
ADDITIVE NONLINEAR OPERATOR APPROXIMATION

The linear algebra concepts arising from study of linear mappings between vector spaces 𝒇 : U → V , 𝒇 (𝛼𝒖+𝛽𝒗)=
𝛼f (𝒖)+𝛽 𝒇 (𝒗), are widely applicable to nonlinear functions also. The study of nonlinear approximation starts with the
simplest case of approximation of a function with scalar values and arguments, f :ℝ→ℝ through additive corrections.

1. Function spaces
An immediate application of the linear algebra framework is to construct vector spaces of real functions ℱ=(F,+, ⋅),
with F ={ f | f :ℝ→ℝ}, and the addition and scaling operations induced from ℝ,

(𝛼 f +𝛽g)(t)=𝛼 f (t)+g(t), f ,g∈F,𝛼,𝛽∈ℝ.

Comparing with the real vector space (ℝm,+, ⋅) in which the analogous operation is 𝛼𝒖+𝛽𝒗,𝒖, 𝒗∈ℝm,𝛼,𝛽∈ℝ, or
componentwise

(𝛼𝒖+𝛽𝒗)i=𝛼ui+𝛽vi, i=1,2, . . . ,m,

the key difference that arises is the dimension of the set of vectors. Finite-dimensional vectors within ℝm can be
regarded as functions defined on a finite set 𝒖⇔u: {1, 2, . . . ,m}→ℝ, with u(i)=ui. The elements of F are however
functions defined on ℝ, a set with cardinality 𝔠=2ℵ0, with ℵ0 the cardinality of the naturals ℕ. This leads to a review
of the concept of a basis for this infinite-dimensional case.

1.1. Infinite dimensional basis set
In the finite dimensional case 𝑩∈ℝm×m constituted a basis if any vector 𝒚∈ℝm could be expressed uniquely as a linear
combination of the column vectors of

∀𝒚∈ℝm, ∃!𝒄∈ℝm such that𝒚=𝑩𝒄=c1𝒃1+ ⋅ ⋅ ⋅ +cm𝒃m .

While the above finite sum is well defined, there is no consistent definition of an infinite sum of vectors. As a simple
example, in the vector space of real numbers ℛ1=(ℝ,+, ⋅), any finite sum of reals is well defined, for instance

Sn=�
k=0

n

(−1)k ={{{{{{{{{{{{{{{{{{{{ 1 if n even
0 if nodd

but the limit Sn→∞ cannot be determined. This leads to the necessity of seeking finite-dimensional linear combinations
to span a vector space 𝒱=(V ,S, +, ⋅). First, define linear independence of an infinite (possibly uncountable) set of
vectors ℬ={v𝛾 |𝛾∈Γ,v𝛾∈V}, where Γ is some indexing set.

DEFINITION. The vector set ℬ={v𝛾 |𝛾∈Γ,v𝛾∈V}, is linearly independent if the only n∈ℕ scalars, x1,...,xn∈S, that
satisfy

x1v𝛾1+ . . . +xnv𝛾n =0,𝛾i∈Γ (1)
are x1=0, x2=0,...,xn=0.

The important aspect of the above definition is that all finite vector subsets are linearly independent. The same
approach is applied in the definition of a spanning set.

DEFINITION. Vectors within the set ℬ={v𝛾 |𝛾∈Γ,v𝛾∈V}, span V, stated as V =span(ℬ), if for any u∈V there exist
n∈ℕ scalars, x1, . . . , xn∈S, such that

x1v𝛾1+ . . . +xn v𝛾n =u,𝛾i∈Γ. (2)

This now allows a generally-applicable definition of basis and dimension.

DEFINITION. The vector set ℬ={v𝛾 |𝛾∈Γ, v𝛾∈V} is a basis for vector space 𝒱=(V ,S,+, ⋅) if

1. ℬ is linearly independent;

2. span(ℬ)=V.

DEFINITION. The dimension of a vector space 𝒱=(V ,S,+, ⋅) is the cardinality of a basis set ℬ, dim(𝒱)=|ℬ|.
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The use of finite sums to define linear independence and bases is not overly restrictive since it can be proven that every
vector space has a basis. The proof of this theorem is based on Zorn's lemma from set theory, and asserts exsitence of
a basis, but no constructive procedure. The difficulty in practical construction of bases for infinite dimensional vector
spaces is ascertained through basic examples.

