1. Interpolation error

As mentioned, a polynomial interpolant of $f: \mathbb{R} \rightarrow \mathbb{R}$ already incorporates the function values $y_{i}=f\left(x_{i}\right), i=0, \ldots, n$, so additional information on f is required to estimate the error

$$
e(t)=f(t)-p(t)
$$

when t is not one of the sample points. One approach is to assume that f is smooth, $f \in C^{\infty}(\mathbb{R})$, in which case the error is given by

$$
\begin{equation*}
f(t)-p(t)=\frac{f^{(n+1)}\left(\xi_{t}\right)}{(n+1)!} \prod_{i=0}^{n}\left(t-x_{i}\right)=\frac{f^{(n+1)}\left(\xi_{t}\right)}{(n+1)!} w(t) \tag{1}
\end{equation*}
$$

for some $\xi_{t} \in\left[x_{0}, x_{n}\right]$, assuming $x_{0}<x_{1}<\cdots<x_{n}$. The above error estimate is obtained by repeated application of Rolle's theorem to the function

$$
\Phi(u)=f(u)-p(u)-\frac{f(t)-p(t)}{w(t)} w(u),
$$

that has $n+1$ roots at $t, x_{0}, x_{1}, \ldots, x_{n}$, hence its $(n+1)$-order derivative must have a root in the interval $\left(x_{0}, x_{n}\right)$, denoted by ξ_{t}

$$
\Phi^{(n+1)}\left(\xi_{t}\right)=\frac{\mathrm{d}^{n+1} \Phi}{\mathrm{~d} u^{n+1}}\left(\xi_{t}\right)=0=f^{(n+1)}\left(\xi_{t}\right)-\frac{f(t)-p(t)}{w(t)}(n+1)!,
$$

establishing (1). Though the error estimate seems promising due to the $(n+1)$! in the denominator, the derivative $f^{(n+1)}$ can be arbitrarily large even for a smooth function. This is the behavior that arises in the Runge function $f(t)=1 /\left[1+(5 t)^{2}\right]$ (Fig. 1), for which a typical higher-order derivative appears as

- $f^{(10)}=\frac{35437500000000\left(107421875 t^{10}-64453125 t^{8}+7218750 t^{6}-206250 t^{4}+1375 t^{2}-1\right)}{\left(25 t^{2}+1\right)^{11}},\left\|f^{(10)}\right\|_{\infty} \cong 3.5 \times 10^{13}$.

The behavior might be attributable to the presence of poles of f in the complex plane at $t_{1,2}= \pm i / 5$, but the interpolant of the holomorphic function $g(t)=\exp \left(-(5 t)^{2}\right)$, with a similar power series to f,

$$
\begin{aligned}
& f(t) \cong 1-25 t^{2}+625 t^{4}-15625 t^{6}+O\left(t^{7}\right) \\
& g(t) \cong 1-25 t^{2}+\frac{625 t^{4}}{2}-\frac{15625 t^{6}}{6}+O\left(t^{7}\right),
\end{aligned}
$$

also exhibits large errors (Fig. 1), and also has a high-order derivative of large norm $\|g\|_{\infty} \cong 3 \times 10^{11}$.

$$
g^{(10)}(t)=1562500000 e^{-25 t^{2}}\left(62500000 t^{10}-56250000 t^{8}+15750000 t^{6}-1575000 t^{4}+47250 t^{2}-189\right)
$$

Figure 1. Interpolants of $f(t)=1 /\left[1+(5 t)^{2}\right], g(t)==\exp \left(-(5 t)^{2}\right)$, based on equidistant sample points.

1.1. Error minimization - Chebyshev polynomials

Since $\left\|f^{(n+1)}\right\|_{\infty}$ is problem-specific, the remaining avenue to error control suggested by formula (1) is a favorable choice of the sample points $x_{i}, i=0, \ldots, n$. The $w(t)$ polynomial

$$
w(t)=\prod_{i=0}^{n}\left(t-x_{i}\right)
$$

is monic (coefficient of highest power is unity), and any interval $[a, b] \subset \mathbb{R}$ can be mapped to the $[-1,1]$ interval by $t=2(s-a) /(b-a)-1$, leading to consideration of the problem

$$
\min _{\boldsymbol{x}}\|w\|_{\infty}=\min _{\boldsymbol{x}} \max _{-1 \leqslant t \leqslant 1}|w(t)|,
$$

i.e., finding the sample points or roots of $w(t)$ that lead to the smallest possible inf-norm of $w(t)$. Plots of the Lagrange basis (L18, Fig. 2), or Legendre basis, suggest study of basis functions that have distinct roots in the interval [-1,1] and attain the same maximum. The trigonometric functions satisfy these criteria, and can be used to construct the Chebyshev family of polynomials through

$$
T_{n}(x)=\cos \left[n \cos ^{-1} x\right]=\cos (n \theta), \cos \theta=x, \theta=\cos ^{-1} x .
$$

