
LECTURE 29: GRADIENT DESCENT METHODS

Alternatives to exploiting problem structure by operator splitting are suggested by the least action principle. The
action

S(q, q̇)=�
t0

t1
L(t,q(t), q̇(t))dt,

is a functional over the phase space of the system, e.g., S:ℝ2n→ℝ for a system composed of n point masses. The least
action principle states that the observed trajectory minimizes the action, hence it is to be expected that optimization
algorithms that solve the problem

min
q,q̇

S

would be of interest. This indeed is the case and leads to a class of methods that can exhibit remarkably fast conver-
gence and more readily generalize to variable physical properties and arbitrary domain geometry.

1. Spatially dependent diffusivity
A first step in considering linear operators that still exhibit structure but are more complex than the constant-coeffi-
cient discretization of the Laplacian ∇2 is to consider spatially-varying diffusivity in which case the steady-state heat
equation in domain Ω becomes

−∇⋅(𝛼∇u)= f , (1)

again with Dirichlet boundary conditions u = b on ∂Ω. Maintaining simple domain geometry for now, the centered
finite-difference discretization of (1) on Ω=[0,1]×[0, 1] with grid points (xi= ih, yj = jh,h=1/(n+1)) becomes

−𝛼i+1/2, j ui+1, j −𝛼i−1/2, j ui−1, j −𝛼i, j+1/2 ui, j+1 −𝛼i, j−1/2 ui, j−1 +4�̄�i, j ui, j =ci, j, (2)

where �̄�i, j =(𝛼i+1/2, j +𝛼i−1/2, j +𝛼i, j+1/2+𝛼i, j−1/2)/4 denotes a diffusivity average at (i, j) and 𝒄 contains the boundary
conditions and forcing term as before, 𝒄=𝒃+h2 𝒇 . The sparsity pattern is the same as in the constant diffusivity case,
but the system 𝑨𝒖= 𝒄 has a system matrix with variable coefficients. The matrix 𝑨 expresses a self-adjoint operator
through a symmetric discretization, namely centered finite differences on a uniform grid. It can be expected to be
symmetric 𝑨 = [ak,r] = 𝑨T = [ar,k], as verified by considering row k = ( j − 1)n + i, that has non-zero components in
columns k, k ± 1, k ± n. It is sufficient to verify symmetry for entries within the lower triangle of 𝑨. The k, k − 1
component is the coefficient of ui−1, j in (2) ak,k−1=−𝛼i−1/2, j. Symmetry of 𝑨 would require ak,k−1=ak−1,k. The ak−1,k
component arises from row k −1

−𝛼i−1/2, j ui, j −𝛼i−3/2, jui−2, j −𝛼i−1, j+1/2 ui−1, j+1 −𝛼i−1, j−1/2 ui−1, j−1 +4�̄�i−1, j ui−1, j =ci−1, j.

The diagonal element for row k −1 has indices (i−1, j) and the k th column has indices (i, j) for which ak−1,k =−𝛼i−1/2, j,
indeed verifying ak,k−1=ak−1,k. Such opaque index manipulations can readily be avoided by symmetry considerations
as stated above: self-adjoint operator expressed through symmetric discretization. The physical argument is even
simpler. Diffusivity expresses how readily heat is transferred between two spatial positions of unequal temperature,
and there is no reason for this material property to differ in considering the heat flux from point P to point Q, qPQ =
𝛼PQ(uP − uQ) from that from point Q to P, qQP = 𝛼QP(uQ − uP). Setting qPQ = −qQP to account for direction of heat
flow leads to 𝛼PQ =𝛼QP, and this material property is reflected in symmetry of 𝑨. Note that even though the operator
∇⋅(𝛼∇) might be self-adjoint under appropriate boundary conditions, unsymmetric discretization such as one-sided
finite differences can lead to a non-symmetric system matrix 𝑨.

The implications for iterative method convergence can again be surmised from the one-dimensional case with homo-
geneous boundary conditions ∂x(𝛼(x)∂xu)= f , u(0)=u(1)=0. The convergence rate for an iterative method depends
on the eigenvalues of the matrix 𝑨 obtained by discretization of the operator ∂x(𝛼(x)∂x). The regular Sturm-Liouvile
eigenproblem ∂x(𝛼(x) ∂xu) = 𝜆u, u(0) = u(1) = 0 is known to have a solution, albeit difficult to obtain analytically.
Replacing analytical estimates by a numerical experiment taking 𝛼(x)=1+cx, Fig. 1 shows that convergence becomes
marginally slower as the diffusivity gradient c increases, though the main difficulty is the 𝜌(M) ⪅ 1 spectral radius
for constant diffusivity.

LECTURE 29: GRADIENT DESCENT METHODS 1



∘

0 2 4 6 8 10
c

0.998100

0.998125

0.998150

0.998175

0.998200

0.998225

0.998250

0.998275

0.998300

m
ax

Jacobi iteration spectral radius

Figure 1. Spectral radius of Jacobi iteration 𝑴 =𝑰 −𝑫−1𝑨 for ∂x(𝛼(x)∂xu) = f with increasing diffusivity gradient 𝛼=1+cx.

