1. Spectral approximations

The monomial basis $\left\{1, t, t^{2}, \ldots\right\}$ for the vector space of all polynomials $P(\mathbb{R})$, and its derivatives (Lagrange, Newton, B - spline) allow the definition of an approximant $p \in P(\mathbb{R})$ for real functions $f: \mathbb{R} \rightarrow \mathbb{R}$, e.g., for smooth functions $f \in C^{\infty}(\mathbb{R})$. A different approach to approximation in infinite-dimensional vector spaces such as $P(\mathbb{R})$ or $C^{\infty}(\mathbb{R})$ is to endow the vector space with a scalar product (f, g) and associated norm $\|f\|=(f, f)^{1 / 2}$. The availability of a norm allows definition of convergence of sequences and series.

DEFINITION. A sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of elements of the normed vector space $\mathscr{F}=(F, \mathbb{C},+, \cdot)$ converges to $f, f_{n} \rightarrow f$ if $\forall \varepsilon>0, \exists N(\varepsilon)$ such that $\left\|f_{n}-f\right\|<\varepsilon$ for all $n>N(\varepsilon)$.

DEFINITION. The vector space $\mathscr{F}=(F, \mathbb{C},+, \cdot)$ with a scalar product $():, F \times F \rightarrow \mathbb{C}$ is a Hilbert space if the limit of all Cauchy sequences is an element of F.

All Hilbert spaces have orthonormal bases, and of special interest are bases that arise Sturm-Liouville problems of relevance to the approximation task.

1.1. Fourier series - Fast Fourier transform

The $L^{2}([0,2 \pi])$ space of periodic, square-integrable functions is a Hilbert space (L^{2} is the only Hilbert space among the L^{p} function spaces), and has a basis

$$
\left\{\frac{1}{2}, \cos t, \sin t, \ldots, \cos k t, \sin k t, \ldots\right\}
$$

that is orthonormal with respect to the scalar product

$$
(f, g)=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} \mathrm{d} t .
$$

An element $f \in L^{2}([0,2 \pi])$ can be expressed as the linear combination

$$
f(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos k t+b_{k} \sin k t\right]
$$

An alternative orthonormal basis is formed by the exponentials

$$
\left\{e^{ \pm i n t}\right\}, n \in \mathbb{N},
$$

with respect to the scalar product

$$
(f, g)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} \mathrm{d} t
$$

The partial sum

$$
S_{N} f(t)=\sum_{k=-N}^{N} c_{k} e^{i k t}
$$

has coefficients c_{k} determined by projection

$$
c_{k}=\left(f, e^{i k t}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i k t} \mathrm{~d} t,
$$

that can be approximated by the Darboux sum on the partition $t_{j}=2 \pi j / N$
with

$$
c_{k} \cong \frac{1}{N} \sum_{j=1}^{N} f_{j} e^{-i k t_{j}}=\frac{1}{N} \sum_{j=1}^{N} f_{j} \omega_{N}^{-j k}
$$

$$
\omega=\exp \left[\frac{2 \pi i}{N}\right]
$$

denoting the $N^{\text {th }}$ root of unity. The Fourier coefficients are obtained through a linear mapping

$$
c=W \boldsymbol{f}
$$

with $\boldsymbol{c}, \boldsymbol{f} \in \mathbb{C}^{N}$, and $\boldsymbol{W} \in \mathbb{C}^{N \times N}$ with elements

$$
\boldsymbol{W}=\left[\omega^{-j k}\right]_{1 \leqslant j, k \leqslant N}
$$

The above discrete Fourier transform can be seen as a change of basis from the basis \boldsymbol{I} in which the coefficients of f are \boldsymbol{c} to the basis \boldsymbol{W} in which the coefficients are \boldsymbol{f}.

1.2. Fast Fourier transform

Carrying out the matrix vector product $\boldsymbol{W} \boldsymbol{f}$ directly would require $\mathcal{O}\left(N^{2}\right)$ operations, but the cyclic structure of the W matrix arising from the exponentiation of ω can be exploited to reduce the computational effort. Assume $N=2 P$ and separate even and odd indexed components of f

$$
c_{k}=\sum_{j=1}^{N} f_{j} \omega_{N}^{-j k}=\sum_{j=1}^{P}\left[f_{2 j-1} \omega_{N}^{-(2 j-1) k}+f_{2 j} \omega_{N}^{-2 j k}\right]=\sum_{j=1}^{P} f_{2 j} \omega_{P}^{-j k}+\omega^{k} \sum_{j=1}^{P} f_{2 j-1} \omega_{P}^{-j k}
$$

Through the above, the $\mathcal{O}\left(N^{2}\right)$ matrix-vector product is reduced to two smaller matrix-vector products, each requiring $\mathcal{O}\left(N^{2} / 4\right)$ operations. For $N=2^{q}$, recursion of the above procedure reduces the overall operation count to $\mathcal{O}(q N)$, or in general for N composed of a small numer of prime factors, $\mathcal{O}(N \log N)$. The overall algorithm is known as the fast Fourier transform or FFT.

