1. Best approximants

Interpolation of data $\mathscr{D}=\left\{\left(x_{i}, y_{i}=f\left(x_{i}\right)\right), i=0, \ldots, n\right\}$ by an approximant $p(t)$ corresponds to the minimization problem $\min _{p}\|f-p\|$,
in the discrete one-norm at the sample points x_{i}

$$
\|f\|=\|\boldsymbol{f}\|_{1}=\sum_{i=0}^{n}\left|f\left(x_{i}\right)\right| .
$$

Different approximants are obtained upon changing the norm.
THEOREM (EXISTENCE OF BEST APPROXIMANT. For any element $f \in F$ in a normed vector space $\mathscr{F}=(F, S,+, \cdot)$, there exists a best approximant $g \in G$ within a finite dimensional subspace $G \subset F$ that is a solution of

$$
\min _{g \in G}\|f-g\|
$$

The argument underlying the above theorem is based upon constructing the closed and bounded subset of G

$$
K=\{g \in G \mid\|g-f\| \leqslant\|0-f\|=\|f\|\} \subset G
$$

Since G is finite dimensional, K is compact, and the continuous mapping $g \rightarrow\|g-f\|$ attains is extrema.
The two main classes of approximants g of real functions $f:[a, b] \rightarrow \mathbb{R}$ that arise are:
Approximants based upon sampling. The vectors $\boldsymbol{f}=f(\boldsymbol{x}), \boldsymbol{g}=g(\boldsymbol{x})$ are constructed at sample points $\boldsymbol{x} \in \mathbb{R}^{m}$ and the best approximant solves the problem

$$
\min _{g \in G}\|f-g\| .
$$

Note that the minimization is carried out over the members of the subset G, not over the vectors \boldsymbol{g}. The norm can include information on derivatives as in the norm

$$
\|f\|_{H}=\|\boldsymbol{f}\|_{1}+\left\|\boldsymbol{f}^{\prime}\right\|_{1}
$$

arising in Hermite interpolation.
Approximants over the function domain. The norm is now expressed through an integral such as the p-norms

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(t)|^{p} \mathrm{~d} t\right)^{1 / p}
$$

In general, the best approximant in a normed space is not unique. However, the best approximant is unique in a Hilbert space, and is further characterized by orthogonality of the residual to the approximation subspace.

Theorem (Best Approximant in Hilbert space). For any element $f \in F$ in a Hilbert space $\mathscr{F}=(F, S,+, \cdot)$, there exists a unique approximant $g \in G$ within a finite dimensional subspace $G \subset F$ that is a solution of

$$
\min _{g \in G}\|f-g\|
$$

and the residual $f-g$ is orthogonal to $G, \forall h \in G$

$$
(f-g, h)=0 .
$$

Note that orthogonality of the residual $(f-g, h)=0$ implies $(f, h)=(g, h)$ or that the best approximant is the projection of f onto G.

2. Two-norm approximants in Hilbert spaces

For Hilbert spaces with a norm is induced by the scalar product

$$
\|f\|=(f, f)^{1 / 2}
$$

finding the best approximant reduces to a problem within \mathbb{R}^{m} (or \mathbb{C}^{m}). Introduce a basis $\mathscr{B}=\left\{b_{1}, b_{2}, \ldots\right\}$ for \mathscr{F} such that any $f \in F$ has an expansion

$$
f(t)=\sum_{j=1}^{\infty} f_{j} b_{j}(t), f_{j}=\left(f, b_{j}\right)
$$

Since G is finite dimensional, say $n=\operatorname{dim}(G)$, an approximant has expansion

$$
g(t)=\sum_{j=1}^{n} g_{j} b_{s(j)}(t)
$$

Note that the approximation may lie in an arbitrary finite-dimensional subspace of \mathscr{F}. Choosing the appropriate subset through the function $s: \mathbb{N} \rightarrow \mathbb{N}$ is an interesting problem in itself, leading to the goal of selecting those basis functions that capture the largest components of f, i.e., the solution of

$$
\min _{s \in \mathbb{N}^{n}} \sum_{j=1}^{n}\left|\left(f, b_{s(j)}\right)\right| .
$$

Approximate solutions of the basis component selection are obtained by processes such as greedy approximation or clustering algorithms. The approach typically adopted is to exploit the Bessel inequality

$$
\sum_{i=1}^{n} f_{s(i)}^{2} \leqslant\|f\|^{2}
$$

and select

$$
s(1)=\arg \max _{i \in S} f_{i}^{2},
$$

eliminate $s(1)$ from S, and search again. The $k^{\text {th }}$-step is

$$
s(k)=\arg \max _{i \in S} f_{i}^{2}
$$

with $S_{k}=S-\{s(1), \ldots, s(k-1)\}$.

