1. Linear operator approximation

An operator is understood here as a mapping from a domain vector space $\mathscr{U}=(U, S,+, \cdot)$ to a co-domain vector space $\mathscr{V}=(V, S,+, \cdot)$, and the operator $\mathscr{L}: U \rightarrow V$ is said to be linear if for any scalars $c_{1}, c_{2} \in S$ and vectors $u_{1}, u_{2} \in U$,

$$
\mathscr{L}\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} \mathscr{L}\left(u_{1}\right)+c_{2} \mathscr{L}\left(u_{2}\right)
$$

i.e., the image of a linear combination is the linear combination of the images. Linear algebra considers the case of finite dimensional vector spaces, such as $U=\mathbb{R}^{m}, V=\mathbb{R}^{n}$, in which case a linear operator is represented by a matrix $L \in \mathbb{R}^{m \times n}$, and satisfies

$$
\boldsymbol{L}\left(c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}\right)=c_{1} \boldsymbol{L} \boldsymbol{u}_{1}+c_{2} \boldsymbol{L} \boldsymbol{u}_{2}
$$

In contrast, the focus here is on infinite-dimensional function spaces such as $C^{r}(\mathbb{R})$ (cf. Tab. 1, L18), the space of functions with continuous derivatives up to order r. Common linear operator examples include:

Differentiation. $\mathscr{L} f=\partial^{k} f / \partial t^{k}, \mathscr{L}: C^{r}(\mathbb{R}) \rightarrow C^{r-k}(\mathbb{R})$.
Riemann integration. $\mathscr{L} f=\int_{a}^{b} \omega(t) f(t) \mathrm{d} t, \mathscr{L}: C(\mathbb{R} \backslash \Delta) \rightarrow \mathbb{R}$, where Δ is a set of measure zero.
Linear differential equation. $\mathscr{L} y=\sum_{j=0}^{k} a_{j}(t) y^{(j)}=f(t), \mathscr{L}: C^{r}(\mathbb{R}) \rightarrow C^{r-k}(\mathbb{R})$.

1.1. Numerical differentiation

A general approach to operator approximation is to simply introduce an approximation of the function the operator acts upon, $f \cong p$,

$$
\mathscr{L} f \cong \mathscr{L} p
$$

Monomial basis. As an example consider the polynomial interpolant of f based upon data $\mathscr{D}=\left\{\left(x_{i}, y_{i}=f\left(x_{i}\right)\right), i=\right.$ $0, \ldots, n\}$,

$$
p(t)=\left[\begin{array}{lllll}
1 & t & t^{2} & \ldots & t^{n}
\end{array}\right] \boldsymbol{c},
$$

with coeffcients \boldsymbol{c} determined as the solution of the interpolation conditions

$$
M c=y
$$

with notations

$$
\boldsymbol{M}=\left[\begin{array}{lllll}
\mathbf{1} & \boldsymbol{x} & \boldsymbol{x}^{2} & \ldots & \boldsymbol{x}^{n}
\end{array}\right], \boldsymbol{x}^{k}=\left[\begin{array}{lll}
x_{0}^{k} & \ldots & x_{n}^{k}
\end{array}\right]^{T}, \boldsymbol{y}=\left[\begin{array}{lll}
y_{0} & \ldots & y_{n}
\end{array}\right]^{T} .
$$

Differentiation of $f(\mathscr{L}=\mathrm{d} / \mathrm{d} t)$ can be approximated as

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f \cong \frac{\mathrm{~d}}{\mathrm{~d} t} p=\left[\begin{array}{lllll}
0 & 1 & 2 t & \ldots & n t^{n-1}
\end{array}\right] c
$$

It is often of interest to express the result of applying an operator directly in terms of known information on f. Formally, in the case of differentiation,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f \cong\left[\begin{array}{lllll}
0 & 1 & 2 t & \ldots & n t^{n-1}
\end{array}\right] \boldsymbol{M}^{-1} \boldsymbol{y}
$$

allowing the identification of a differentiation approximation operator \mathscr{D}

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f \cong \mathscr{D}(\boldsymbol{y}), \mathscr{D}=\left[\begin{array}{lllll}
0 & 1 & 2 t & \ldots & n t^{n-1}
\end{array}\right] \boldsymbol{M}^{-1}
$$

This formulation explicitly includes the inversion of the sampled basis matrix \boldsymbol{M}, and is hence not computationally efficient. Alternative formulations can be constructed that carry out some of the steps in computing \boldsymbol{M}^{-1} analytically.