Example. ℛ∞. As a generalization of ℛm=(ℝm,ℝ,+, ⋅), consider the vector space of real sequences {xn}n∈ℕ rep-
resented as a vectors with a countably infinite number of components 𝒙=[ x1 x2 x3 . . . ]T . Linear combinations are
defined by

𝛼𝒙+𝛽𝒚=[ 𝛼x1+𝛽y1 𝛼x2+𝛽y2 𝛼x3+𝛽y3 . . . ]T .

Let 𝒆i denote the vector of all zeros except the i th position. In ℝm, the identity matrix 𝑰 = [ 𝒆1 . . . 𝒆m ] was a basis,
but this does not generalize to ℝ∞; for example the vector 𝒗 = [ 1 1 1 . . . ]T cannot be obtained by finite linear
combination of the 𝒆i vectors. In fact, there is no countable set of vectors that spans ℝ∞.

Example. P(ℝ). The vector space of polynomials P(ℝ)={p| p(t)=cn tn+cn−1tn−1+ ⋅⋅⋅ +c0,n∈ℕ,ci∈ℝ, i=0,1,. .. ,
N} on the real line has an easily constructed basis, namely the set of the monomials

ℬ(t)={tn |n∈ℕ},

an infinite set with the cardinality as the naturals |ℬ|= |ℕ|=ℵ0.

1.2. Alternatives to the concept of a basis
The difficulty in ascribing significance to an infinite sum of vectors ∑i=1

∞ 𝒗i can be resolved by endowing the vector
space with additional structure, in particular a way to define convergence of the partial sums

𝒔n=�
i=1

n

𝒗i

to a limit limn→∞ 𝒔n=𝒗.

Fourier series. One approach is the introduction of an inner product (𝒖, 𝒗) and the associated norm ‖𝒖‖= (𝒖, 𝒗)1/2.
A considerable advantage of this approach is that it not only allows infinite linear combinations, but also definition of
orthonormal spanning sets. An example is the vector space of continuous functions defined on [−𝜋,𝜋] with the inner
product

( f ,g)= 1
𝜋�

−𝜋

𝜋
f (t)g(t)dt,

and norm ‖ f ‖=( f , f )1/2. An orthonormal spanning set for C[−𝜋,𝜋] is given by

�1
2�� {cos(nx)|n∈ℕ+}� {sin(nx)|n∈ℕ+}.

Vector spaces with an inner product are known as Hilbert spaces.

Taylor series. Convergence of infinite sums can be determined through a norm, without the need of an inner product.
An example is the space of real-analytic functions with the inf-norm

‖ f ‖∞=sup
x

| f (t)|,

for which a spanning set is given by the monomials {1, t, t2, . . . }, and the infinite exapnsion

f (t)=�
k=0

∞

ak (t −c)k

is convergent, with coefficients given by the Taylor series

f (t)= f (c)+ f ′(c)
1! (t −c)+ ⋅ ⋅ ⋅,ak =

f (k)(c)
k! .

Note that orthogonality of the spanning set cannot be established, absent an inner product.



1.3. Common function spaces
Several function spaces find widespread application in scientific computation. An overview is provided in Table 1.

B(ℝ) bounded functions
C(ℝ) continuous functions C r(ℝ) with continuous derivatives up to r
Cc(ℝ) with compact support Cc

r(ℝ) and compact support
C0(ℝ) that vanish at infinity C∞(ℝ) smooth functions
Lp(ℝ) with finite p-norm W k,p(ℝ) Sobolev space, with norm

‖ f ‖p=(∫−∞
∞ | f (t)|2dt)1/p ‖ f ‖k,p=�∑i=0

k ‖ f (i)‖p
p�1/p

Table 1. Common vector spaces of functions

2. Interpolation
The interpolation problem seeks the representation of a function f known only through a sample data set 𝒟={(xi,
yi= f (xi))|i=0,.. . ,m}⊂ℝ×ℝ, by an approximant p(t), obtained through combination of elements from some family
of computable functions, ℬ={b0, . . . ,bn|bk:ℝ→ℝ}. The approximant p(t) is an interpolant of 𝒟 if

p(xi)= f (xi)=yi, i=0, . . . ,m,

or p(t) passes through the known poles (xi,yi) of the function f . The objective is to use p(t) thus determined to approx-
imate the function f at other points. Assuming x0<x1< ⋅ ⋅ ⋅ < xm, evaluation of p(t) at t∈(x0, xm) is an interpolation,
while evaluation at t< x0 or t> xm, is an extrapolation. The basic problems arising in interpolation are:

• choice of the family from which to build the approximant p(t);

• choice of the combination technique;

• estimation of the error of the approximation given some knowledge of f .

