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A first example of problem-specific algorithms is afforded by consideration of the steady-state diffusion problem
-Viu=-Au=f, (1)

where u(x),x € Q € R¢ can be understood to denote the temperature in an infinitesimal volume positioned at x in d-
dimensional space, and f is a local rate of heat generation. The above arises from setting the time derivative zero in
ou—au=f. Though often stated in this thermal language, the Poisson equation (1) is generally valid for unresolved
transport by Brownian motion. The mathematical concept of an “infinitesimal volume” is interpreted as setting some
length scale ¢ much smaller than the length scale L characterizing the size of the domain Q. As an example, for heat
conduction in a column of water of length L = 1m the length scale of a quasi-infinitesimal volume can be considered
as, say, ¢=1pm. There is no physical significance to the mathematical limit process ¢ — 0 due to the discrete structure
of matter, and for all practical purposes setting £ =1 pm is an acceptable threshold to delimit a phenomenon of interest
to behavior that can be neglected. In this case the phenomenon of interest is the average transport of thermal energy
in volumes of size greater than © (¢%). The detailed Brownian motion of the water molecules that occurs on length
scales s =~ 1 nm « ¢ can be neglected and is said to be unresolved. The only observable effect of this motion is that
temperature gradients lead to a heat flux as described by f (1) =—a Vu (Fourier's law). The same equation (1) arises in
epidemiology when ¢=10m, an average separation between an infected and susceptible individual, L = 10km, the size
of a large city, and u is reinterpreted as the percentage of infected individuals in the population. Again, the detailed
Brownian steps of size s = 10cm « ¢ taken by individuals can be neglected.

1. Poisson equation discretization

Understanding the underlying unresolved Brownian motion is useful in constructing numerical solutions. For f =0,
(1) becomes V2u =0, which states that there is no net heat flux in an infinitesimal volume, div- (a« Vu) =0, colloquially:
“what flows in on one side goes out on the other”. A function that satisfies Laplace's equation V2 u =0 is said to be
harmonic. For d = 1, the ordinary differential equation 92« =0 is obtained with solution #(x) =a + bx, and boundary
conditions ug at x =0 and u; at x =1 gives u(x) =ug+ (u; —uo)x. A temperature difference uy# u; at the boundaries
induces diffusive fluxes that lead to the mean value u(1/2) = (up+u;) /2 at the midpoint. An analogous statement is
made for d > 1 starting from Green's formula on ball B with spherical boundary S of radius R

ov ou
IB (uAv-vAu)dow = fs:aB (MW_VW) do,

for scalar functions u,v. For d =3 and v=1/r the mean value theorem

1
u(x)=4ﬂR2IS:aBu@)da(y)’ )

is obtained, which states that the value of a harmonic function is the average of the values on a surrounding sphere.
For d =2 the analogous statement is

2
u(a):% , Ua+rcosfe,+rsinfey)do. 3)

Midpoint quadrature of (3) over four subintervals gives

ur+ux+usz+us
up =T )

Apply the above on a grid covering some arbitrary domain Q with boundary X =3 to obtain

1
ui,j=Z(“i,j—l+ui—l,j+ui+1,j+ui,j+l)~ 5)

Complications arise for general boundaries X, but for a square domain Q =[0,1]x [0, 1] grid points (x;=1h,y; = jh)
align with the boundary, h=1/(n+ 1). Instead of two indices, one for each spatial direction, organize the grid values
u through a single index k = (j—1)n + i, with u; denoting the value at the interior points (x;,y;). The vector of interior
grid valuesu=[ u; ... u, ] has m=n?

o Au :b, (6)

components, and the mean value theorem leads to the linear system



where A has a regular sparsity pattern induced by the uniform spacing of the grid
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Figure 1. Left: Mean value theorem leads to ug= (u1 + up + uz +u4) /4. Middle: Five-point finite difference stencil for Laplace operator.
Right: Structure of A matrix resulting from discretization of Laplace operator.

