LECTURE 17: SPECTRAL APPROXIMATIONS

1. Trigonometric basis

The monomial basis $\{1,t,t^2,\ldots\}$ for the vector space of all polynomials $P(\mathbb{R})$, and its derivatives (Lagrange, Newton, B-spline) allow the definition of an approximant $p \in P(\mathbb{R})$ for real functions $f : \mathbb{R} \to \mathbb{R}$, e.g., for smooth functions $f \in C^{\infty}(\mathbb{R})$. A different approach to approximation in infinite-dimensional vector spaces such as $P(\mathbb{R})$ or $C^{\infty}(\mathbb{R})$ is to endow the vector space with a scalar product (f,g) and associated norm $||f|| = (f,f)^{1/2}$. The availability of a norm allows definition of convergence of sequences and series.

DEFINITION. A sequence $\{f_n\}_{n\in\mathbb{N}}$ of elements of the normed vector space $\mathscr{F}=(F,\mathbb{C},+,\cdot)$ converges to $f,f_n\to f$ if $\forall \varepsilon>0,\ \exists N(\varepsilon)$ such that $\|f_n-f\|<\varepsilon$ for all $n>N(\varepsilon)$.

DEFINITION. The vector space $\mathscr{F} = (F, \mathbb{C}, +, \cdot)$ with a scalar product $(,): F \times F \to \mathbb{C}$ is a Hilbert space if the limit of all Cauchy sequences is an element of F.

All Hilbert spaces have orthonormal bases, and of special interest are bases that arise Sturm-Liouville problems of relevance to the approximation task.

1.1. Fourier series - Fast Fourier transform

The $L^2([0,2\pi])$ space of periodic, square-integrable functions is a Hilbert space (L^2 is the only Hilbert space among the L^p function spaces), and has a basis

$$\left\{\frac{1}{2},\cos t,\sin t,\ldots,\cos kt,\sin kt,\ldots\right\}$$

that is orthonormal with respect to the scalar product

$$(f,g) = \frac{1}{\pi} \int_0^{2\pi} f(t) \, \overline{g(t)} \, \mathrm{d}t.$$

An element $f \in L^2([0, 2\pi])$ can be expressed as the linear combination

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos kt + b_k \sin kt].$$

An alternative orthonormal basis is formed by the exponentials

$$\{e^{\pm int}\}, n \in \mathbb{N},$$

with respect to the scalar product

$$(f,g) = \frac{1}{2\pi} \int_0^{2\pi} f(t) \, \overline{g(t)} \, \mathrm{d}t.$$

The partial sum

$$S_N f(t) = \sum_{k=-N}^{N} c_k e^{ikt}$$

has coefficients c_k determined by projection

$$c_k = (f, e^{ikt}) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} dt,$$

that can be approximated by the Darboux sum on the partition $t_i = 2\pi i/N$

$$c_k \cong \frac{1}{N} \sum_{j=1}^{N} f_j e^{-ikt_j} = \frac{1}{N} \sum_{j=1}^{N} f_j \omega_N^{-jk}$$

with

$$\omega = \exp\left[\frac{2\pi i}{N}\right],\,$$

denoting the N^{th} root of unity. The Fourier coefficients are obtained through a linear mapping

$$c = W f$$

with $c, f \in \mathbb{C}^N$, and $W \in \mathbb{C}^{N \times N}$ with elements

$$\mathbf{W} = [\omega^{-jk}]_{1 \leq i,k \leq N}.$$

The above discrete Fourier transform can be seen as a change of basis from the basis I in which the coefficients of f are c to the basis W in which the coefficients are f.