∘ Algorithms for interpolation of real functions can readily be extended to more complicated objects, e.g., interpo-
lation of matrix representations of operators. Implementation is aided by programming language polymorphism
as in Julia.

2.1. Additive corrections
As to be expected, a widely used combination technique is linear combination,

p(t)=c0 b0(t)+c1b1(t)+ ⋅ ⋅ ⋅ +cn bn(t).

The idea is to capture the nonlinearity of f (t) through the functions b0(t),. . . ,bn(t), while maintaining the framework
of linear combinations. Sampling of bj(t) at the poles xi of a data set 𝒟, constructs the vectors

𝒃j =bj(𝒙)=� bj(x0) . . . bj(xm) �T ∈ℝm+1,

which gathered together into a matrix leads to the formulation of the interpolation problem as

𝑩𝒄=𝒚=𝑰 𝒚,𝑩∈ℝ(m+1)×(n+1). (3)

Before choosing some specific function set ℬ, some general observations are useful.

1. The function values yi = f (xi), i =0, . . . ,m, are directly incorporated into the interpolation problem (3). Any
estimate of the error at other points requires additional information on f . Such information can be furnished
by bounds on the function values, or knowledge of its derivatives for example.

2. A solution to (3) exists if 𝒚∈C(𝑩). Economical interpolations would use n<m functions in the set ℬ, hope-
fully n≪m.

2.2. Polynomial interpolation
Monomial form of interpolating polynomial. As noted above, the vector space of polynomials P(ℝ) has an easily
constructed basis, that of the monomials mj(t)= t j which shall be organized as a row vector of functions

ℳ(t)=� 1 t t2 . . . �.
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With ℳn+1(t) denoting the first n+1 monomials
ℳn+1(t)=[ 1 t . . . tn ],

a polynomial of degree n is the linear combination

p(t)=ℳn+1(t)𝒂=[ 1 t . . . tn ]
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ a0

a1
⋅⋅⋅
an ]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]
]
]
=a0+a1t+ ⋅ ⋅ ⋅ +antn.

Let 𝑴∈ℝ(m+1)×(n+1) denote the matrix obtained from evaluation of the first n+1 monomials at the sample points
𝒙=[ x0 x1 . . . xm ]T ,

𝑴=ℳn+1(𝒙).
The above notation conveys that a finite-dimensional matrix 𝑴∈ℝ(m+1)×(n+1) is obtained from evaluation of the
row vector of the monomial basis function ℳ(x):ℝ→ℝn+1, at the column vector of sample points 𝒙∈ℝm+1. The
interpolation condition p(𝒙)=𝒚 leads to the linear system

𝑴𝒂=𝒚. (4)

For a solution to exist for arbitrary 𝒚, 𝑴 must be of full rank, hence m=n, in which case 𝑴 becomes the Vandermonde
matrix

𝑴=
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[
[
[ 1 x0 . . . x0

n

1 x1 ⋅ ⋅ ⋅ x1
n

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
1 xn . . . xn

n ]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]
]
]
,

known to be ill-conditioned. Since 𝑴 is square and of full rank, (4) has a unique solution.
Finding the polynomial coefficients by solving the above linear system requires 𝒪(n3/3) operations. Evaluation of
the monomial form is economically accomplished in 𝒪(n) operations through Horner's scheme

p(t)=a0+(a1+ ⋅ ⋅ ⋅ +(an−2+(an−1+an t) ⋅ t) ⋅ t) ⋅ t. (5)
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Figure 1. Monomial basis over interval [−𝜋,𝜋]

∘ Algorithm (Horner's scheme)
Input: t∈ℝ,𝒂∈ℝn+1

Output: p(t)=a0+a1 t+ ⋅ ⋅ ⋅ +an tn

p=an

for k =n−1 downto 0



p=ak + p ⋅ t
end
return p

Lagrange form of interpolating polynomial. It is possible to reduce the operation count to find the interpolating
polynomial by carrying out an LU decomposition of the monomial matrix 𝑴,

ℳn+1(𝒙)=𝑴=𝑳𝑼.