Assuming $s(j)=j$, the orthogonality relation $f-g \perp G$ leads to a linear system

$$
\left(f-g, b_{i}\right)=0 \Rightarrow\left(\sum_{j=1}^{n} g_{j} b_{j}, b_{i}\right)=\sum_{j=1}^{n}\left(b_{i}, b_{j}\right) g_{j}=\left(f, b_{i}\right) \Rightarrow \boldsymbol{B} \boldsymbol{g}=\boldsymbol{f}
$$

If the basis is orthonormal, then $\boldsymbol{B}=\boldsymbol{I}$, and the best approximant is simply given by the projection of f onto the basis elements. Note that the scalar product need not be the Euclidean discrete or continuous versions

$$
(f, g)=\sum_{i=1}^{n} f_{i} g_{i},(f, g)=\int_{a}^{b} f(t) g(t) \mathrm{d} t
$$

A weighting function may be present as in

$$
(f, g)=\boldsymbol{f}^{T} \boldsymbol{W} \boldsymbol{g},(f, g)=\int_{a}^{b} f(t) g(t) w(t) \mathrm{d} t
$$

discrete and continuous versions, respectively. In essense the appropriate measure $\mu(t)$ for some specific problem

$$
\mathrm{d} \mu(t)=w(t) \mathrm{d} t
$$

arises and might not be the Euclidean measure $w(t)=1$.

3. Inf-norm approximants

In the vector space of continuous functions defined on a topological space X (e.g., a closed and bounded set in \mathbb{R}^{n}), a norm can be defined by

$$
\|f\|=\max _{x \in X}|f(x)|,
$$

and the best approximant is found by solving the problem

$$
\inf _{g \in G}\|f-g\|=\inf _{g \in G} \max _{x \in X}|f(x)-g(x)| .
$$

The fact that g is the best approximant of f can be restated as 0 being the approximant of $f-g$ since

$$
\|f-g-0\| \leqslant\|f-(g+h)\| .
$$

A key role is played by the points where $f(x)=g(x)$ leading to the definition of a critical set as

$$
\operatorname{crit}(f)=\mathscr{L}(f)=\{x \in X:|f(x)|=\|f\|\} .
$$

When $G=P_{n-1}$, the space of polynomials of degree at most $n-1$, with $\operatorname{dim} P_{n-1}=n$, the best approximant can be charaterized by the number of sign changes of $f(x)-g(x)$.

THEOREM (CHEBYSHEV ALTERNATION). The polynomial $p \in P_{n-1}$ is the best approximant of $f:[a, b] \rightarrow \mathbb{R}$ in the infnorm

$$
\|f-p\|_{\infty}=\max _{a \leqslant x \leqslant b}|f(x)-p(x)|
$$

if and only if there exist $n+1$ points $a \leqslant x_{0}<x_{1}<\cdots<x_{n} \leqslant b$ such that

$$
f\left(x_{i}\right)-p\left(x_{i}\right)=s \cdot(-1)^{i}\|f-p\|_{\infty},
$$

where $|s|=1$.
Recall that choosing $x_{i}=\cos [(2 i-1) \pi /(2 n)]$, the roots of the $T_{n}(\theta)=\cos (n \theta)$ Chebyshev polynomial (with $x=\cos \theta$, $a=-1, b=1$), leads to the optimal error bound in polynomial interpolation

$$
|f(t)-p(t)| \leqslant \frac{\left\|f^{(n+1)}\right\|_{\infty}}{(n+1)!2^{n}} .
$$

The error bound came about from consideration of the alternation of signs of $p\left(x_{j}\right)-q\left(x_{j}\right)$ at the extrema of the Chebyshev polynomial $T_{n}, x_{i}=\cos (i \pi / n), i=0,1, \ldots n$, with p, q monic polynomials. The Cebyshev alternation theorem generalizes this observation and allows the formulation of a general approach to finding the best inf-norm approximant known as the Remez algorithm. The idea is that rather than seeking to satisfy the interpolation conditions

$$
M a=y
$$

in the monomial basis

$$
\boldsymbol{M}=\mathscr{M}_{n-1}(\mathrm{x})=\left[\begin{array}{llll}
\mathbf{1} & \boldsymbol{x} & \ldots & \boldsymbol{x}^{n-1}
\end{array}\right] \in \mathbb{R}^{n \times n},
$$

attempt to find n alternating-sign extrema points by considering the basis set

$$
\boldsymbol{R}=\mathscr{B}_{n}(\boldsymbol{x})=\left[\begin{array}{llll}
\mathbf{1} & \boldsymbol{x} & \ldots & \boldsymbol{x}^{n-1} \pm \mathbf{1}
\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}
$$

with $\pm \mathbf{1}=\left[\begin{array}{llll}+1 & -1 & +1 & \ldots\end{array}\right]$.

Algorithm (Remez)

1. Initialize $\boldsymbol{x} \in \mathbb{R}^{n+1}$ to Chebyshev maxima on interval $[a, b]$
2. Solve $\boldsymbol{R} \boldsymbol{c}=f(\boldsymbol{x}) \mathscr{R}(\boldsymbol{x}), \boldsymbol{c}^{T}=\left[\begin{array}{ll}\boldsymbol{a}^{T} & c_{n+1}\end{array}\right], \boldsymbol{a} \in \mathbb{R}^{n}$
3. Find the extrema \boldsymbol{y} of $p(t)-f(t)$ with $p(t)=a_{0}+a_{1} t+\cdots+a_{n-1} t^{n-1}$
4. If $p\left(y_{i}\right)-f\left(y_{i}\right)$ are approximately equal in absolute value and of opposite signs, return \boldsymbol{x}
5. Otherwise set $\boldsymbol{x}=\boldsymbol{y}$, repeat
