
LECTURE 22: ORDINARY DIFFERENTIAL EQUATIONS - MULTISTEPMETHODS

1. Adams-Bashforth and Adams-Moulton schemes

Consider now the approximation of1= f in the �rst-order di�erential equation
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and use of quadrature formulas leads to numerical solutions for solving (1). Consider for instance data�={(t
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be used, but the most often encountered approach is to use a polynomial approximant. This can be stated in Lagrange

form as
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The last approximate equality arises from replacing the exact value y(t
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) by its approximation y
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). The

result is known as an Adams-Bashforth scheme
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with coe�cients that are readily computed (cf. Table 1).
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Table 1. Adams-Bashforth scheme coe�cients.

The s= 1 Adams-Bashforth scheme is identical to forward Euler and the above approach yields schemes that are

explicit, i.e., the new value is directly obtained from knowledge of previous values.

Choosing data�={(t

i+1�k

, f

i+1�k

),k=0, . . . , s�1} that contains the point yet to be computed (t

i+1

,y

i+1

) gives rise to

a class of implicit schemes known as the Adams-Moulton schemes (Table 2)
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Table 2. Adams-Moulton scheme coe�cients.

LECTURE 22: ORDINARY DIFFERENTIAL EQUATIONS - MULTISTEPMETHODS 1



2. Simultaneous operator approximation - linear multistep methods

Approximation of both operators �=d/dt and 1= f arising in �y=1y, or y

2

= f (t, y) is possible. Combining

previous computations, the resulting schemes can be stated as
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Both sides arise from linear approximants: of the derivative on the left, and of f on the right.

3. Consistency, convergence, stability

Any of the above schemes de�nes a sequence {y
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}
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that approximates the solution y(t
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) of the initial value problem
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over a time interval [0,T], t
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=nh, h=T /N . A scheme is said to be convergent if
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The above states that in the limit of taking small step sizes while maintaining Nh= T for some �nite time T , the

estimate at the endpoint converges to the exact value. Such a de�nition is rather di�cult to apply directly, and an

alternative characterization of convergence is desirable.

3.1. Model problem

To motivate the overall approach, consider �rst the following model problem
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The model problem arises from truncation of the general non-linear function f to �rst order
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Since f (0) is a constant that simply leads to linear growth, and the model problem captures the lowest-order non-trivial

behavior. The exact solution is
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perturbation in the initial condition representative of �oating point representation errors. This leads to y
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Applying the forward Euler scheme to the model problem (3) gives
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with z=�h. After N steps the numerical approximation is
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The exponential decay of the exact solution can only be recovered if which leads to a restriction on the allowable step

size

�
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>h>0.

If the step size is too large, h>�2/�, inherent �oating point errors are ampli�ed by the forward Euler method, and

the scheme is said to be unstable. This is avoided by choosing a subunitary parameter z , |z| = |�h|}1, which leads to

a step size restriction h<1/|�|.



These observations on the simple case of the Euler forward method generalize to linear multistep methods. Applying

(2) to the model problem (3) leads to the following linear �nite di�erence equation
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The above is solved using a procedure analogous to that for di�erential equations by hypothesizing solutions of the

form
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to obtain a characteristic equation
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The above polynomials allow an operational assessment of algorithms of form (2). An algorithm (2) that recovers the

ordinary di�erential equation (1) in the limit of h�0 is said to be consistent, which occurs if and only if

�(1)=0,�

2

(1)��(1)=0.

Furthermore an algorithm of form (2) that does not amplify inherent �oating point errors is said to be stable, which

occurs if the roots of �(r; z) are subunitary in absolute value
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THEOREM. An algorithm to solve (1) that is consistent and stable is convergent.

3.2. Boundary locus method

A convenient procedure to determine the stable range of step sizes is to consider r of unit absolute value

r=e

i�

,

and evaluate the characteristic equation
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where z(�) is the boundary locus delimiting zones of stability in the complex plane (Fig 1).
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A method is said to be A-stable if its region of stability contains the entire left half-plane in �, and is said to be L-

stable if lim
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