Newton basis (finite difference calculus). An especially useful formulation for numerical differentiation arises from the Newton interpolant of data $\mathscr{D}=\left\{\left(x_{i}=i h, y_{i}=f\left(x_{i}\right)\right), i=0, \ldots, n\right\}, f: \mathbb{R} \rightarrow \mathbb{R}, f \in C^{(n+1)}(\mathbb{R})$,

$$
f(t) \cong p(t)=\left[y_{0}\right]+\left[y_{1}, y_{0}\right]\left(t-x_{0}\right)+\cdots+\left[y_{n}, y_{n-1}, \ldots, y_{0}\right]\left(t-x_{0}\right) \cdot\left(t-x_{1}\right) \cdot \ldots \cdot\left(t-x_{n-1}\right) .
$$

For equidistant sample points $x_{i}=i h$, the Newton interpolant can be expressed as an operator acting upon the data. Introduce the translation operator

$$
E f(t)=f(t+h) .
$$

Repeated application of the translation operator leads to

$$
E^{k} f(t)=E\left(E^{k-1} f(t)\right)=\cdots=f(t+k h)
$$

and the identity operator is given by

$$
I f(t)=f(t)=E^{0} f(t) \Rightarrow I=E^{0}
$$

Finite differences of the function values are expressed through the forward, backward and central operators

$$
\Delta=E-I, \nabla=I-E, \delta=E^{1 / 2}-E^{-1 / 2}
$$

leading to the formulas

$$
\Delta f(t)=f(t+h)-f(t), \nabla f(t)=f(t)-f(t-h), \delta f(t)=f(t+h / 2)-f(t-h / 2)
$$

Applying the above to the data set \mathscr{D} leads to

$$
\Delta y_{i}=y_{i+1}-y_{i}, \nabla y_{i}=y_{i}-y_{i-1}, \delta y_{i}=y_{i+1 / 2}-y_{i-1 / 2} .
$$

The divided differences arising in the Newton can be expressed in terms of finite difference operators,

$$
\left[y_{1}, y_{0}\right]=\frac{y_{1}-y_{0}}{h}=\frac{1}{h} \Delta y_{0},\left[y_{2}, y_{1}, y_{0}\right]=\frac{\left[y_{2}, y_{1}\right]-\left[y_{1}, y_{0}\right]}{2 h}=\frac{\Delta y_{1}-\Delta y_{0}}{2 h^{2}}=\frac{\Delta^{2} y_{0}}{2 h^{2}},
$$

or in general

$$
\left[y_{k}, \ldots, y_{1}, y_{0}\right]=\frac{\Delta^{k}}{k!h^{k}} y_{0}
$$

Using the above and rescaling the variable t in the Newton basis $\mathcal{N}=\left\{1, t-x_{0},\left(t-x_{0}\right)\left(t-x_{1}\right), \ldots\right\}$ in units of the step size $t=\alpha h+x_{0}$ leads to

$$
\begin{equation*}
p(t(\alpha))=P(\alpha)=\left(I+\alpha \frac{\Delta}{1!}+\alpha(\alpha-1) \frac{\Delta^{2}}{2!}+\cdots+\alpha(\alpha-1) \cdot \ldots \cdot(\alpha-1+n) \frac{\Delta^{n}}{n!}\right) y_{0} . \tag{1}
\end{equation*}
$$