The system (6) was obtained by discretization of the mean-value integral (3). The same linear system is also obtained
by discretization of the differential equation
_V zu = —uxx — uyy = 0’

where indices denote differentiation. The minus sign arises from compatibility with the unsteady form of the heat
equation d,u—V>?u=f. A centered finite difference approximation of the derivatives on the uniform grid leads to

Wij—1=2Uij+ Ui j+1
h? ’

Uim1,j=2Uij+Uix1,j
72

Uy (X, )7) = Uy (X5, Y5) =

and (6) is recovered. For the Poisson equation f # 0 the right hand side changes to
Au=b+h’f=c (7

with fy = f(x;,y;). It is often the case that the same discrete system arises from both the differential and the integral
formulation of a conservation law on a uniform grid.

2. Matrix splitting iteration

The above discussion of the underlying physics of the Poisson equation productively guides construction of numerical
solution procedures. Solving the linear system (7) by general factorizations such as A =LU or A =QR is costly in
terms of memory usage since the sparisty pattern is lost. For the uniform grid and square domain considered above the
matrix A need not be explicitly stored at all since a;;=4, and a;;=-1 when |i— j|=1 or |i— j| =n. The discrete mean
value theorem (5) suggests that some approximation " can be improved by the iteration

(1+1):l( U ()

()
u;; 7 UpjogH Uy s ). (3

The above is known as Jacobi iteration, and can be stated in matrix form by expressing A as

A=L+D+U, ©)]
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with L, U containing non-zero components of A below, above the diagonal, and D containing the diagonal of A. In
contrast to the multiplicative decompositions considered up to now, the OR, LU, SVD, eigen or Schur decompositions,
the decomposition (9) is now additive. Note that in (9) L, U are strictly lower, upper diagonal matrices with zeros on
the diagonal in contrast to the notation for the standard LU factorization algorithm. Recall that the utility of matrix
multiplication was associated with the representation of linear mapping composition. Additive decompositions such as
(9) generally are useful when separating different aspects of a physical process, and are a simple example of operator
splitting. For the discrete Poisson system Jacobi iteration can be expressed as

Au=c=>L+D+V)u=c=>u""V=D"'(c-Lu"-Uu®). (10)

Several variants of the idea can be pursued. The matrix splitting (9) is useful in theoretical convergence analysis,
but implementations directly use (8) within loops over the (i, j) indices. Updated values can be immediately utilized
leading to either of the following iterations

u*V=DV(c-Lu""V-UuV),u"V=D"(c-Lu"-Uu*V), (11)

depending on loop organization. These are known as Gauss-Seidel iterations. Convergence might accelerated by
extrapolation,

u*V=yO4+ o [D N e-Lu-Uu""V)-u]=(1-w)uV+ oD (c-LuV-Uu"*"), (12)

where the new iteration is continued by factor w in the direction of the Gauss-Seidel update. When @ > 1 this is
known as successive over-relaxation (SOR) and goes further in the Gauss-Seidel direction. Choosing 0 < w < 1 leads
to successive under-relaxation.

3. Convergence analysis
Turning now from algorithm construction to analysis of its behavior, simplify notation by letting u; denote the cur-

rent iterate. The previous notation 'Y was convenient since individual components were referenced as in uflj), but

convergence analysis is determined by the properties of the operator splitting and not of the current iterate. Introduce
the error &y at iteration k as the difference between the exact solution u and the current iterate u;, 8 =u —uy. Also
introduce the residual r, =c —Auj; =A 8, and the correction to the current iterate e; =uy . — 1y

The above methods can be formulated as a residual correction algorithm through the steps:

1. residual computation, ry =c —Auy
2. correction computation, ey =B ry
3. approximation update, u; .| =uy + ey
When B =A"" the exact solution is recovered in one step
er=A"N(c—Aup) =u—-u=>up =u;+e,=u.
Iterative methods use some approximation of the (unknown) inverse, B =A~!. Jacobi iteration uses B =D~! since
U =urg+D ' [c—(L+D+U)u]=D"'[c— (L+U)uy],

recovering (10). Table 1 shows several common choices for B. Two key aspects govern the choice of the inverse
approximant:

1. Computational efficiency stated as a requirement that each iteration cost either @ (m) or O (mlogm) operations;

2. Capturing the essential aspects of A.

Jacobi D! Forward Gauss-Seidel (D+L)!

