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LECTURE 17: SPECTRAL APPROXIMATIONS

1. Trigonometric basis

The monomial basis {1,7,7%,...} for the vector space of all polynomials P(R), and its derivatives (Lagrange, Newton,
B—spline) allow the definition of an approximant p € P(R) for real functions f: R - R, e.g., for smooth functions
fe€C>(R). A different approach to approximation in infinite-dimensional vector spaces such as P(R) or C*(R) is
to endow the vector space with a scalar product (f,g) and associated norm || f| = (f, f) 12 The availability of a norm
allows definition of convergence of sequences and series.

DEFINITION. A sequence {f,},en of elements of the normed vector space ¥ = (F, C, +,-) converges to f, f, - f if
Ve >0, AN (¢) such that ||f,—fl <& foralln>N(g).

DEFINITION. The vector space F = (F,C,+,-) with a scalar product (,):F x F — C is a Hilbert space if the limit of all
Cauchy sequences is an element of F.

All Hilbert spaces have orthonormal bases, and of special interest are bases that arise Sturm-Liouville problems of
relevance to the approximation task.

1.1. Fourier series - Fast Fourier transform

The L*([0,22]) space of periodic, square-integrable functions is a Hilbert space (L? is the only Hilbert space among
the L” function spaces), and has a basis

1 . .
{5, cost,sint,...,coskt,sinkt,...

that is orthonormal with respect to the scalar product

(f0== [ fwgmar

An element f e L%([0,277]) can be expressed as the linear combination
a - ]
f(n= 70+AZ1 [axcoskt + by sinkt].

An alternative orthonormal basis is formed by the exponentials

{et™} neN,
with respect to the scalar product
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has coeflicients ¢; determined by projection N
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that can be approximated by the Darboux sum on the partition ;=2 /N
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with

[2:71’
W =exp T N
denoting the N root of unity. The Fourier coefficients are obtained through a linear mapping
c=Wf,



with ¢,f € C, and W € CV*V with elements
W=[07]1¢jren -

The above discrete Fourier transform can be seen as a change of basis from the basis I in which the coefficients of f
are ¢ to the basis W in which the coeflicients are f.

1.2. Fast Fourier transform

Carrying out the matrix vector product W f directly would require © (N?) operations, but the cyclic structure of the
W matrix arising from the exponentiation of w can be exploited to reduce the computational effort. Assume N =2P
and separate even and odd indexed components of f

N P P P

=Y [oy =Y [f10y 4 fo =) pof+of) piaeit
J=1 j=1 j=1 j=1

Through the above, the © (N?) matrix-vector product is reduced to two smaller matrix-vector products, each requiring

©(N?/4) operations. For N =29, recursion of the above procedure reduces the overall operation count to @ (gN ), or

in general for N composed of a small numer of prime factors, © (NlogN). The overall algorithm is known as the fast

Fourier transform or FFT.

1.3. Data-sparse matrices from Sturm-Liouville problems
One step of the FFT can be understood as a special matrix factorization

I Dy HWPO Py

WN:[I Dy|l0 W

where Dy is diagonal and Py is the even-odd permutation matrix. Though the matrix Wy is full (all elements are non-
zero), its factors are sparse, with many zero elements. The matrix Wy is said to be dara sparse, in the sense that its
specification requires many fewer than N2 numbers. Other examples of data sparse matrices include:

Toeplitz matrices. A € C"*" has constant diagonal terms, e.g., for m=4

abcd
eabc
A= feaby)
g§f ea
or in general the elements of A = [a;;]1<; j<n can be specified in terms of 2m — 1 numbers a1y, ...,a,-1 through

(1,‘/' =da;- i
Exterior products. Rank-1 updates arising in the singular value or eigenvalue decompositions have the form
A=wvi=[viu vou ... vyul,

and the 2m components of u, v are suficient to specify the matrix A with m> components. This can be general-
ized to any exterior product of matrices B € C"™", C € CP*? through

biC buC ... bi,C
A=B®C=[b,®C b,&C ... b,oC|=| € bnC - 02l

bnlC anC .- brmC
The m?= (np)* components of A are specified through only n* + p?> components of B,C.

The relevance to approximation of functions typically arises due basis sets that are solutions to Sturm-Liouville prob-

lems. In the case of the Fourier transform e*™* are eigenfunctions of the Sturm-Liouville problem

w'+ Aw=0,w=u+iv,u’ (0)=u’(7)=0,v(0)=v(m) =0,
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with eigenvalues 4, = k2. The solution set {@1, @2, -..} to a general Sturm-Liouville problem to find f:[a,b] > R

Spo|+anr=-awor.

form an orthonormal basis under the scalar product

b
()= Fwgmwndr,
and approximations of the form

N
Snf(1)=) ceprlt),
k=1

and Parseval's theorem states that
v - 2 b
lel3=Y ceci=IfIB=(ff)= [ F f@ywindr
k=1

read as an equality between the energy of f and that of ¢. By analogy to the finite-dimensional case, the Fourier
transform is unitary in that it preserves lengths in the ||f]| + (f, f) 12 norm with weight function w(z) = 1.

2. Wavelet approximations

The bases {@1, 2, ...} arising from Sturm-Liouville problems are single-indexed, giving functions of increasing res-
olution over the entire definition domain. For example sin kx resolves ever finer features over [0,2sr]. When applied
to a function with localized features, kK must be increased with increased resolution in the entire [0, 27 ] domain. This
leads to uneconomical approximation series Syf(¢) with many terms, as exemplified by the Gibbs phenomenon in
approximation of a step function, f(r) =H(t—m /2)—H(t—3mx/2) for t€[0,2s7], and f(z+2s) = f(¢). The approach
can be represented as the decomposition of a space of functions by the direct sum
F=0,0%,9...,
with &, = span(¢y), for example
L2=E0®E1 SE SE,SEL®...,

with Ej = span{e’*'} for the Fourier series.

Approximation of functions with localized features is more efficiently accomplished by choosing some generating
function y (¢) and then defining a set of functions through translation and scaling, say

wi(t) =27y (27 t-k).
Such systems are known as wavelets, and the simplest example is the step function

1 0<r<1/2
w)={-11/2<t<1,
0 otherwise

with yj having support on the half-open interval hj = [k27, (k+1)27). The set {yoo, Woi...} is known as an Haar
orthonormal basis for L*(R) since

(l//jk’ Wim) = f_w 'I/jk(t) l//lm(t) dr= 6]1 S

Approximations based upon a wavelet basis

FO=>"3" oy wi(),

JEZ keZ

allow identification of localized features in f.



The costly evaluation of scalar products (f, wj) in the double summation can be avoided by a reformulation of the
expansion as

FO=Y oo+ diwpln), (1)
k

j<i k

with . In addition to the y (“mother” wavelet), an auxilliary ¢ scaling function (“father” wavelet) is defined, for
example

1 0<t<1
(p(t)={

0 otherwise”’
for the Haar wavelet system.

The above approach is known as a multiresolution representation and is based upon a hierarchical decomposition of
the space of functions, e.g.,

L’=VioW,oW_oW.o...
with
V;=span{gl k€ Z}, W;=span{yj |k € Z}.
The hierarchical decomposition is based upon the vector subspace inclusions
(0}< - < Vi< Vo< Vo < Vo< <L*(R),
and the relations
Vin® Wi = Vip-1,

that state that the orthogonal complement of V,, within V,,_; is W,,. Analogous to the FFT, a fast wavelet transforma-
tion can be defined to compute coefficients of (1).
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