Let ℒn+1(t)=[ ℓ0(t) ℓ1(t) . . . ℓn(t) ] denote another set of basis functions that evaluates to the identity matrix at the
sample points 𝒙, such that ℒn+1(𝒙)=𝑰,

ℳn+1(𝒙)=𝑴=𝑳𝑼=𝑰𝑳𝑼=ℒn+1(𝒙)𝑳𝑼.
For arbitrary t, the relationship

ℳn+1(t)=ℒn+1(t)𝑳𝑼,

describes a linear mapping between the monomials ℳn+1(t) and the ℒn+1(t) functions, a mapping which is invertible
since 𝑴=𝑳𝑼 is of full rank

ℒn+1(t)=ℳn+1(t)𝑼−1𝑳−1.
Note that organization of bases as row vectors of functions leads to linear mappings expressed through right factors.
∘ The LU factorization of the Vandermonde matrix can be determined analytically, as exemplified for n=3 by

((((((((((((((((
((((((((((((((((
(((((((((((

(

( 1 x0 x0
2 x0

3

1 x1 x1
2 x1

3

1 x2 x2
2 x2

3

1 x3 x3
2 x3

3 ))))))))))))))))
))))))))))))))))
)))))))))))

)

)
=

(((((((((((((((((
(((((((((((((((((
((((((((((((((((
((((((((

(

( 1 0 0 0
1 1 0 0
1 x0−x2

x0−x1
1 0

1 x0−x3
x0−x1

(x0−x3)(x3−x1)
(x0−x2)(x2−x1)

1 )))))))))))))))))
)))))))))))))))))
))))))))))))))))
))))))))

)

)

(((((((((((((((((
(((((((((((((((((
(((((
(
( 1 x0 x0

2 x0
3

0 x1−x0 x1
2−x0

2 x1
3−x0

3

0 0 (x0−x2)(x1−x2) (x0−x2)(x1−x2)(x0+x1+x2)
0 0 0 −((x0−x3)(x3−x1)(x3−x2)) )))))))))))))))))

)))))))))))))))))
)))))
)
)

∘ Both factors can be inverted analytically, e.g., for n=3,

𝑳−1=

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((

(

( 1 0 0 0
−1 1 0 0

x1−x2
x0−x1

x2−x0
x0−x1

1 0
(x1−x3)(x3−x2)
(x0−x1)(x0−x2)

(x0−x3)(x2−x3)
(x0−x1)(x1−x2)

(x0−x3) (x1−x3)
(x0−x2) (x2−x1)

1 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))

)

)
,

𝑼−1=

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

( 1 x0
x0−x1

− x0x1
(x0−x2) (x2−x1)

x0 x1x2
(x0−x3) (x3−x1) (x3−x2)

0 1
x1−x0

x0+x1
(x0−x2)(x2−x1)

− x1x2+x0 (x1+x2)
(x0−x3)(x3−x1)(x3−x2)

0 0 1
(x0−x2)(x1−x2)

x0+x1+x2
(x0−x3) (x3−x1) (x3−x2)

0 0 0 − 1
(x0−x3)(x3−x1)(x3−x2) ))))))))))))))

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))

)

)
.

∘ The functions that result for n=3

� (t −x1)(t −x2)(t −x3)
(x0−x1)(x0−x2)(x0−x3)

, (t −x0) (t −x2)(t −x3)
(x1−x0)(x1−x2) (x1−x3)

, (t −x0) (t −x1)(t −x3)
(x2−x0)(x2−x1) (x2−x3)

, (t −x0) (t −x1) (t −x2)
(x3−x0) (x3−x1) (x3−x2)

�,

can be generalized as

ℓi(t)=�
j=0

n ′ t −xj
xi−xj

,

known as the Lagrange basis set, where the prime on the product symbol skips the index j = i. Note that each
member of the basis is a polynomial of degree n.

