
LECTURE 18: BEST APPROXIMANT

1. Best approximants

Interpolation of data�={(x

i

,y

i

= f (x

i

)), i=0,...,n} by an approximant p(t) corresponds to the minimization problem

min

p

� f � p�,

in the discrete one-norm at the sample points x

i

� f �= �� �

1

=y

i=0

n

| f (x

i

)| .

Di�erent approximants are obtained upon changing the norm.

THEOREM (EXISTENCE OF BEST APPROXIMANT. For any element f �F in a normed vector space1=(F,S,+, Å), there

exists a best approximant g�G within a �nite dimensional subspace G�F that is a solution of

min

g�G

� f �g� .

The argument underlying the above theorem is based upon constructing the closed and bounded subset of G

K={g�G | �g� f �} �0� f �= � f �}�G.

Since G is �nite dimensional, K is compact, and the continuous mapping g� �g� f � attains is extrema.

The two main classes of approximants g of real functions f : [a,b]�� that arise are:

Approximants based upon sampling. The vectors � = f (�),�=g(�) are constructed at sample points ���

m

and

the best approximant solves the problem

min

g�G

�� ���.

Note that the minimization is carried out over the members of the subset G, not over the vectors �. The norm

can include information on derivatives as in the norm

� f �

H

= �� �

1

+ ��

2

�

1

,

arising in Hermite interpolation.

Approximants over the function domain. The norm is now expressed through an integral such as the p-norms

� f �

p

=
Ç
5

a

b

| f (t)|

p

dt
È

1/p

.

In general, the best approximant in a normed space is not unique. However, the best approximant is unique in a Hilbert

space, and is further characterized by orthogonality of the residual to the approximation subspace.

THEOREM (BEST APPROXIMANT IN HILBERT SPACE). For any element f �F in a Hilbert space1=(F,S,+, Å), there

exists a unique approximant g�G within a �nite dimensional subspace G�F that is a solution of

min

g�G

� f �g�,

and the residual f �g is orthogonal to G, �h�G

( f �g,h)=0.

Note that orthogonality of the residual ( f �g,h)=0 implies ( f ,h)=(g,h) or that the best approximant is the projection

of f onto G.

2. Two-norm approximants in Hilbert spaces

For Hilbert spaces with a norm is induced by the scalar product

� f �=( f , f )

1/2

,
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�nding the best approximant reduces to a problem within �

m

(or �

m

). Introduce a basis,={b

1

,b

2

, . . . } for1 such

that any f �F has an expansion

f (t)=y

j=1

�

f

j

b

j

(t), f

j

=( f ,b

j

)

Since G is �nite dimensional, say n=dim(G), an approximant has expansion

g(t)=y

j=1

n

g

j

b

s( j)

(t).

Note that the approximation may lie in an arbitrary �nite-dimensional subspace of1. Choosing the appropriate subset

through the function s:��� is an interesting problem in itself, leading to the goal of selecting those basis functions

that capture the largest components of f , i.e., the solution of

min

���

n

y

j=1

n

|( f ,b

s( j)

)| .

Approximate solutions of the basis component selection are obtained by processes such as greedy approximation or

clustering algorithms. The approach typically adopted is to exploit the Bessel inequality

y

i=1

n

f

s(i)

2

} � f �

2

,

and select

s(1)=argmax

i�S

f

i

2

,

eliminate s(1) from S, and search again. The k

th

-step is

s(k)=argmax

i�S

f

i

2

,

with S

k

=S� {s(1), . . . , s(k�1)}.

Assuming s( j)= j, the orthogonality relation f �g¥G leads to a linear system

( f �g,b

i

)=0Ò

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

j=1

n

g

j

b

j

,b

i

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=y

j=1

n

(b

i

,b

j

)g

j

=( f ,b

i

)Òi�= � .

If the basis is orthonormal, then i= p, and the best approximant is simply given by the projection of f onto the basis

elements. Note that the scalar product need not be the Euclidean discrete or continuous versions

( f ,g)=y

i=1

n

f

i

g

i

, ( f ,g)=5

a

b

f (t)g(t)dt.

A weighting function may be present as in

( f ,g)= �

T

~�, ( f ,g)=5

a

b

f (t)g(t)w(t)dt,

discrete and continuous versions, respectively. In essense the appropriate measure �(t) for some speci�c problem

d�(t)=w(t)d t,

arises and might not be the Euclidean measure w(t)=1.

3. Inf-norm approximants

In the vector space of continuous functions de�ned on a topological space X (e.g., a closed and bounded set in�

n

), a

norm can be de�ned by

� f �=max

x�X

| f (x)|,



and the best approximant is found by solving the problem

inf

g�G

� f �g�= inf

g�G

max

x�X

| f (x)�g(x)|.

The fact that g is the best approximant of f can be restated as 0 being the approximant of f �g since

� f �g�0�} � f � (g+h)�.

A key role is played by the points where f (x)=g(x) leading to the de�nition of a critical set as

crit( f )=µ( f )={x�X: | f (x)|= � f �} .

When G=P

n�1

, the space of polynomials of degree at most n � 1, with dimP

n�1

= n, the best approximant can be

charaterized by the number of sign changes of f (x)�g(x).

THEOREM (CHEBYSHEV ALTERNATION). The polynomial p�P

n�1

is the best approximant of f : [a,b]�� in the inf-

norm

� f � p�

�

= max

a}x}b

| f (x)� p(x)|

if and only if there exist n+1 points a}x

0

<x

1

< Å Å Å<x

n

}b such that

f (x

i

)� p(x

i

)= s Å (�1)

i

� f � p�

�

,

where |s|=1.

Recall that choosing x

i

=cos[(2i�1)�/(2n)], the roots of the T

n

(�)=cos(n�) Chebyshev polynomial (with x=cos�,

a=�1, b=1), leads to the optimal error bound in polynomial interpolation

| f (t)� p(t)|}

� f

(n+1)

�

�

(n+1)!2

n

.

The error bound came about from consideration of the alternation of signs of p(x

j

) � q(x

j

) at the extrema of the

Chebyshev polynomial T

n

, x

i

= cos(i�/n), i = 0, 1, . . . n, with p, q monic polynomials. The Cebyshev alternation

theorem generalizes this observation and allows the formulation of a general approach to �nding the best inf-norm

approximant known as the Remez algorithm. The idea is that rather than seeking to satisfy the interpolation conditions

t�=�

in the monomial basis

t=3

n�1

(x)= �

Ï � . . . �

n�1

���

n×n

,

attempt to �nd n alternating-sign extrema points by considering the basis set

y=�

n

(�)=�

Ï � . . . �

n�1

±Ï���

(n+1)×(n+1)

with ±Ï=[
+1 �1 +1 . . .

].

Algorithm (Remez)

1. Initialize ���

n+1

to Chebyshev maxima on interval [a,b]

2. Solve y�= f (�)�(�), �

T

=�

�

T

c

n+1

�, ���

n

3. Find the extrema � of p(t)� f (t) with p(t)=a

0

+a

1

t+ Å Å Å+a

n�1

t

n�1

4. If p(y

i

)� f (y

i

) are approximately equal in absolute value and of opposite signs, return �

5. Otherwise set �=�, repeat
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