1.2. Fast Fourier transform

Carrying out the matrix vector product Wf directly would require $\mathcal{O}(N^2)$ operations, but the cyclic structure of the W matrix arising from the exponentiation of ω can be exploited to reduce the computational effort. Assume N=2P and separate even and odd indexed components of f

$$c_k = \sum_{j=1}^{N} f_j \, \omega_N^{-jk} = \sum_{j=1}^{P} \left[f_{2j-1} \, \omega_N^{-(2j-1)k} + f_{2j} \, \omega_N^{-2jk} \right] = \sum_{j=1}^{P} f_{2j} \, \omega_P^{-jk} + \omega^k \sum_{j=1}^{P} f_{2j-1} \, \omega_P^{-jk}.$$

Through the above, the $\mathcal{O}(N^2)$ matrix-vector product is reduced to two smaller matrix-vector products, each requiring $\mathcal{O}(N^2/4)$ operations. For $N=2^q$, recursion of the above procedure reduces the overall operation count to $\mathcal{O}(qN)$, or in general for N composed of a small numer of prime factors, $\mathcal{O}(N\log N)$. The overall algorithm is known as the fast Fourier transform or FFT.

1.3. Data-sparse matrices from Sturm-Liouville problems

One step of the FFT can be understood as a special matrix factorization

$$W_N = \begin{bmatrix} I & D_N \\ I & -D_N \end{bmatrix} \begin{bmatrix} W_P & \mathbf{0} \\ \mathbf{0} & W_P \end{bmatrix} P_N$$

where D_N is diagonal and P_N is the even-odd permutation matrix. Though the matrix W_N is full (all elements are non-zero), its factors are sparse, with many zero elements. The matrix W_N is said to be *data sparse*, in the sense that its specification requires many fewer than N^2 numbers. Other examples of data sparse matrices include:

Toeplitz matrices. $A \in \mathbb{C}^{m \times m}$ has constant diagonal terms, e.g., for m = 4

$$\mathbf{A} = \begin{bmatrix} a & b & c & d \\ e & a & b & c \\ f & e & a & b \\ g & f & e & a \end{bmatrix},$$

or in general the elements of $A = [a_{ij}]_{1 \le i,j \le m}$ can be specified in terms of 2m-1 numbers a_{1-n}, \dots, a_{n-1} through $a_{ij} = a_{i-j}$.

Exterior products. Rank-1 updates arising in the singular value or eigenvalue decompositions have the form

$$\mathbf{A} = \mathbf{u}\mathbf{v}^T = [v_1\mathbf{u} \ v_2\mathbf{u} \ \dots \ v_m\mathbf{u}],$$

and the 2m components of u, v are sufficient to specify the matrix A with m^2 components. This can be generalized to any exterior product of matrices $B \in \mathbb{C}^{n \times n}$, $C \in \mathbb{C}^{p \times p}$ through

$$\mathbf{A} = \mathbf{B} \otimes \mathbf{C} = [\ \mathbf{b}_{1} \otimes \mathbf{C} \ \mathbf{b}_{2} \otimes \mathbf{C} \ \dots \ b_{n} \otimes \mathbf{C} \] = \begin{bmatrix} b_{11}\mathbf{C} & b_{12}\mathbf{C} & \dots & b_{1n}\mathbf{C} \\ b_{21}\mathbf{C} & b_{22}\mathbf{C} & \dots & b_{2n}\mathbf{C} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1}\mathbf{C} & b_{n2}\mathbf{C} & \dots & b_{nn}\mathbf{C} \end{bmatrix}.$$

The $m^2 = (np)^2$ components of **A** are specified through only $n^2 + p^2$ components of **B**, **C**.

The relevance to approximation of functions typically arises due basis sets that are solutions to Sturm-Liouville problems. In the case of the Fourier transform $e^{\pm ikt}$ are eigenfunctions of the Sturm-Liouville problem

$$w'' + \lambda w = 0, w = u + iv, u'(0) = u'(\pi) = 0, v(0) = v(\pi) = 0,$$

with eigenvalues $\lambda_n = k^2$. The solution set $\{\varphi_1, \varphi_2, \dots\}$ to a general Sturm-Liouville problem to find $f: [a, b] \to \mathbb{R}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[p(t) \frac{\mathrm{d}f}{\mathrm{d}t} \right] + q(t) f = -\lambda w(t) f,$$

form an orthonormal basis under the scalar product

$$(f,g) = \int_a^b f(t) g(t) w(t) dt,$$

and approximations of the form

$$\Phi_N f(t) = \sum_{k=1}^N c_k \, \varphi_k(t),$$

and Parseval's theorem states that

$$\|\boldsymbol{c}\|_{2}^{2} = \sum_{k=1}^{\infty} c_{k} \bar{c_{k}} = \|f\|_{2}^{2} = (f, f) = \int_{a}^{b} f(t) f(t) w(t) dt,$$

read as an equality between the energy of f and that of c. By analogy to the finite-dimensional case, the Fourier transform is unitary in that it preserves lengths in the $||f|| + (f, f)^{1/2}$ norm with weight function w(t) = 1.