The trigonometric identity

$$
\cos [(n+1) \theta]+\cos [(n-1) \theta]=2 \cos \theta \cos (n \theta)
$$

leads to a recurrence relation for the Chebyshev polynomials

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), T_{0}(x)=1, T_{1}(x)=x
$$

The definition in terms of the cosine function easily leads to the roots, $T_{n}\left(x_{i}\right)=0$,

$$
\cos [n \theta]=0 \Rightarrow n \theta_{i}=(2 i-1) \frac{\pi}{2} \Rightarrow \theta_{i}=\frac{2 i-1}{2 n} \pi \Rightarrow x_{i}=\cos \left[\frac{2 i-1}{2 n} \pi\right], i=1, \ldots, n,
$$

and extrema $x_{j}, T_{n}\left(x_{j}\right)=(-1)^{j}$

$$
\cos [n \theta]= \pm 1 \Rightarrow n \theta_{j}=j \pi \Rightarrow x_{j}=\cos \left[\frac{j \pi}{n}\right], j=0,1, \ldots, n
$$

The Chebyshev polynomials are not themselves monic, but can readily be rescaled through

$$
P_{n}(x)=2^{1-n} T_{n}(x), n>0, P_{0}(x)=1 .
$$

Since $\left|T_{n}(x)\right|=|\cos (n \theta)|$, the above suggests that the monic polynomials P_{n} have $\left\|P_{n}\right\|_{\infty}=2^{1-n}$, small for large n, and are indeed among all possible monic polynomials defined on $[-1,1]$ the ones with the smallest inf-norm.

THEOREM. The monic polynomial $p:[-1,1] \rightarrow \mathbb{R}$ has a inf-norm lower bound

$$
\|p\|_{\infty}=\max _{-1 \leqslant t \leqslant 1}|p(t)| \geqslant 2^{1-n}
$$

Proof. By contradiction, assume the monic polynomial $p:[-1,1] \rightarrow \mathbb{R}$ has $\|q\|_{\infty}<2^{1-n}$. Construct a comparison with the Chebyshev polynomials by evaluating p at the extrema $x_{j}=\cos (j \pi / n)$,

$$
(-1)^{j} p\left(x_{j}\right) \leqslant\left|p\left(x_{j}\right)\right|<2^{1-n}=(-1)^{j} P_{n}\left(x_{j}\right)=(-1)^{j} 2^{1-n} T_{n}\left(x_{j}\right) .
$$

Since the above states $(-1)^{j} p\left(x_{j}\right)<(-1)^{j} P_{n}\left(x_{j}\right)$ deduce

$$
\begin{equation*}
(-1)^{j}\left[p\left(x_{j}\right)-P_{n}\left(x_{j}\right)\right]<0, \text { for } j=0,1, \ldots, n \tag{2}
\end{equation*}
$$

However, p, P_{n} both monic implies that $p\left(x_{j}\right)-P_{n}\left(x_{j}\right)$ is a polynomial of degree $n-1$ that would change signs $n+1$ times to satisfy (2), and thus have n roots contradicting the fundamental theorem of algebra.

Figure 2. First $n=6$ Chebyshev polynomials

1.2. Best polynomial approximant

Based on the above, the optimal choice of $n+1$ sample points is given by the roots $x_{j}=\cos \left(\theta_{j}\right)$ of the Chebyshev polynomial of $(n+1)^{\text {th }}$ degree $T_{n+1}(x)$, for which $\cos [(n+1) \theta]=0$,

$$
x_{j}=\cos \left[\frac{\pi}{n+1}\left(\frac{1}{2}+j\right)\right], j=0, \ldots, n
$$

For this choice of sample points the interpolation error has the bound

$$
\left|f(t)-p_{n}(t)\right|=\left|\frac{f^{(n+1)}\left(\xi_{t}\right)}{(n+1)!} \prod_{i=0}^{n}\left(t-x_{i}\right)\right| \leqslant \frac{\left|f^{(n+1)}\left(\xi_{t}\right)\right|}{(n+1)!}\left\|P_{n+1}\right\|_{\infty} \leqslant \frac{\left\|f^{(n+1)}\right\|_{\infty}}{(n+1)!2^{n}} .
$$

