1. Gauss quadrature

Recall that the method of moments approach to numerical integration based upon sampling $\mathscr{D}=\left\{\left(x_{i}, y_{i}=f\left(x_{i}\right)\right), i=0, \ldots\right.$, $n\}$,

$$
\int_{a}^{b} \omega(t) f(t) \mathrm{d} t=\sum_{i=0}^{n} w_{i} y_{i}+e \cong \sum_{i=0}^{n} w_{i} y_{i}
$$

imposes exact results for a finite number of members of a basis set $\left\{\phi_{0}, \ldots, \phi_{n}, \ldots\right\}$

$$
\int_{a}^{b} \omega(t) \phi_{k}(t) \mathrm{d} t=\sum_{i=0}^{n} w_{i} \phi_{k}\left(x_{i}\right), k=0,1, \ldots, n
$$

The trapezoid, Simpson formulas arise from the monomial basis set $\left\{1, t, t^{2}, \ldots\right\}$, in which case

$$
\int_{a}^{b} \omega(t) t^{k} \mathrm{~d} t=\sum_{i=0}^{n} w_{i} x_{i}^{k}, k=0,1, \ldots, n
$$

but any basis set can be chosen. Instead of prescribing the sampling points x_{i} a priori, which typically leads to an error $e=\mathcal{O}\left(\phi_{n+1}(t)\right)$, the sampling points can be chosen to minimize the error e. For the monomial basis this leads to a system of $2(n+1)$ equations

$$
\int_{a}^{b} \omega(t) t^{k} \mathrm{~d} t=\sum_{i=0}^{n} w_{i} x_{i}^{k}, k=0,1, \ldots, 2 n+1
$$

for the unknown $n+1$ quadrature weights w_{i} and the $n+1$ sampling points x_{i}. The system is nonlinear, but can be solved in an insightful manner exploiting the properties of orthogonal polynomials known as Gauss quadrature.

The basic idea is to consider a Hilbert function space with the scalar product

$$
(f, g)=\int_{a}^{b} \omega(t) f(t) g(t) \mathrm{d} t
$$

and orthonormal basis set $\left\{\phi_{0}(t), \phi_{1}(t), \phi_{2}(t), \ldots\right\}$,

$$
\left(\phi_{j}, \phi_{k}\right)=\int_{a}^{b} \omega(t) \phi_{j}(t) \phi_{k}(t) \mathrm{d} t=\delta_{j k}
$$

Assume that $\phi_{k}(t)$ are polynomials of degree k. A polynomial $p_{2 n+1}$ of degree $2 n+1$ can be factored as

$$
p_{2 n+1}(t)=q_{n}(t) \phi_{n+1}(t)+r_{n}(t)
$$

where $q_{n}(t)$ is the quotient polynomial of degree n, and r_{n} is the remainder polynomial of degree n. The weighted integral of $p_{2 n+1}$ is therefore

$$
\int_{a}^{b} \omega(t) p_{2 n+1}(t) \mathrm{d} t=\int_{a}^{b} \omega(t)\left[q_{n}(t) \phi_{n+1}(t)+r_{n}(t)\right] \mathrm{d} t=\left(q_{n}, \phi_{n+1}\right)+\int_{a}^{b} \omega(t) r_{n}(t) \mathrm{d} t .
$$

Since $\left\{\phi_{0}, \ldots, \phi_{n+1}\right\}$ is an orthonormal set, $\left(q_{n}, \phi_{n+1}\right)=0$, and the integral becomes

$$
\int_{a}^{b} \omega(t) p_{2 n+1}(t) \mathrm{d} t=\int_{a}^{b} \omega(t) r_{n}(t) \mathrm{d} t
$$

The integral of the $n^{\text {th }}$ remainder polynomial can be exactly evaluated through an $n+1$ point quadrature

$$
\int_{a}^{b} \omega(t) r_{n}(t) \mathrm{d} t=\sum_{i=0}^{n} w_{i} r\left(x_{i}\right)
$$

that however evaluates $r(t)$ rather than the original integrand $p_{2 n+1}(t)$. However, evaluation of the factorization (1) at the roots x_{i} of $\phi_{n+1}, \phi_{n+1}\left(x_{i}\right)=0, i=0,1, \ldots, n$, gives

$$
p_{2 n+1}\left(x_{i}\right)=q_{n}\left(x_{i}\right) \phi_{n+1}\left(x_{i}\right)+r_{n}\left(x_{i}\right)=r_{n}\left(x_{i}\right)
$$

stating that the values of the remainder at these nodes are the same as those of the $p_{2 n+1}$ polynomial. This implies that

$$
\int_{a}^{b} \omega(t) p_{2 n+1}(t) \mathrm{d} t=\sum_{i=0}^{n} w_{i} p_{2 n+1}\left(x_{i}\right)
$$

is an exact quadrature of order $2 n+1, e=\mathcal{O}\left(t^{2 n+1}\right)$. The weights w_{i} can be determined through any of the previously outlined methods, e.g., method of moments

$$
\int_{a}^{b} \omega(t) t^{k} \mathrm{~d} t=\sum_{i=0}^{n} w_{i} x_{i}^{k}, k=0, \ldots, n
$$

which is now a linear system that can be readily solved. Alternatively, the weights are also directly given as integrals of the Lagrange polynomials based upon the nodes that are roots of ϕ_{n+1}

$$
w_{i}=\int_{a}^{b} \omega(t) \ell_{i}(t) \mathrm{d} t
$$