Weighted Jacobi wD™! Backward Gauss-Seidel | (D+U)™!

SOR wD+wL)™! Symmetric Gauss-Seidel | (D +U)™'D(D +L)™!
Symmetric SOR | @ (2-®)(D+ wU)™'D (D + » L) | Richardson wl

Table 1. Common iterative methods



The iteration converges to the solution if ||§4] — O for increasing k. The error at iteration k + 1 is expressed as
6k+1 =U—-Uj1=U— (uk +Brk) = 6k—BA(u—uk) = (I—BA)6k= (I—BA)k+l 60. (13)
The repeated matrix multiplication indicates that the eigenstructure of the iteration matrix M =1 - BA determines
iteration convergence. Indeed the above is simply power iteration for M and can be expected to converge as
6/( - )uli ci1q1,

with (u1,q;) the eigenpair that corresponds to the largest eigenvalue in absolute value, Mq; = u;q;, known as the
spectral radius of M, denoted by p(M). Clearly, the above iterations will exhibit linear order of convergence when
p (M) < 1. The rate of convergence s;, at iteration k is estimated by the Rayleigh quotient

; _S8IMS: _ 8 Sk
KTTsTs, 816y

and is monitored in implementations of iterative methods, and determined by the eigenvalues 2 =1— p of BA.

The eigenstructure of B A is difficult for arbitrary matrices A, but can be carried out when A has special structure
induced by known physical phenomena. The relation between analytical and numerical formulations plays an essen-
tial role in convergence analysis. The diffusion equation (5) leads to a symmetric matrix A, A =A” due to two aspects:

1. the chosen discretization is symmetric using centered finite differences;
2. the operator itself exhibits symmetry.

Insight into the above two aspects is most readily gained from the one-dimensional case —u,, = f with homogeneous
Dirichlet boundary conditions #(0) =u(1) =0. The linear system Au =f obtained from the centered finite difference
discretization

—wiy + 2ui—u =h* fri=1,. . mh =1/ (m+1),u0= s =0,
has a symmetric tridiagonal system matrix A = diag([ =1 2 —1]). The AT =A symmetry can be expressed through
scalar products in a way that generalizes to differential operators. Recall that a real-valued scalar product (u,v) must
satisfy symmetry (v,u) = (u,v). For u,v € R™ the standard inner product (u,v) = u” v has this property. Consider the

action of the operator A € R on the two terms. If (Au,v) = (u,Av) the operator A is said to be symmetric. For the
inner product

Au,v)=Au)Tv=uT ATy, (u,Av)=u" Av,

and the two expressions are equal if A =A”. The same approach extends to the d = 1 diffusion operator L =-d,, using
the scalar product

1
(f.8)= Io f(x)g(x)dx.
Applying integration by parts
1 | 1
Oufo0)= [, 7@ g dr=1f"glizh~ [ /(08" 0 dx=[f gRZb~[78 Kb+ [, F(0) 8" (0 dx=b+ (. D).

For homogeneous boundary conditions f(0) = f(1) =g(0) =g(1) =0, the symmetry condition is satisfied. Note that
symmetry involves both the operator anld the boundary conditions of the problem. For d =2 the scalar product

(u,v) = IQ u(x,y) v(x,y) dxdy,
is defined on the unit square Q =[0, 1] x [0, 1], and for homogeneous Dirichlet boundary conditions two applications

of Green's formula leads to (V2u,v) = (1, V2v), and the Laplace operator is symmetric.