The generalized binomial series states

$$
\begin{equation*}
(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k} \tag{2}
\end{equation*}
$$

with

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!}
$$

the generalized binomial coefficient. The operator acting upon y_{0} in (1) can be interpreted as the truncation at order n

$$
P(\alpha) \cong(I+\Delta)^{\alpha} y_{0}=\mathscr{F}_{\alpha} y_{0}
$$

of the operator $(I+\Delta)^{\alpha}$ defined through (2) by the substitutions $1 \rightarrow I, x \rightarrow \Delta$. The operator $\mathscr{F}_{\alpha}=(I+\Delta)^{\alpha}$ can be interpreted as the interpolation operator with equidistant sampling points, with $P(\alpha)$ its truncation to order n. Reversing the order of the sampling points leads to the Newton interpolant

$$
p(t)=\left[y_{n}\right]+\left[y_{n-1}, y_{n}\right]\left(t-x_{n}\right)+\cdots+\left[y_{0}, y_{1}, \ldots, y_{n}\right]\left(t-x_{n}\right)\left(t-x_{n-1}\right) \cdot \ldots \cdot\left(t-x_{1}\right) .
$$

The divided differences can be expressed in terms of the backward operator as

$$
\left[y_{n-1}, y_{n}\right]=\frac{y_{n-1}-y_{n}}{h}=-\frac{1}{h} \nabla y_{n},\left[y_{n-2}, y_{n-1}, y_{n}\right]=\frac{\left[y_{n-2}, y_{n-1}\right]-\left[y_{n-1}, y_{n}\right]}{2 h}=-\frac{\nabla y_{n-1}-\nabla y_{n}}{2 h^{2}}=\frac{\nabla^{2} y_{n}}{2 h^{2}},
$$

leading to an analogous expression of the interpolation operator in terms backward finite differences

$$
p(t(\alpha))=P(\alpha)=\left(I-\alpha \frac{\nabla}{1!h}+\alpha(\alpha-1) \frac{\nabla^{2}}{2!h^{2}}+\cdots+(-1)^{n} \alpha(\alpha-1) \cdot \ldots \cdot(\alpha-1+n) \frac{\nabla^{n}}{n!h^{n}}\right) y_{n} \cong(I-\nabla)^{\alpha} y_{n}=\mathscr{B}_{\alpha} y_{n} .
$$

Differentiation of the interpolation expressed in terms of forward finite differences gives

$$
f^{\prime}(t) \cong \frac{\mathrm{d}}{\mathrm{~d} t} P(\alpha)=\frac{\mathrm{d} \alpha}{\mathrm{~d} t} P^{\prime}(\alpha) \cong \frac{1}{h} \frac{\mathrm{~d}}{\mathrm{~d} \alpha} \mathscr{F}_{\alpha} y_{0}=\frac{1}{h}[\ln (I+\Delta)](I+\Delta)^{a} y_{0} \cong \frac{1}{h} \ln (I+\Delta) P(\alpha) .
$$

The particular interpolant $P(\alpha)$ is irrelevant, leading to the operator identity

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \cong \frac{1}{h} \ln (I+\Delta) .
$$

For $|x|<1$, the power series expansions are

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (1+x)=\frac{1}{1+x}=1-x+x^{2}-\cdots \Rightarrow \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{k+1} \frac{x^{k}}{k}+\cdots,
$$

are uniformly convergent, leading to the expression

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \cong \frac{1}{h}\left(\Delta-\frac{1}{2} \Delta^{2}+\frac{1}{3} \Delta^{3}-\ldots+(-1)^{k} \frac{1}{k} \Delta^{k}+\cdots\right),
$$

stating that the (continuum) differentiation operator can be approximated by an infinite series of finite difference operations, recovered exactly in the $h \rightarrow 0$ limit. Denote by D_{k}^{+}the truncation at term k of the above operator series such that

$$
f^{\prime}\left(x_{0}\right) \cong D_{k}^{+}(f)\left(x_{0}\right)=\frac{1}{h}\left(\Delta-\frac{1}{2} \Delta^{2}+\frac{1}{3} \Delta^{3}-\ldots+(-1)^{k} \frac{1}{k} \Delta^{k}\right) y_{0} .
$$