By construction, through the condition ℒn+1(𝒙)=𝑰, a Lagrange basis function evaluated at a sample point is

ℓi(xj)=𝛿ij ={{{{{{{{{{{{{{{{{{{{ 1 i= j
0 i≠ j .
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A polynomial of degree n is expressed as a linear combinations of the Lagrange basis functions by

p(t)=ℒn+1(t)𝒄=[ ℓ0(t) ℓ1(t) . . . ℓn(t) ]
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ c0

c1
⋅⋅⋅
cn ]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]
]
]
=c0ℓ0(t)+c1ℓ1(t)+ . . .cnℓn(t).

The interpolant of data {(xi,yi= f (xi)), i=0,1, . . . ,n} is determined through the conditions

p(𝒙)=𝒚=ℒn+1(𝒙)𝒄=𝑰𝒄=𝒄⇒𝒄=𝒚,

i.e., the linear combination coefficients are simply the sampled function values ci=yi= f (xi).

p(t)=�
i=0

n

yiℓi(t)=�
i=0

n

yi�
j=0

n ′ t −xj
xi−xj

. (7)

Determining the linear combination coefficients may be without cost, but evaluation of the Lagrange form (7) of the
interpolating polynomial requires 𝒪(n2) operations, significantly more costly than the 𝒪(n) operations required by
Horner's scheme (5)

∘ Algorithm (Lagrange evaluation)

Input: 𝒙, 𝒚∈ℝn+1, t∈ℝ
Output: p(t)=∑i=0

n yi∏j=0
n ′ (t −xj)/(xi −xj)

p=0
for i=0 to n

w=1
for j=0 to n

if j≠ i then w=w (t −xj)/(xi −xj)
end
p= p+w ⋅yi

end
return p

∘
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Figure 2. Lagrange basis for n=6 for sin(x) over interval [−𝜋,𝜋]



A reformulation of the Lagrange basis can however reduce the operation count. Let ℓ(t)=∏k=0
n (t −xk), and rewrite

ℓi(t) as

ℓi(t)=�
j=0

n ′ t −xj
xi −xj

= ℓ(t) wi
t −xi

,

with the weights

wi=�
j=0

n ′ 1
xi−xj

,

depending only on the function sample arguments xi, but not on the function values yi. The interpolating polynomial
is now

p(t)=�
i=0

n

yi ℓi(t)= ℓ(t)�
i=0

n

yi
wi

t −xi
.

Interpolation of the function g(t)=1 would give

1=ℓ(t)�
i=0

n wi
t −xi

,
and taking the ratio yields

p(t)=
∑i=0

n yi
wi

t −xi

∑i=0
n wi

t −xi

, (9)

known as the barycentric Lagrange formula (by analogy to computation of a center of mass). Evaluation of the weights
wi costs 𝒪(n2) operations, but can be done once for any set of xi. The evaluation of p(t) now becomes an 𝒪(2n)
process, comparable in cost to Horner's scheme.

∘ Algorithm (Barycentric Lagrange evaluation)
Input: 𝒙, 𝒚∈ℝn+1, t∈ℝ
Output: p(t)=�∑i=0

n yi
wi

t −xi
�/�∑i=0

n wi
t −xi

�
for i=0 to n

wi=1
for j=0 to n

if j≠ i wi=wi/(xi−xj)
end

end
q= r=0
for i=0 to n

s=wi/(t −xi); q=q+yi s; r= r+ s
end
p=q/r
return p

Newton form of interpolating polynomial. Inverting only one factor of the ℳn+1(t)=ℒn+1(t)𝑳𝑼 mapping yields
yet another basis set 𝒮(t)=[ N0(t) N1(t) N2(t) . . . ]

ℳn+1(t)𝑼−1=ℒn+1(t)𝑳=𝒮n+1(t) .
∘ The first four basis polynomials are

�1, t −x0
x1−x0

, (t −x0)(t −x1)
(x2−x0)(x2−x1)

, (t −x0)(t −x1)(t −x2)
(x3−x0)(x3−x1)(x3−x2)

