
1. Spectral approximations
The monomial basis {1, t, t2, . . .} for the vector space of all polynomials P(ℝ), and its derivatives (Lagrange, Newton,
B − spline) allow the definition of an approximant p ∈ P(ℝ) for real functions f : ℝ → ℝ, e.g., for smooth functions
f ∈C∞(ℝ). A different approach to approximation in infinite-dimensional vector spaces such as P(ℝ) or C∞(ℝ) is
to endow the vector space with a scalar product ( f ,g) and associated norm ‖ f ‖=( f , f )1/2. The availability of a norm
allows definition of convergence of sequences and series.

DEFINITION. A sequence { fn}n∈ℕ of elements of the normed vector space ℱ = (F, ℂ, +, ⋅) converges to f, fn → f if
∀𝜀>0, ∃N(𝜀) such that ‖ fn − f ‖<𝜀 for all n>N(𝜀).

DEFINITION. The vector space ℱ=(F,ℂ,+, ⋅) with a scalar product (, ):F ×F →ℂ is a Hilbert space if the limit of all
Cauchy sequences is an element of F.

All Hilbert spaces have orthonormal bases, and of special interest are bases that arise Sturm-Liouville problems of
relevance to the approximation task.

1.1. Fourier series - Fast Fourier transform

The L2([0, 2𝜋]) space of periodic, square-integrable functions is a Hilbert space (L2 is the only Hilbert space among
the Lp function spaces), and has a basis

�1
2, cos t, sin t, . . . , coskt, sin kt, . . . �

that is orthonormal with respect to the scalar product

( f ,g)= 1
𝜋�

0

2𝜋
f (t)g(t)dt.

An element f ∈L2([0,2𝜋]) can be expressed as the linear combination

f (t)= a0
2 +�

k=1

∞

[ak coskt +bk sin kt].

An alternative orthonormal basis is formed by the exponentials

{e±int},n∈ℕ,

with respect to the scalar product

( f ,g)= 1
2𝜋�

0

2𝜋
f (t)g(t)dt.

The partial sum

SN f (t)= �
k=−N

N

ck e ikt

has coefficients ck determined by projection

ck =( f ,e ikt)= 1
2𝜋�

0

2𝜋
f (t)e−ikt dt,

that can be approximated by the Darboux sum on the partition tj =2𝜋 j/N

ck ≅ 1
N �

j=1
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fj e−iktj = 1
N �

j=1

N

fj 𝜔N
−jk

with

𝜔=exp�2𝜋i
N �,

denoting the N th root of unity. The Fourier coefficients are obtained through a linear mapping

𝒄=𝑾 𝒇 ,



with 𝒄, 𝒇 ∈ℂN, and 𝑾 ∈ℂN×N with elements

𝑾 =[𝜔− jk]1⩽ j,k⩽N .

The above discrete Fourier transform can be seen as a change of basis from the basis 𝑰 in which the coefficients of f
are 𝒄 to the basis 𝑾 in which the coefficients are 𝒇 .

1.2. Fast Fourier transform

Carrying out the matrix vector product 𝑾 𝒇 directly would require 𝒪(N 2) operations, but the cyclic structure of the
𝑾 matrix arising from the exponentiation of 𝜔 can be exploited to reduce the computational effort. Assume N =2P
and separate even and odd indexed components of 𝒇
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j=1

N

fj 𝜔N
− jk = �

j=1

P

� f2 j−1𝜔N
−(2 j−1)k + f2 j 𝜔N

−2 jk�=�
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f2 j 𝜔P
− jk +𝜔k�

j=1

P

f2 j−1𝜔P
− jk.

Through the above, the 𝒪(N 2) matrix-vector product is reduced to two smaller matrix-vector products, each requiring
𝒪(N 2/4) operations. For N =2q, recursion of the above procedure reduces the overall operation count to 𝒪(qN), or
in general for N composed of a small numer of prime factors, 𝒪(N logN). The overall algorithm is known as the fast
Fourier transform or FFT.

1.3. Data-sparse matrices from Sturm-Liouville problems

One step of the FFT can be understood as a special matrix factorization

𝑾N =� 𝑰 𝑫N
𝑰 −𝑫N

�[[[[[[[ 𝑾P 𝟎
𝟎 𝑾P ]]]]]]]𝑷N

where 𝑫N is diagonal and 𝑷N is the even-odd permutation matrix. Though the matrix 𝑾N is full (all elements are non-
zero), its factors are sparse, with many zero elements. The matrix 𝑾N is said to be data sparse, in the sense that its
specification requires many fewer than N 2 numbers. Other examples of data sparse matrices include:

Toeplitz matrices. 𝑨∈ℂm×m has constant diagonal terms, e.g., for m=4

𝑨=
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ a b c d

e a b c
f e a b
g f e a ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]
]
,

or in general the elements of 𝑨=[aij]1⩽i, j⩽m can be specified in terms of 2m−1 numbers a1−n, . . . ,an−1 through
aij =ai− j.