1.3. Data-sparse matrices from Sturm-Liouville problems

One step of the FFT can be understood as a special matrix factorization

$$
\boldsymbol{W}_{N}=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{D}_{N} \\
\boldsymbol{I} & -\boldsymbol{D}_{N}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{W}_{P} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{W}_{P}
\end{array}\right] \boldsymbol{P}_{N}
$$

where \boldsymbol{D}_{N} is diagonal and \boldsymbol{P}_{N} is the even-odd permutation matrix. Though the matrix \boldsymbol{W}_{N} is full (all elements are nonzero), its factors are sparse, with many zero elements. The matrix \boldsymbol{W}_{N} is said to be data sparse, in the sense that its specification requires many fewer than N^{2} numbers. Other examples of data sparse matrices include:

Toeplitz matrices. $\boldsymbol{A} \in \mathbb{C}^{m \times m}$ has constant diagonal terms, e.g., for $m=4$

$$
\boldsymbol{A}=\left[\begin{array}{llll}
a & b & c & d \\
e & a & b & c \\
f & e & a & b \\
g & f & e & a
\end{array}\right]
$$

or in general the elements of $\boldsymbol{A}=\left[a_{i j}\right]_{1 \leqslant i, j \leqslant m}$ can be specified in terms of $2 m-1$ numbers a_{1-n}, \ldots, a_{n-1} through $a_{i j}=a_{i-j}$.

Exterior products. Rank-1 updates arising in the singular value or eigenvalue decompositions have the form

$$
\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}=\left[\begin{array}{llll}
v_{1} \boldsymbol{u} & v_{2} \boldsymbol{u} & \ldots & v_{m} \boldsymbol{u}
\end{array}\right]
$$

and the $2 m$ components of $\boldsymbol{u}, \boldsymbol{v}$ are suficient to specify the matrix \boldsymbol{A} with m^{2} components. This can be generalized to any exterior product of matrices $\boldsymbol{B} \in \mathbb{C}^{n \times n}, \boldsymbol{C} \in \mathbb{C}^{p \times p}$ through

$$
\boldsymbol{A}=\boldsymbol{B} \otimes \boldsymbol{C}=\left[\begin{array}{llll}
\boldsymbol{b}_{1} \otimes \boldsymbol{C} & \boldsymbol{b}_{2} \otimes \boldsymbol{C} & \ldots & b_{n} \otimes \boldsymbol{C}
\end{array}\right]=\left[\begin{array}{llll}
b_{11} \boldsymbol{C} & b_{12} \boldsymbol{C} & \ldots & b_{1 n} \boldsymbol{C} \\
b_{21} \boldsymbol{C} & b_{22} \boldsymbol{C} & \ldots & b_{2 n} \boldsymbol{C} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} \boldsymbol{C} & b_{n 2} \boldsymbol{C} & \ldots & b_{n n} \boldsymbol{C}
\end{array}\right]
$$

The $m^{2}=(n p)^{2}$ components of \boldsymbol{A} are specified through only $n^{2}+p^{2}$ components of $\boldsymbol{B}, \boldsymbol{C}$.
The relevance to approximation of functions typically arises due basis sets that are solutions to Sturm-Liouville problems. In the case of the Fourier transform $e^{ \pm i k t}$ are eigenfunctions of the Sturm-Liouville problem

$$
w^{\prime \prime}+\lambda w=0, w=u+i v, u^{\prime}(0)=u^{\prime}(\pi)=0, v(0)=v(\pi)=0
$$

with eigenvalues $\lambda_{n}=k^{2}$. The solution set $\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ to a general Sturm-Liouville problem to find $f:[a, b] \rightarrow \mathbb{R}$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[p(t) \frac{\mathrm{d} f}{\mathrm{~d} t}\right]+q(t) f=-\lambda w(t) f
$$

form an orthonormal basis under the scalar product

$$
(f, g)=\int_{a}^{b} f(t) g(t) w(t) \mathrm{d} t
$$

and approximations of the form

$$
\Phi_{N} f(t)=\sum_{k=1}^{N} c_{k} \varphi_{k}(t)
$$

and Parseval's theorem states that

$$
\|\boldsymbol{c}\|_{2}^{2}=\sum_{k=1}^{\infty} c_{k} \overline{c_{k}}=\|f\|_{2}^{2}=(f, f)=\int_{a}^{b} f(t) f(t) w(t) \mathrm{d} t
$$

read as an equality between the energy of f and that of \boldsymbol{c}. By analogy to the finite-dimensional case, the Fourier transform is unitary in that it preserves lengths in the $\|f\|+(f, f)^{1 / 2}$ norm with weight function $w(t)=1$.