Truncation at $k=1,2,3$ leads to the expressions
$D_{1}^{+}(f)=\frac{f(h+t)-f(t)}{h}, D_{2}^{+}(f)=\frac{4 f(h+t)-f(2 h+t)-3 f(t)}{2 h}, D_{3}^{+}(f)=\frac{18 f(h+t)-9 f(2 h+t)+2 f(3 h+t)-11 f(t)}{6 h}$.
The $h \rightarrow 0$ limit of divided differences is given by

$$
\lim _{h \rightarrow 0}\left[y_{k}, y_{k-1}, \ldots, y_{0}\right]=\lim _{h \rightarrow 0}\left(\frac{1}{k!h^{k}} \Delta^{k} y_{0}\right)=\frac{1}{k!} f^{(k)}\left(x_{0}\right),
$$

such that for small finite $h>0$,

$$
\Delta^{k} y_{0} \cong h^{k} f^{(k)}\left(x_{0}\right)
$$

The resulting derivative approximation error is of order k,

$$
e_{k}^{+}(t)=D_{k}^{+}(f)(t)-f^{\prime}(t)=\frac{(-1)^{k+1} h^{k}}{k+1} f^{(k+1)}(t)=\mathcal{O}\left(h^{k}\right)
$$

The analogous expression for backward differences is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \cong-\frac{1}{h} \ln (I-\nabla)=\frac{1}{h}\left(\nabla+\frac{1}{2} \nabla^{2}+\frac{1}{3} \nabla^{3}+\ldots+\frac{1}{k} \nabla^{k}+\cdots\right),
$$

and the first few truncations are

$$
D_{1}^{-}(f)=\frac{f(t-h)-f(t)}{h}, D_{2}^{-}(f)=\frac{-f(t-2 h)+4 f(t-h)-3 f(t)}{2 h}, D_{3}^{-}(f)=\frac{2 f(t-3 h)-9 f(t-2 h)+18 f(t-h)-11 f(t)}{6 h}
$$

with errors

$$
e_{k}^{\bar{k}}(t)=D_{k}^{-}(f)(t)-f^{\prime}(t)=\frac{h^{k}}{k} f^{(k+1)}(t)=\mathcal{O}\left(h^{k}\right)
$$

The above operator identities can be inverted to obtain

$$
\Delta=E-I=\exp \left(h \frac{\mathrm{~d}}{\mathrm{~d} t}\right)-I, \nabla=I-E^{-1}=I-\exp \left(-h \frac{\mathrm{~d}}{\mathrm{~d} t}\right)
$$

leading to

$$
E=\exp \left(h \frac{\mathrm{~d}}{\mathrm{~d} t}\right)=1+h \frac{\mathrm{~d}}{\mathrm{~d} t}+\frac{1}{2}\left(h \frac{\mathrm{~d}}{\mathrm{~d} t}\right)^{2}+\ldots+\frac{1}{k!}\left(h \frac{\mathrm{~d}}{\mathrm{~d} t}\right)^{k}+\cdots+
$$

this time expressing the finite translation operator as an infinite series of continuum differentiation operations. This allows expressing the central difference operator as

$$
\delta=E^{1 / 2}-E^{-1 / 2}=\exp \left(\frac{h}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\right)-\exp \left(-\frac{h}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\right)=2 \sinh \left(\frac{h}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\right),
$$

and approximations of the derivative based on centered differencing are obtained from

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \cong \frac{2}{h} \operatorname{arcsinh}\left(\frac{\delta}{2}\right)=\frac{1}{h}\left(\delta-\frac{\delta^{3}}{24}+\frac{3 \delta^{5}}{640}-\frac{5 \delta^{7}}{7168}+\frac{35 \delta^{9}}{294912}-\cdots\right) .
$$

