
1. Interpolation error
As mentioned, a polynomial interpolant of f :ℝ→ℝ already incorporates the function values yi= f (xi), i =0,. . . ,n, so
additional information on f is required to estimate the error

e(t)= f (t)− p(t),

when t is not one of the sample points. One approach is to assume that f is smooth, f ∈ C∞(ℝ), in which case the
error is given by

f (t)− p(t)= f (n+1)(𝜉t)
(n+1)! �

i=0

n

(t −xi)= f (n+1)(𝜉t)
(n+1)! w(t), (1)

for some 𝜉t ∈[x0,xn], assuming x0<x1<⋅⋅⋅<xn. The above error estimate is obtained by repeated application of Rolle's
theorem to the function

Φ(u)= f (u)− p(u)− f (t)− p(t)
w(t) w(u),

that has n+1 roots at t,x0,x1, .. . ,xn, hence its (n+1)-order derivative must have a root in the interval (x0,xn), denoted
by 𝜉t

Φ(n+1)(𝜉t)= dn+1Φ
dun+1 (𝜉t)=0= f (n+1)(𝜉t)− f (t)− p(t)

w(t) (n+1)!,

establishing (1). Though the error estimate seems promising due to the (n + 1)! in the denominator, the derivative
f (n+1) can be arbitrarily large even for a smooth function. This is the behavior that arises in the Runge function
f (t)=1/[1+(5t)2] (Fig. 1), for which a typical higher-order derivative appears as

∘ f (10)= 35437500000000 (107421875 t10 −64453125 t8 +7218750 t6 −206250 t4 +1375 t2 −1)
(25 t2 +1)11 ,‖ f (10)‖∞≅3.5×1013.

The behavior might be attributable to the presence of poles of f in the complex plane at t1,2=±i/5, but the interpolant
of the holomorphic function g(t)=exp(−(5t)2), with a similar power series to f ,

∘
f (t)≅1−25 t2 +625 t4−15625 t6 +O(t7),

g(t)≅1−25 t2 + 625 t4

2 − 15625 t6

6 +O(t7),

also exhibits large errors (Fig. 1), and also has a high-order derivative of large norm ‖g‖∞ ≅3×1011.

∘ g(10)(t)=1562500000e−25t 2 (62500000 t10−56250000 t8 +15750000 t6−1575000 t4 +47250 t2−189),

∘
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Figure 1. Interpolants of f (t) =1/[1+(5t)2], g(t)==exp(−(5t)2), based on equidistant sample points.



1.1. Error minimization - Chebyshev polynomials

Since ‖ f (n+1)‖∞ is problem-specific, the remaining avenue to error control suggested by formula (1) is a favorable
choice of the sample points xi, i =0, . . . ,n. The w(t) polynomial

w(t)=�
i=0

n

(t −xi)

is monic (coefficient of highest power is unity), and any interval [a,b] ⊂ℝ can be mapped to the [−1, 1] interval by
t =2(s−a)/(b−a)−1, leading to consideration of the problem

min
𝒙

‖w‖∞ =min
𝒙

max
−1⩽t⩽1

|w(t)|,

i.e., finding the sample points or roots of w(t) that lead to the smallest possible inf-norm of w(t). Plots of the Lagrange
basis (L18, Fig. 2), or Legendre basis, suggest study of basis functions that have distinct roots in the interval [−1, 1]
and attain the same maximum. The trigonometric functions satisfy these criteria, and can be used to construct the
Chebyshev family of polynomials through

Tn(x)=cos[ncos−1x]=cos(n𝜃), cos𝜃=x,𝜃=cos−1 x.

The trigonometric identity

cos[(n+1)𝜃]+cos[(n−1)𝜃]=2cos𝜃cos(n𝜃)

leads to a recurrence relation for the Chebyshev polynomials

Tn+1(x)=2xTn(x)−Tn−1(x),T0(x)=1,T1(x)=x.

The definition in terms of the cosine function easily leads to the roots, Tn(xi)=0,

cos[n𝜃]=0⇒n𝜃i=(2i −1)𝜋
2 ⇒𝜃i=

2i −1
2n 𝜋⇒xi=cos�2i −1

2n 𝜋�, i =1, . . . ,n,

and extrema xj, Tn(xj)=(−1)j

cos[n𝜃]=±1⇒n𝜃j = j𝜋⇒ xj =cos� j𝜋
n �, j =0,1, . . . ,n.

The Chebyshev polynomials are not themselves monic, but can readily be rescaled through

Pn(x)=21−nTn(x),n>0,P0(x)=1.

Since |Tn(x)| = |cos(n𝜃)|, the above suggests that the monic polynomials Pn have ‖Pn‖∞ =21−n, small for large n, and
are indeed among all possible monic polynomials defined on [−1,1] the ones with the smallest inf-norm.

THEOREM. The monic polynomial p: [−1, 1]→ℝ has a inf-norm lower bound

‖p‖∞ = max
−1⩽t⩽1

|p(t)|⩾21−n.

Proof. By contradiction, assume the monic polynomial p: [−1, 1]→ℝ has ‖q‖∞ <21−n. Construct a comparison with
the Chebyshev polynomials by evaluating p at the extrema xj =cos( j𝜋/n),

(−1)j p(xj)⩽ |p(xj)|<21−n =(−1)jPn(xj)=(−1)j 21−n Tn(xj).

Since the above states (−1)jp(xj)<(−1)jPn(xj) deduce

(−1)j[p(xj)−Pn(xj)]<0, for j =0,1, . . . ,n (2)

However, p, Pn both monic implies that p(xj) − Pn(xj) is a polynomial of degree n − 1 that would change signs n + 1
times to satisfy (2), and thus have n roots contradicting the fundamental theorem of algebra. □
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Figure 2. First n =6 Chebyshev polynomials

1.2. Best polynomial approximant

Based on the above, the optimal choice of n + 1 sample points is given by the roots xj = cos(𝜃j) of the Chebyshev
polynomial of (n+1)th degree Tn+1(x), for which cos[(n+1)𝜃]=0,

xj =cos� 𝜋
n+1�1

2 + j��, j =0, . . . ,n,

For this choice of sample points the interpolation error has the bound

| f (t)− pn(t)|= |||||||||||||||
f (n+1)(𝜉t)
(n+1)! �

i=0

n

(t −xi)|||||||||||||||⩽
| f (n+1)(𝜉t)|

(n+1)! ‖Pn+1‖∞ ⩽ ‖ f (n+1)‖∞
(n+1)!2n .
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