Ford=1,x;=jh,h=1/(m+1), the eigenvalues vy of A =diag([ 1 -2 1 ]) are inferred from those of the —0,, operator
with homogeneous boundary conditions at x=0, x=1

—0y, sin(x 7 x) = (¢ 77)%sin(xc 77x), x € N.
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Positing that an eigenvector g of A is the discretization of the continuum eigenfunction leads to

. o o (KT
qj_sm(xﬂxj)—SIH(KJT]/’l)—Sln(m+1)’

hypothesis that is verified by the calculation of component j of Aq
L (-1 .| jrar G+ D] KT . (jra
(Aq)]——sm[w +2sin) T | s T —2[1—cos(m+1)]sm(m+1),

thereby obtaining the eigenvalue

vK:Z[l—cos(%)] :4sin2[ K;h],

which recovers the analytical eigenvalue in the 4 — 0 limit

,llin(l) % = (x )2,
For Jacobi B=D"!, so the eigenvalues of BA are

AK=ZSin2[KTJTh],K= 1,2,...,m.

The eigenvalues of M =1—-BA are therefore

=1 —2Sin2[ K”h] =cos(xh)

Replacing h=1/(m+ 1) the largest eigenvalue is obtained for x =1

ar
Hmax:ﬂlzcos(m+1)-

For large m, p £ 1, and slow convergence is expected as verified in the numerical experiment from Fig. 2.

Jacobi iteration convergence for uy, = m2sin(mx)
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Figure 2. Convergence of Jacobi iteration. Blue: exact solution. Orange, green, red: iterates after 1000, 2000, 3000 iterations.

Jacobi iteration and its variants have limited practical utility by comparison to other iterative procedures due to slow
convergence, but the concept of operator spliting has wide applicability. A more consequential example of operator
splitting is to consider the advection diffusion equation

q:+v-Vg=aAgq,
which can be interpreted as stating that the time evolution of ¢ is due to the effect of a diffusion operator 4 = a A and

an advection operator B =-v-V
qr=(A+B)q.



Suppose both operators are discretized leading to matrices A, B and the discrete system
ql‘ = (A + B)q’
with initial condition g (x,7=0) =q(. Advancing the solution by a time step At can be written as

qlr+ A1) =eM 4P q(),

and can be separated into two stages

(I+1) — AIA ,AIB

q q".

AtB (I+1) —

The quantity § = e8¢V captures advection effects and g ¢4 is the diffusion correction. Since advection and
diffusion are markedly different physical effects describing resolved versus unresolved transport, it can be expected

that matrices A, B have different properties that require specific solution procedures.

By contrast, the Jacobi iteration splitting A =L + D + U does not separate physical effects and simply is suggested by
the sparsity of A and computational efficiency per iteration. For example, the forward Gauss-Seidel iteration with
B=(D+L) " leads to

1=+ D+L) ' [e=(L+D+U)u]=D+L) Y (c-Uuy)=>D+L)up. =c-Uu,. (14)

The matrix D + L is (non-strictly) lower-triangular and (14) is easily solved by forward substitution. The implemen-
tation is very simple to express while preserving two-dimensional indexing.

Algorithm (Componentwise forward Gauss-Seidel)

fori=1:m,
forj=1:m,
u(l,j)=[c(,j)+u@+1,j)+u(i-1,))+u(i,j+1)+u(i,j—-1)]/4
end
end

In the above implementation a single memory space is used for # with new values taking place of the old, leading to
just four floating point additions and one multiplication per grid point. Since the algorithm essentially takes the current
average of neighboring values, it is also known as a relaxation method, smoothing out spatial variations in u.

Though such simple implementation is desirable, the non-physical splitting A =L + D + U and associated slow con-
vergence usually outweighs ease of coding effort and suggests looking for alternative approaches. The only scenarios
where such simply implemented iterations find practical use is in parallel execution and as a preliminary modification
of the system prior to use of some other algorithm.
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