

1.3. Data-sparse matrices from Sturm-Liouville problems

One step of the FFT can be understood as a special matrix factorization

~

N

=
ã

p k

N

p �k

N

ä

[

[

[

[

[

[

[

~

P

Î

Î ~

P

]

]

]

]

]

]

]

w

N

where k

N

is diagonal and w

N

is the even-odd permutation matrix. Though the matrix~

N

is full (all elements are non-

zero), its factors are sparse, with many zero elements. The matrix ~

N

is said to be data sparse, in the sense that its

speci�cation requires many fewer than N

2

numbers. Other examples of data sparse matrices include:

Toeplitz matrices. h��

m×m

has constant diagonal terms, e.g., for m=4

h=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a b c d

e a b c

f e a b

g f e a

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

or in general the elements of h=[a

ij

]

1}i, j}m

can be speci�ed in terms of 2m�1 numbers a

1�n

, . . . ,a

n�1

through

a

ij

=a

i� j

.

Exterior products. Rank-1 updates arising in the singular value or eigenvalue decompositions have the form

h=��

T

=[
v

1

� v

2

� . . . v

m

�
],

and the 2m components of �,� are su�cient to specify the matrix h with m

2

components. This can be general-

ized to any exterior product of matrices i��

n×n

, j��

p×p

through

h=i�j=[ �

1

�j �

2

�j . . . b

n

�j ]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

b

11

j b

12

j . . . b

1n

j

b

21

j b

22

j . . . b

2n

j

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

b

n1

j b

n2

j . . . b

nn

j

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

The m

2

=(np)

2

components of h are speci�ed through only n

2

+ p

2

components of i,j.

The relevance to approximation of functions typically arises due basis sets that are solutions to Sturm-Liouville prob-

lems. In the case of the Fourier transform e

±ikt

are eigenfunctions of the Sturm-Liouville problem

w

22

+�w=0,w=u+ iv,u

2

(0)=u

2

(�)=0,v(0)=v(�)=0,



with eigenvalues �

n

=k

2

. The solution set {�

1

,�

2

, . . . } to a general Sturm-Liouville problem to �nd f : [a,b]��

d

dt

ãp(t)

d f

dt

ä+q(t) f =��w(t) f ,

form an orthonormal basis under the scalar product

( f ,g)=5

a

b

f (t)g(t)w(t)dt,

and approximations of the form

¦

N

f (t)=y

k=1

N

c

k

�

k

(t),

and Parseval's theorem states that

���

2

2

=y

k=1

�

c

k

c

k

¯

= � f �

2

2

=( f , f )=5

a

b

f (t) f (t)w(t)dt,

read as an equality between the energy of f and that of �. By analogy to the �nite-dimensional case, the Fourier

transform is unitary in that it preserves lengths in the � f �+( f , f )

1/2

norm with weight function w(t)=1.

2. Wavelet approximations

The bases {�

1

,�

2

, . . . } arising from Sturm-Liouville problems are single-indexed, giving functions of increasing res-

olution over the entire de�nition domain. For example sinkx resolves ever �ner features over [0,2�]. When applied

to a function with localized features, k must be increased with increased resolution in the entire [0,2�] domain. This

leads to uneconomical approximation series S

N

f (t) with many terms, as exempli�ed by the Gibbs phenomenon in

approximation of a step function, f (t)=H(t��/2)�H(t�3�/2) for t�[0,2�], and f (t+2�)= f (t). The approach

can be represented as the decomposition of a space of functions by the direct sum

F=¦

1

�¦

2

� . . . ,

with ¦

k

=span(�

k

), for example

L

2

=E

0

�E

1

�E

�1

�E

2

�E

�2

� . . . ,

with E

k

=span{e

ikt

} for the Fourier series.

Approximation of functions with localized features is more e�ciently accomplished by choosing some generating

function �(t) and then de�ning a set of functions through translation and scaling, say

�

jk

(t)=2

�j/2

�(2

�j

t�k).

Such systems are known as wavelets, and the simplest example is the step function

�(t)=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

1 0} t<1/2

�1 1/2} t<1

0 otherwise

,

with �

jk

having support on the half-open interval h

jk

=[k2

�j

, (k+1)2

�j

). The set {�

00

,�

01

, . . . } is known as an Haar

orthonormal basis for L

2

(�) since

(�

jk

,�

lm

)=5

��

�

�

jk

(t)�

lm

(t)dt=ÿ

jl

ÿ

km

.

Approximations based upon a wavelet basis

f (t)=y

j�$

y

k�$

( f ,�

jk

)�

jk

(t),

allow identi�cation of localized features in f .
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The costly evaluation of scalar products ( f ,�

jk

) in the double summation can be avoided by a reformulation of the

expansion as

f (t)=y

k

c

l,k

�

l

(t)+y

j}l

y

k

d

j,k

�

jk

(t), (1)

with . In addition to the � (�mother� wavelet), an auxilliary � scaling function (�father� wavelet) is de�ned, for

example

�(t)=

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

1 0} t<1

0 otherwise

,

for the Haar wavelet system.

The above approach is known as a multiresolution representation and is based upon a hierarchical decomposition of

the space of functions, e.g.,

L

2

=V

l

�W

l

�W

l�1

�W

l�2

� . . .

with

V

j

=span{�

jk

| k�$},W

j

=span{�

jk

|k�$}.

The hierarchical decomposition is based upon the vector subspace inclusions

{0}< Å Å Å<V

1

<V

0

<V

�1

<V

�2

< Å Å Å<L

2

(�),

and the relations

V

m

�W

m

=V

m�1

,

that state that the orthogonal complement of V

m

within V

m�1

is W

m

. Analogous to the FFT, a fast wavelet transforma-

tion can be de�ned to compute coe�cients of (1).
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