
LECTURE 21: ORDINARY DIFFERENTIAL EQUATIONS - SINGLE STEPMETHODS

1. Ordinary di�erential equations

An n

th

-order ordinary di�erential equation given in explicit form

y

(n)

= f (t,y,y

2

, . . . ,y

(n�1)

) (1)

is a statement of equality between the action of two operators. On the left hand side the linear di�erential operator

�=

d

dt

n

acts upon a su�ciently smooth function, y�C

(n)

(�),�:C

(n)

(�)�C(�). On the right hand side, a nonlinear oper-

ator1 acts upon the independent variable t and the �rst n�1 derivatives

1:�×C(�)× Å Å Å ×C

(n�1)

(�).

An associated function f :�

n+1

�� has values given by

f (t)= f (t,y(t),y

2

(t), . . . ,y

(n�1)

(t)).

The numerical solution of (1) seeks to �nd an approximant of y through:

1. Approximation of the di�erentiation operator�;

2. Approximation of the nonlinear operator1;

3. Approximation of the equality between the e�ect of the two operators

�(y)=1(t,y, . . . ,y

(n�1)

).

These approximation problems shall be considered one-by-one, starting with approximation of� assuming that the

action of1 is exactly represented through knowledge of f .

Note that an n

th

-order di�erential equation can be restated as a system of n �rst-order equations

�

2

=m(t, �) (2)

by introducing

�=[
z

1

z

2

. . . z

n�1

z

n

]

T

=�

y y

2

. . . y

(n�2)

y

(n�1)

�

T

,

m(t, �)=[
z

2

(t) z

3

(t) . . . z

n

(t) f (t, z

1

(t), . . . , z

n

(t))
]

T

.

Approximation of the di�erentiation operator for the problem

y

2

= f (t,y) (3)

can readily be extended to the individual equations of system (2).

Construction of approximants to (3) is �rst considered for the initial value problem (IVP)

y

2

= f (t,y),y(0)=y

0

. (4)

The two procedures are:

1. Approximation of the di�erentiation operator;

2. Di�erentiation of an approximation of y.

Often the two approaches leads to the same algorithm. The problem (4) has a unique solution over some rectangle

R=[0,T]×[y

1

,y

2

] in the ty-plane if f is Lipschitz-continuous, stated as the existence of K��

+

such that

| f (t,y

2

)� f (t,y

1

)|}K |y

2

�y

1

|.
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Note that Lipschitz continuity is a stronger condition than standard continuity in that it states | f (t, y

2

) � f (t, y

1

)| =

ª(|y

2

�y

1

|). Di�erentiability implies Lipschitz continuity.

Consider approximation of d/dt through forward �nite di�erences

d

dt

=

1

h

Ý��

1

2

�

2

+

1

3

�

3

� Å Å Å�Þ, (5)

and denote by y

i

the approximation of y(t), y

i

Ey(t

i

) at the equidistant sample points t

i

= ih. Evaluation of (2) with a

k

th

order truncation of (5) then gives

f (t

i

,y(t

i

))=Ý

dy

dt

Þ(t

i

)E
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h

Ý��
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2

�

2

+

1

3

�

3

� Å Å Å� (�1)

k

1

k

�

k

Þ.

2. Di�erentiation operator approximation from polynomial interpolants

2.1. Euler forward scheme

For k=1, the resulting scheme is

1

h

�y

i

=

y

i+1

�y

i

h

= f (t

i

,y

i

)= f

i

Òy

i+1

=y

i

+h f

i

,

where f

i

E f (t

i

,y(t

i

)), and is known as the Euler forward scheme. New values are obtained from previous values. Such

methods are said to be explicit schemes. As to be expected from the truncation of (5) to the �rst term in the series, the

scheme is �rst-order accurate. This can be formally established by evaluation of the error at step i

e

i

=y(t

i

)�y

i

.

At the next step, e

i+1

=y(t

i+1

)�y

i

, and subtraction of the two errors gives upon Taylor-series expansion

e

i+1

�e

i

=y(t

i+1

)�y(t

i

)� (y

i+1

�y

i

)=y(t

i

)+hy

2

(t

i

)+

h

2

2

y

22

(	

i

)�y(t

i

)�hf

i

.

Since f

i

= f (t

i

,y(t

i

)), the one-step error is given by

�

i

=e

i+1

�e

i

=

h

2

2

y

22

(	

i

).

After N steps,

e

N

�e

0

=

h

2

2

y

i=1

N

y

22

(	

i

).

Assuming e

0

=0 (exact representation of the initial condition),

e

N

}

Nh

2

2

�y

22

�

�

.

Numerical solution of the initial value problem is carried out over some �nite interval [0,T], with T =Nh, hence

e

N

}h

T

2

�y

22

�

�

=ª(h), (6)

indeed with �rst-order convergence.

Alternatively, one could use the backward or centered �nite di�erence approximations of the derivative

d

dt

=

1
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+ Å Å ÅÞ=

1

h

Ýÿ�

1

24

ÿ

3

+

3

640

ÿ
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� Å Å Å�Þ. (7)

2.2. Backward Euler scheme

Truncation of the backward operator at �rst order gives

f (t

i

,y(t

i

))=
Ý

dy

dt

Þ

i

E

1

h

(�y)

i

=

y

i

�y

i�1

h
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=y
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=y
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).



Note now that the unknown value y

i

appears as an argument to f , with f

i

= f (t

i

, y

i

), the approximation of the exact

slope f (t

i

,y(t

i

)). Some procedure to solve the equation

y

i

�y

i�1

�hf (t

i

,y

i

)=0,

must be introduced in order to advance the solution from t

i�1

to t

i

. Such methods are said to be implicit schemes. The

same type of error analysis as in the forward Euler case again leads to the conclusion that the one-step error isª(h

2

),

while the overall error over a �nite interval [0,T] satis�es (6), and is �rst-order.

2.3. Leapfrog scheme

Truncation of the centered operator at �rst order gives

f (t

i

,y(t

i

))=
Ý

dy

dt

Þ

i

E

1

h

(ÿy)

i

=

y

i+1/2

�y
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h

Òy
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=y
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+hf

i

=y
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+hf (t

i

,y

i

).

The higher-order accuracy of the centered �nite di�erences leads to a more accurate numerical solution of the problem

(4). The one-step error is third-order accurate,

e

i+1/2

�e

i�1/2

=y(t

i+1/2

)�y(t

i�1/2

)+hf (t

i

,y

i

)=

h

3

3

y

222

(	

i

),

and the overall error over interval [0,T =Nh] is second-order accurate

e

N

}

h

2

3
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.
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