2. Wavelet approximations

The bases $\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ arising from Sturm-Liouville problems are single-indexed, giving functions of increasing resolution over the entire definition domain. For example $\sin k x$ resolves ever finer features over $[0,2 \pi]$. When applied to a function with localized features, k must be increased with increased resolution in the entire $[0,2 \pi]$ domain. This leads to uneconomical approximation series $S_{N} f(t)$ with many terms, as exemplified by the Gibbs phenomenon in approximation of a step function, $f(t)=H(t-\pi / 2)-H(t-3 \pi / 2)$ for $t \in[0,2 \pi]$, and $f(t+2 \pi)=f(t)$. The approach can be represented as the decomposition of a space of functions by the direct sum

$$
F=\Phi_{1} \oplus \Phi_{2} \oplus \ldots
$$

with $\Phi_{k}=\operatorname{span}\left(\varphi_{k}\right)$, for example

$$
L^{2}=E_{0} \oplus E_{1} \oplus E_{-1} \oplus E_{2} \oplus E_{-2} \oplus \ldots
$$

with $E_{k}=\operatorname{span}\left\{e^{i k t}\right\}$ for the Fourier series.

Approximation of functions with localized features is more efficiently accomplished by choosing some generating function $\psi(t)$ and then defining a set of functions through translation and scaling, say

$$
\psi_{j k}(t)=2^{-j / 2} \psi\left(2^{-j} t-k\right)
$$

Such systems are known as wavelets, and the simplest example is the step function

$$
\psi(t)= \begin{cases}1 & 0 \leqslant t<1 / 2 \\ -1 & 1 / 2 \leqslant t<1 \\ 0 & \text { otherwise }\end{cases}
$$

with $\psi_{j k}$ having support on the half-open interval $h_{j k}=\left[k 2^{-j},(k+1) 2^{-j}\right)$. The set $\left\{\psi_{00}, \psi_{01}, \ldots\right\}$ is known as an Haar orthonormal basis for $L^{2}(\mathbb{R})$ since

$$
\left(\psi_{j k}, \psi_{l m}\right)=\int_{-\infty}^{\infty} \psi_{j k}(t) \psi_{l m}(t) \mathrm{d} t=\delta_{j l} \delta_{k m}
$$

Approximations based upon a wavelet basis

$$
f(t)=\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}}\left(f, \psi_{j k}\right) \psi_{j k}(t),
$$

allow identification of localized features in f.

The costly evaluation of scalar products $\left(f, \psi_{j k}\right)$ in the double summation can be avoided by a reformulation of the expansion as

$$
\begin{equation*}
f(t)=\sum_{k} c_{l, k} \varphi_{l}(t)+\sum_{j \leqslant l} \sum_{k} d_{j, k} \psi_{j k}(t), \tag{1}
\end{equation*}
$$

with . In addition to the ψ ("mother" wavelet), an auxilliary φ scaling function ("father" wavelet) is defined, for example

$$
\varphi(t)=\left\{\begin{array}{ll}
1 & 0 \leqslant t<1 \\
0 & \text { otherwise }
\end{array},\right.
$$

for the Haar wavelet system.

The above approach is known as a multiresolution representation and is based upon a hierarchical decomposition of the space of functions, e.g.,

$$
L^{2}=V_{l} \oplus W_{l} \oplus W_{l-1} \oplus W_{l-2} \oplus \ldots
$$

with

$$
V_{j}=\operatorname{span}\left\{\varphi_{j k} \mid k \in \mathbb{Z}\right\}, W_{j}=\operatorname{span}\left\{\psi_{j k} \mid k \in \mathbb{Z}\right\} .
$$

The hierarchical decomposition is based upon the vector subspace inclusions

$$
\{0\}<\cdots<V_{1}<V_{0}<V_{-1}<V_{-2}<\cdots<L^{2}(\mathbb{R}),
$$

and the relations

$$
V_{m} \oplus W_{m}=V_{m-1},
$$

that state that the orthogonal complement of V_{m} within V_{m-1} is W_{m}. Analogous to the FFT, a fast wavelet transformation can be defined to compute coefficients of (1).