2. Wavelet approximations

The bases $\{\varphi_1, \varphi_2, \dots\}$ arising from Sturm-Liouville problems are single-indexed, giving functions of increasing resolution over the entire definition domain. For example $\sin kx$ resolves ever finer features over $[0, 2\pi]$. When applied to a function with localized features, k must be increased with increased resolution in the entire $[0, 2\pi]$ domain. This leads to uneconomical approximation series $S_N f(t)$ with many terms, as exemplified by the Gibbs phenomenon in approximation of a step function, $f(t) = H(t - \pi/2) - H(t - 3\pi/2)$ for $t \in [0, 2\pi]$, and $f(t + 2\pi) = f(t)$. The approach can be represented as the decomposition of a space of functions by the direct sum

$$F = \Phi_1 \oplus \Phi_2 \oplus \dots,$$

with $\Phi_k = \operatorname{span}(\varphi_k)$, for example

$$L^2 = E_0 \oplus E_1 \oplus E_{-1} \oplus E_2 \oplus E_{-2} \oplus \dots,$$

with $E_k = \text{span}\{e^{ikt}\}\$ for the Fourier series.

Approximation of functions with localized features is more efficiently accomplished by choosing some generating function $\psi(t)$ and then defining a set of functions through translation and scaling, say

$$\psi_{jk}(t) = 2^{-j/2} \psi(2^{-j}t - k).$$

Such systems are known as wavelets, and the simplest example is the step function

$$\psi(t) = \begin{cases} 1 & 0 \le t < 1/2 \\ -1 & 1/2 \le t < 1 \\ 0 & \text{otherwise} \end{cases}$$

with ψ_{jk} having support on the half-open interval $h_{jk} = [k2^{-j}, (k+1)2^{-j})$. The set $\{\psi_{00}, \psi_{01}, \dots\}$ is known as an Haar orthonormal basis for $L^2(\mathbb{R})$ since

$$(\psi_{jk}, \psi_{lm}) = \int_{-\infty}^{\infty} \psi_{jk}(t) \, \psi_{lm}(t) \, \mathrm{d}t = \delta_{jl} \, \delta_{km}.$$

Approximations based upon a wavelet basis

$$f(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} (f, \psi_{jk}) \psi_{jk}(t),$$

allow identification of localized features in f.

The costly evaluation of scalar products (f, ψ_{jk}) in the double summation can be avoided by a reformulation of the expansion as

$$f(t) = \sum_{k} c_{l,k} \varphi_{l}(t) + \sum_{j \leq l} \sum_{k} d_{j,k} \psi_{jk}(t),$$
(1)

with . In addition to the ψ ("mother" wavelet), an auxilliary φ scaling function ("father" wavelet) is defined, for example

$$\varphi(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & \text{otherwise} \end{cases},$$

for the Haar wavelet system.

The above approach is known as a *multiresolution* representation and is based upon a hierarchical decomposition of the space of functions, e.g.,

$$L^2 = V_l \oplus W_l \oplus W_{l-1} \oplus W_{l-2} \oplus \dots$$

with

$$V_i = \operatorname{span} \{ \varphi_{ik} | k \in \mathbb{Z} \}, W_i = \operatorname{span} \{ \psi_{ik} | k \in \mathbb{Z} \}.$$

The hierarchical decomposition is based upon the vector subspace inclusions

$$\{0\} < \cdots < V_1 < V_0 < V_{-1} < V_{-2} < \cdots < L^2(\mathbb{R}),$$

and the relations

$$V_m \oplus W_m = V_{m-1}$$
,

that state that the orthogonal complement of V_m within V_{m-1} is W_m . Analogous to the FFT, a fast wavelet transformation can be defined to compute coefficients of (1).