
LECTURE 19: DERIVATIVE APPROXIMATION

Having introduced approximations of elements of vector spaces, a natural question is the approximation of transfor-

mations of such objects or operator approximation. An operator is understood here as a mapping from a domain vector

space°=(U,S,+, Å) to a co-domain vector space±=(V ,S,+, Å), and the operator�:U�V is said to be linear if for

any scalars c
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i.e., the image of a linear combination is the linear combination of the images. Linear algebra considers the case of

�nite dimensional vector spaces, such as U=�

m

, V =�

n

, in which case a linear operator is represented by a matrix

s��

m×n

, and satis�es
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In contrast, the focus here is on in�nite-dimensional function spaces such as C

r

(�) (cf. Tab. 1, L18), the space of

functions with continuous derivatives up to order r. Common linear operator examples include:

Di�erentiation. � f =�

k

f /�t

k

,�:C

r

(�)�C

r�k

(�).

Riemann integration. �f =+

a

b

�(t) f (t)dt,�:C(�\�)��, where � is a set of measure zero.

Linear di�erential equation. �y=�

j=0

k

a

j

(t)y

( j)

= f (t),�:C

r

(�)�C

r�k

(�).

1. Numerical di�erentiation based upon polynomial interpolation

A general approach to operator approximation is to simply introduce an approximation of the function the operator

acts upon, f E p,

�f E�p.

Monomial basis. As an example consider the polynomial interpolant of f based upon data �={(x

i

, y

i

= f (x

i

)), i=

0, . . . ,n},

p(t)= �

1 t t

2

. . . t

n

��,

with coe�cients � determined as the solution of the interpolation conditions

t�=�,

with notations
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Di�erentiation of f (�=d/dt) can be approximated as

d

dt

f E

d

dt

p=�

0 1 2t . . . nt

n�1

��.

It is often of interest to express the result of applying an operator directly in terms of known information on f . For-

mally, in the case of di�erentiation,

d

dt

f E �

0 1 2t . . . nt

n�1

�t

�1

�,

allowing the identi�cation of a di�erentiation approximation operator�

d

dt

f E�(�),�= �

0 1 2t . . . nt

n�1

�t

�1

.

This formulation explicitly includes the inversion of the sampled basis matrix t, and is hence not computationally

e�cient. Alternative formulations can be constructed that carry out some of the steps in computingt

�1

analytically.

Newton basis (�nite di�erence calculus). An especially useful formulation for numerical di�erentiation arises from

the Newton interpolant of data�={(x

i

= ih,y

i

= f (x

i

)), i=0, . . . ,n}, f :���, f �C

(n+1)

(�),

f (t)E p(t)=[y

0
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1
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)+ Å Å Å+[y
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) Å (t�x
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) Å . . . Å (t�x

n�1

).
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For equidistant sample points x

i

= ih, the Newton interpolant can be expressed as an operator acting upon the data.

Introduce the translation operator

Ef (t)= f (t+h).

Repeated application of the translation operator leads to

E

k

f (t)=E(E

k�1

f (t))= Å Å Å= f (t+kh),

and the identity operator is given by

If (t)= f (t)=E

0

f (t)Ò I =E

0

.

Finite di�erences of the function values are expressed through the forward, backward and central operators

�=E � I ,�= I �E,ÿ=E

1/2

�E

�1/2

,

leading to the formulas

� f (t)= f (t+h)� f (t),� f (t)= f (t)� f (t�h),ÿf (t)= f (t+h/2)� f (t�h/2).

Applying the above to the data set� leads to

�y

i

=y

i+1

�y

i

,�y

i

=y

i

�y

i�1

,ÿy

i

=y

i+1/2

�y

i�1/2

.

The divided di�erences arising in the Newton can be expressed in terms of �nite di�erence operators,
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or in general

[y
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Using the above and rescaling the variable t in the Newton basis©={1, t�x

0

, (t�x

0

)(t�x

1

), . . . } in units of the step

size t=üh+x

0

leads to
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The generalized binomial series states
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the generalized binomial coe�cient. The operator acting upon y

0

in (1) can be interpreted as the truncation at order n
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of the operator (I +�)

ü

de�ned through (2) by the substitutions 1� I , x��. The operator1

ü

=(I +�)

ü

can be inter-

preted as the interpolation operator with equidistant sampling points, with P(ü) its truncation to order n. Reversing

the order of the sampling points leads to the Newton interpolant
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The divided di�erences can be expressed in terms of the backward operator as
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leading to an analogous expression of the interpolation operator in terms backward �nite di�erences
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Di�erentiation of the interpolation expressed in terms of forward �nite di�erences gives
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The particular interpolant P(ü) is irrelevant, leading to the operator identity

d
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For |x|<1, the power series expansions are
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are uniformly convergent, leading to the expression

d

dt

E

1

h

Ý
��

1

2

�

2

+

1

3

�

3

� . . . + (�1)

k

1

k

�

k

+ Å Å Å
Þ
,

stating that the (continuum) di�erentiation operator can be approximated by an in�nite series of �nite di�erence

operations, recovered exactly in the h�0 limit. Denote by D

k

+

the truncation at term k of the above operator series

such that
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Truncation at k=1,2, 3 leads to the expressions

D
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The h�0 limit of divided di�erences is given by

lim

h�0

[y

k

,y

k�1

, . . . ,y

0

]= lim

h�0

Ý

1

k!h

k

�

k

y

0

Þ
=

1

k!

f

(k)

(x

0

),

such that for small �nite h>0,

�

k

y

0

Eh

k

f

(k)

(x

0

).

The resulting derivative approximation error is of order k,
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The analogous expression for backward di�erences is
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and the �rst few truncations are
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The above operator identities can be inverted to obtain
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this time expressing the �nite translation operator as an in�nite series of continuum di�erentiation operations. This

allows expressing the central di�erence operator as
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and approximations of the derivative based on centered di�erencing are obtained from
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An advantage of the centered �nite di�erences (surmised from the odd power series) is a higher order of accuracy
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2. Taylor series methods

An alternative derivation of the above �nite di�erence formulas is to construct a linear combination of function values
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For example, for m=0, n=1, carrying out Taylor series expansions gives
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3. Numerical di�erentiation based upon piecewise polynomial interpolation

B-spline basis. The above example used a truncation of the monomial basis3

n
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}. Analogous results

are obtained when using a di�erent basis. Consider the equidistant sample points x
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Di�erentiation recovers the familiar slope expression
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At the nodes, a piecewise linear spline is discontinuous, hence the derivative is not de�ned, though one could consider

the one-sided limits. Evaluation of derivatives at midpoints t
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with k��

n×(n+1)
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