Exterior products. Rank-1 updates arising in the singular value or eigenvalue decompositions have the form

𝑨=𝒖𝒗T =[ v1𝒖 v2𝒖 . . . vm𝒖 ],

and the 2m components of 𝒖,𝒗 are suficient to specify the matrix 𝑨 with m2 components. This can be general-
ized to any exterior product of matrices 𝑩∈ℂn×n, 𝑪∈ℂp×p through

𝑨=𝑩⊗𝑪=[ 𝒃1 ⊗𝑪 𝒃2 ⊗𝑪 . . . bn ⊗𝑪 ]=
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ b11𝑪 b12𝑪 . . . b1n 𝑪

b21𝑪 b22𝑪 . . . b2n𝑪
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
bn1𝑪 bn2𝑪 . . . bnn 𝑪 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]
]
.

The m2=(np)2 components of 𝑨 are specified through only n2 + p2 components of 𝑩,𝑪.

The relevance to approximation of functions typically arises due basis sets that are solutions to Sturm-Liouville prob-
lems. In the case of the Fourier transform e±ikt are eigenfunctions of the Sturm-Liouville problem

w′′+𝜆w=0, w=u+ iv,u′(0)=u′(𝜋)=0, v(0)=v(𝜋)=0,



with eigenvalues 𝜆n =k2. The solution set {𝜑1,𝜑2, . . . } to a general Sturm-Liouville problem to find f : [a,b]→ℝ

d
dt�p(t)d f

dt �+q(t) f =−𝜆w(t) f ,

form an orthonormal basis under the scalar product

( f ,g)=�
a

b
f (t)g(t)w(t)dt,

and approximations of the form

ΦN f (t)=�
k=1

N

ck 𝜑k(t),

and Parseval's theorem states that

‖𝒄‖2
2 =�

k=1

∞

ck ck̄ =‖ f ‖2
2 =( f , f )=�

a

b
f (t) f (t)w(t)dt,

read as an equality between the energy of f and that of 𝒄. By analogy to the finite-dimensional case, the Fourier
transform is unitary in that it preserves lengths in the ‖ f ‖+( f , f )1/2 norm with weight function w(t)=1.

2. Wavelet approximations
The bases {𝜑1,𝜑2, . . . } arising from Sturm-Liouville problems are single-indexed, giving functions of increasing res-
olution over the entire definition domain. For example sinkx resolves ever finer features over [0,2𝜋]. When applied
to a function with localized features, k must be increased with increased resolution in the entire [0,2𝜋] domain. This
leads to uneconomical approximation series SN f (t) with many terms, as exemplified by the Gibbs phenomenon in
approximation of a step function, f (t)=H(t −𝜋/2)−H(t −3𝜋/2) for t ∈[0,2𝜋], and f (t +2𝜋)= f (t). The approach
can be represented as the decomposition of a space of functions by the direct sum

F =Φ1 ⊕Φ2 ⊕. . . ,

with Φk =span(𝜑k), for example

L2 =E0 ⊕E1 ⊕E−1 ⊕E2 ⊕E−2 ⊕. . . ,

with Ek =span{eikt} for the Fourier series.

Approximation of functions with localized features is more efficiently accomplished by choosing some generating
function 𝜓(t) and then defining a set of functions through translation and scaling, say

𝜓jk(t)=2−j/2𝜓(2−j t −k).

Such systems are known as wavelets, and the simplest example is the step function

𝜓(t)={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{

1 0⩽ t <1/2
−1 1/2⩽ t <1
0 otherwise

,

with 𝜓jk having support on the half-open interval hjk = [k2−j, (k +1)2−j). The set {𝜓00,𝜓01, . . . } is known as an Haar
orthonormal basis for L2(ℝ) since

(𝜓jk,𝜓lm)=�
−∞

∞
𝜓jk(t)𝜓lm(t)dt =𝛿jl 𝛿km.

Approximations based upon a wavelet basis

f (t)= �
j∈ℤ

�
k∈ℤ

( f ,𝜓jk)𝜓jk(t),

allow identification of localized features in f .



The costly evaluation of scalar products ( f , 𝜓jk) in the double summation can be avoided by a reformulation of the
expansion as

f (t)=�
k

cl,k 𝜑l(t)+�
j⩽l

�
k

dj,k 𝜓jk(t), (1)

with . In addition to the 𝜓 (“mother” wavelet), an auxilliary 𝜑 scaling function (“father” wavelet) is defined, for
example

𝜑(t)={{{{{{{{{{{{{{{{{{{{ 1 0⩽ t <1
0 otherwise ,

for the Haar wavelet system.

The above approach is known as a multiresolution representation and is based upon a hierarchical decomposition of
the space of functions, e.g.,

L2=Vl ⊕Wl ⊕Wl−1 ⊕Wl−2⊕ . . .

with
Vj =span{𝜑jk| k ∈ℤ},Wj =span {𝜓jk |k ∈ℤ}.

The hierarchical decomposition is based upon the vector subspace inclusions

{0}< ⋅ ⋅ ⋅ <V1<V0<V−1<V−2 < ⋅ ⋅ ⋅ <L2(ℝ),
and the relations

Vm⊕Wm=Vm−1,

that state that the orthogonal complement of Vm within Vm−1 is Wm. Analogous to the FFT, a fast wavelet transforma-
tion can be defined to compute coefficients of (1).
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