An advantage of the centered finite differences (surmised from the odd power series) is a higher order of accuracy

$$
e_{k}=D_{k} f(f)-f^{\prime}(t)=\mathcal{O}\left(h^{2 k}\right) .
$$

Higher order derivative are obtained by repeated application of the operator series, e.g.,

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}}{\mathrm{~d} t} \cdot \frac{\mathrm{~d}}{\mathrm{~d} t}=\frac{1}{h^{2}}\left(\Delta-\frac{1}{2} \Delta^{2}+\frac{1}{3} \Delta^{3}-\cdots\right)^{2}=\frac{1}{h^{2}}\left(\Delta^{2}-\Delta^{3}+\frac{11}{12} \Delta^{4}-\cdots\right)^{2}
$$

Moment method. An alternative derivation of the above finite difference formulas is to construct a linear combination of function values

$$
L_{m}^{n} f(t)=\sum_{k=-m}^{n} c_{k} f(t+k h)=\left(\sum_{k=-m}^{n} c_{k} E^{k}\right) f(t)
$$

and determine the coefficients c_{k} such that the $p^{\text {th }}$ derivative is approximated to order q

$$
f^{(p)}(t)=L_{m}^{n} f(t)+\mathcal{O}\left(h^{q}\right) .
$$

For example, for $m=0, n=1$, carrying out Taylor series expansions gives

$$
\begin{aligned}
f(t+h) & =f(t)+h f^{\prime}(t)+\frac{1}{2} h^{2} f^{\prime \prime}(t)+\cdots \\
f(t) & =f(t)
\end{aligned}
$$

Eliminating $f(t)$ by multiplying the first equation by $c_{1}=1$ and the second by $c_{0}=-1$ recovers the forward finite difference formula

$$
f^{\prime}(t)=\frac{f(t+h)-f(t)}{h}+\mathcal{O}(h) .
$$

\boldsymbol{B}-spline basis. The above example used a truncation of the monomial basis $\mathscr{M}_{n}(t)=\left\{1, t, \ldots, t^{n}\right\}$. Analogous results are obtained when using a different basis. Consider the equidistant sample points $x_{i}=i h+x_{0}$, data $\mathscr{D}=\left\{\left(x_{i}, y_{i}=f\left(x_{i}\right)\right.\right.$, $i=0,1, \ldots, n)\}$ and the first-degree B-spline basis

$$
\mathscr{B}_{n, 1}(t)=\left\{B_{0,1}(t), B_{1,1}(t), \ldots, B_{n, 1}(t)\right\},
$$

in which case the linear piecewise interpolant is expressed as

$$
p(t)=\sum_{i=0}^{n} y_{i} B_{i, 1}(t)
$$

and over interval $\left[x_{i-1}, x_{i}\right]$ reduces to

$$
p_{i}(t)=y_{i-1} B_{i-1,1}(t)+y_{i} B_{i, 1}(t)=y_{i-1} \cdot \frac{x_{i}-t}{x_{i}-x_{i-1}}+y_{i} \cdot \frac{t-x_{i-1}}{x_{i}-x_{i-1}} .
$$

Differentiation recovers the familiar slope expression

$$
p_{i}^{\prime}(t)=\frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}=\frac{y_{i}-y_{i-1}}{3 h} .
$$

At the nodes, a piecewise linear spline is discontinuous, hence the derivative is not defined, though one could consider the one-sided limits. Evaluation of derivatives at midpoints $t_{i}=\left(x_{i-1}+x_{i}\right) / 2=(i-1) h+h / 2+x_{0}, i=1,2, \ldots, n$, leads to

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{n}^{\prime}
\end{array}\right]=p^{\prime}(\boldsymbol{t})=\boldsymbol{D} \boldsymbol{x}=\frac{1}{h}\left[\begin{array}{cccccc}
-1 & 1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 1 & 0 & \ldots & 0 \\
& & \ddots & \ddots & & \\
& & & \ddots & \ddots & \\
& & & & -1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

with $\boldsymbol{D} \in \mathbb{R}^{n \times(n+1)}$.