�,

with N0(t)=1, and in general

Nk(t)=�
j=0

k−1 t −xj
xk −xj

,
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for k >0.
Computation of the scaling factors wk =1/∏j=0

k−1 (xk −xj) would require 𝒪(n2/2) operations, but can be avoided by
redefining the basis set as 𝒩(t)=[ n0(t) n1(t) n2(t) . . . ], with n0(t)=1, and

nk(t)=�
j=0

k−1

(t −xj),

known as the Newton basis. As usual, the coefficients 𝒅∈ℝn+1 of the linear combination of Newton polynomials

p(t)=𝒩n+1(t)𝒄=[ n0(t) n1(t) . . . nn(t) ]
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ d0

d1
⋅⋅⋅
dn ]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]
]
]
=d0n0(t)+d1n1(t)+ . . . +dnnn(t),

are determined from the interpolation conditions p(𝒙)=𝒚. The resulting linear system is of triangular form,

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[

[

[ 1 0 0 ⋅ ⋅ ⋅ 0
1 x1−x0 0 ⋅ ⋅ ⋅ 0
1 x2−x0 (x2−x0)(x2−x1) ⋅ ⋅ ⋅ 0
1 x3−x0 (x3−x0)(x3−x1) ⋅ ⋅ ⋅ 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

1 xn −x0 (xn −x0)(xn −x1) ⋅ ⋅ ⋅ �
j=0

n−1

(xn −xj) ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]

]

]

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ d0
d1
d2
⋅⋅⋅
dn ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]

]

]
=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ y0
y1
y2
⋅⋅⋅
yn ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]

]

]

and readily solved by forward substitution.
∘ The first few coefficients are

d0=y0, d1=
y1−d0
x1−x0

= y1−y0
x1−x0

,

d2=
y2− (x2−x0)d1−d0
(x2−x0)(x2−x1)

=
y2− (x2−x0)

y1−y0
x1−x0

−y0

(x2−x0)(x2−x1)
=

y2−y1
x2−x1

− y1−y0
x1−x0

x2−x0
.

The forward substitution is efficiently expressed through the definition of divided differences

[yi]=yi, [yi+1, yi]=
[yi+1]− [yi]

xi+1−xi
= yi+1−yi

xi+1−xi
, [yi+2,yi+1,yi]=

[yi+2,yi+1]− [yi+1, yi]
xi+2−xi

,

or in general, the k th divided difference

[yi+k,yi+k−1, . . . ,yi]=
[yi+k,yi+k−1, . . . ,yi+1]− [yi+k−1,yi+k−1, . . . ,yi]

xi+k −xi
,

given in terms of the (k −1) divided differences. The forward substitution computations are conveniently organized
in a table, useful both for hand computation and also for code implementation.

i xi [yi] [yi, yi−1] [yi, yi−1, yi−2]
0 x0 y0 − −
1 x1 y1

y1−y0
x1−x0

−

2 x2 y2
y2−y1
x2−x1

[y2,y1]− [y1, y0]
x2−x0

⋅⋅ ⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
n xn yn

yn −yn−1
xn −xn−1

[yn,yn−1]− [yn−1,yn−2]
xn −xn−2

. . . [yn, . . . , y1]− [yn−1, . . . , y0]
xn −x0

Table 2. Table of divided differences. The Newton basis coefficients 𝒅 are the diagonal terms.

∘ Algorithm (Forward substitution, Newton coefficients)

Input: 𝒙, 𝒚∈ℝn+1



Output: 𝒅∈ℝn+1

𝒅=𝒚
for i=1 to n

for j=n downto i
dj =(dj −dj−1)/(xj −xj−i)

end
end

The above algorithm requires only 𝒪(n) operations, and the Newton form of the interpolating polynomial

p(t)=[y0] ⋅1+[y1,y0] ⋅ (t −x0)+[y1, y0] ⋅ (t −x0)(t −x1)+ ⋅ ⋅ ⋅ ++[yn, yn−1, . . . , y0] ⋅ (t −x0) ⋅ (t −x1) ⋅ . . . ⋅ (t −xn−1),

can also be evaluated in 𝒪(n) operations

∘ Algorithm (Newton polynomial evaluation)

Input: 𝒙, 𝒅∈ℝn+1, t∈ℝ
Output: p(t)=d0+d1 t+ ⋅ ⋅ ⋅ +dn tn

p=d0; r=1
for k =1 to n

r= r ⋅ (t −xk−1)
p= p+dk ⋅ r

end
return p

∘

−3 −2 −1 0 1 2 3
t

0

200

400

600

800

l(i
,t)

Newton basis

Figure 3. Newton basis for n=6 for sin(x) over interval [−𝜋,𝜋]
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