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1. Adams-Bashforth and Adams-Moulton schemes
Consider now the approximation of % = f in the first-order differential equation

Y =f(t,y). (1)

Integration over a time step [#;, #;+1] gives
Tisl
Y(tie1) =y(t) = . f(t,y(r))dr,
and use of quadrature formulas leads to numerical solutions for solving (1). Consider for instance data 2 = {(;+ 1,
fix1-k),k=1,...,s} going back s intervals of size A, t;, |- =t;+1 —kh. Any quadrature formula based on this data could

be used, but the most often encountered approach is to use a polynomial approximant. This can be stated in Lagrange

form as
s

Fay@) =Y 6t) fio fi=f tis1o Ytz 16)) = f L 1o Vi 10

k=1

The last approximate equality arises from replacing the exact value y(t;+ 1) by its approximation yy = y(#;+1-¢). The
result is known as an Adams-Bashforth scheme

. s s i s
y{+1=)’i+J‘:+1 Y ) fidi=yi+ ) (f:” G (1) dt)fk=Yi+hZ bicfis1-k,
Yok=1 k=t 7 k=1

with coefficients that are readily computed (cf. Table 1).

by = %(f: Gr) dr).

i

Sbl bz b3 b4
11
3 1
237 3
;2 16 5
12 12 12
455 59 37 9

24 24 24 24
Table 1. Adams-Bashforth scheme coeflicients.

The s =1 Adams-Bashforth scheme is identical to forward Euler and the above approach yields schemes that are
explicit, i.e., the new value is directly obtained from knowledge of previous values.

Choosing data & = {(t;+1-k, fi+1-k),k=0,...,s— 1} that contains the point yet to be computed (#;,1,y;+1) gives rise to
a class of implicit schemes known as the Adams-Moulton schemes (Table 2)

s—1
Yist=yith Y bifivick
k=0

Sb0b1b2 b3
11
1 1
272 2
;5 8 1
12 12 12
49 19 5 1

24 24 24 24

Table 2. Adams-Moulton scheme coefficients.



2. Simultaneous operator approximation - linear multistep methods

Approximation of both operators £ =d/dt and F = f arising in By=Fy, or y' = f(t,y) is possible. Combining
previous computations, the resulting schemes can be stated as

Y ayick=hY bifisks frox=F GierVick)- )
k=0 k=0
Both sides arise from linear approximants: of the derivative on the left, and of f on the right.

3. Consistency, convergence, stability

Any of the above schemes defines a sequence {y,},en that approximates the solution y(#,) of the initial value problem

y, =f(f’)’)’Y(0) =Yo,
over a time interval [0,7'], t,=nh, h=T/N. A scheme is said to be convergent if
lim yy =y(T).
h—-0
Nh=T
The above states that in the limit of taking small step sizes while maintaining Na =T for some finite time 7', the

estimate at the endpoint converges to the exact value. Such a definition is rather difficult to apply directly, and an
alternative characterization of convergence is desirable.

3.1. Model problem

To motivate the overall approach, consider first the following model problem
Y =24y,y(0)=yo, <0 3)

The model problem arises from truncation of the general non-linear function f to first order

Y =fWM=fO0)+f () y+:--.

Since f(0) is a constant that simply leads to linear growth, and the model problem captures the lowest-order non-trivial
behavior. The exact solution is

— enlh

)’(f)Zeit)’O:’)’(fn) Yo

giving y(T) = e*!'yq. The restriction of 2 <0 in the model problem arises from consideration of the effect of a small

perturbation in the initial condition representative of floating point representation errors. This leads to y(T) =e AT( Yo+
&), and the error e =3(T) —y(T') =e*T & can only be maintained small if 1 <0.

Applying the forward Euler scheme to the model problem (3) gives

Yne1=Ynt /'Lh)’n =(1+2)yp

with z= A h. After N steps the numerical approximation is
v =(1+2)"yo.

The exponential decay of the exact solution can only be recovered if which leads to a restriction on the allowable step
size

2
—7>h>0
If the step size is too large, h > -2/ A, inherent floating point errors are amplified by the forward Euler method, and

the scheme is said to be unstable. This is avoided by choosing a subunitary parameter z , |z| = |4 /| < 1, which leads to
a step size restriction < 1/|4|.
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These observations on the simple case of the Euler forward method generalize to linear multistep methods. Applying
(2) to the model problem (3) leads to the following linear finite difference equation

Y ayik=2) biick- “
k=0 k=0

The above is solved using a procedure analogous to that for differential equations by hypothesizing solutions of the
form

Yn= r’,
to obtain a characteristic equation
m(r;z)=p(r)=za(r)=0,

where p(r), o (r) are polynomials ‘ ‘
p(r)=Y art o)=Y bk
k=0 k=0

The above polynomials allow an operational assessment of algorithms of form (2). An algorithm (2) that recovers the
ordinary differential equation (1) in the limit of & — 0 is said to be consistent, which occurs if and only if

p(1)=0,p"(1)-0(1)=0.
Furthermore an algorithm of form (2) that does not amplify inherent floating point errors is said to be stable, which
occurs if the roots of sr(r;z) are subunitary in absolute value

Irjl <1, (rj;2) =0.
THEOREM. An algorithm to solve (1) that is consistent and stable is convergent.

3.2. Boundary locus method
A convenient procedure to determine the stable range of step sizes is to consider r of unit absolute value
r=e'

and evaluate the characteristic equation

0.
’

m(ez)=pe?)—z0(e?)=0=2(0)=

where z(0) is the boundary locus delimiting zones of stability in the complex plane (Fig 1).
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A method is said to be A-stable if its region of stability contains the entire left half-plane in C, and is said to be L-
stable if lim,, -« p (we') /o (we®) =0.
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