2. Steepest descent

The heat equation can be obtained as the stationary solution 𝛿Φ=0, to an optimization problem for the functional

Φ(u,u′)=−�
Ω

�1
2 𝛼(∇u) ⋅ (∇u)+uf �d𝒙, (3)

among all functions u that satisfy the boundary condition u=b on ∂Ω. The above can be understood as the general-
ization of the one-dimensional case

Φ(u,u′)=−�
0

1
�1

2 𝛼u′u′+uf �dx.

The stationarity condition point for Φ is

𝛿Φ=−�
0

1
(𝛼u′𝛿u′+ f 𝛿u )dx =−�

0

1
�𝛼u′ d

dx𝛿u+ f 𝛿u�dx =−[𝛼u′𝛿u]x=0
x=1 +�

0

1
� d

dx(𝛼u′)− f �𝛿udx =0.

Since all u must satisfy boundary conditions the perturbations are null at endpoints 𝛿u(0)=𝛿u(1)=0, and stationarity
for arbitrary perturbations 𝛿u implies that

d
dx(𝛼u′)− f =0,

the one-dimensional variable diffusivity heat equation.

How can the above observations guide algorithm construction? The key point is that the discrete problem should also
be expressible as an optimization problem for Φ:ℝm→ℝ

Φ(𝒖)= 1
2 𝒖T 𝑨𝒖−𝒖T 𝒄= 1

2�
j=1

m

�
k=1

m

uj a jk uk −�
j=1

m

uj cj,

with 𝑨=[ajk]. The discrete stationarity condition is ∇𝒖Φ=0 leading to

∂Φ
∂ul

= 1
2�

j=1

m

�
k=1

m

(𝛿lj a jk uk +uja jk 𝛿lk)−�
j=1

m

𝛿lj cj.



Using the Kronecker delta properties 𝛿ll =1, 𝛿lj =0 for l ≠ j gives

∂Φ
∂ul

= 1
2�

k=1

m

a lk uk + 1
2�

j=1

m

uj a jl−cl,

which for symmetric 𝑨 leads to
∂Φ
∂ul

= �
j=1

m

a lj uj −cl =0⇒𝑨𝒖=𝒄. (4)

Symmetric discretization of the self-adjoint operator ∇⋅ (𝛼∇u) produces a symmetric matrix that is unitarily diago-
nalizable 𝑨=𝑸𝚲𝑸T , and, as seen previously, with strictly positive eigenvalues. Hence stationary points of Φ(𝒖) are
minima and the solution to 𝑨𝒖=𝒄 can be sought by minimizing Φ(𝒖).

Equation (4) states that the gradient of Φ is opposite the direction of the residual ∇Φ= 𝑨𝒖− 𝒄= −𝒓. Since this is the
direction of fastest increase of Φ, travel in the opposite direction will decrease Φ leading to an update

𝒖k+1=𝒖k +𝛽k 𝒓k, (5)

of the current approximation 𝒖k. The correction direction is also referred to as a search direction for the optimization
procedure. In the residual correction formulation

𝒓k =𝒄−𝑨𝒖k, 𝒆k =𝑩𝒓k, 𝒖k+1=𝒖k +𝒆k,

steepest descent corresponds to the choice 𝑩=𝛽k 𝑰. The remaining question is to determine how far to travel along the
−∇Φ(𝒖k)=𝒓k search direction. As 𝛽 increases the local gradient direction changes. Steepest descent proceeds along
the 𝒓k direction until further decrease is no longer possible, that is when the new gradient direction is orthogonal to the
previous one

𝒓k
T 𝒓k+1 =0⇒𝒓k

T(𝒄−𝑨𝒖k+1)=𝒓k
T[𝒄−𝑨(𝒖k +𝛽k 𝒓k)]=𝒓k

T(𝒓k −𝛽k 𝑨𝒓k)=0⇒𝛽k = 𝒓k
T 𝒓k

𝒓k
T 𝑨𝒓k

.

The convergence rate is given by the spectral radius of 𝑴=𝑰 −𝑩𝑨 that becomes

𝑴 =𝑰 −𝛽k 𝑨=𝑰 − 𝒓k
T 𝒓k

𝒓k
T 𝑨𝒓k

𝑨.

Recall that the one-dimensional, constant diffusivity heat equation had eigenvalues of 𝑨

vl =4sin2� l 𝜋h
2 �, l =1,2, . . . ,m.

Eigenvalues of gradient descent iteration are therefore

𝜆l =1−𝛽k 𝜈l, l =1,2, . . . ,m.

Since 𝛽k is the inverse of a Rayleigh quotient, if the residual is in the direction of eigenvector l, 𝛽k = 1/𝜈l and
𝜆l =0 suggesting the possibility of fast convergence. However, the distribution of eigenvalues 𝜈k for 𝑨 is uniformly
distributed in the interval [0,4] such that the residual component in other eigendirections is not significantly reduced.
The typical behavior of gradient descent is rapid decrease of the residual in the first few iterations followed by slow
convergence to the solution. Consider the problem

−uxx =𝜋2 �
k=1

K

k2 sin(k𝜋x),u(0)=u(1)=0,

with solution

u(x)= �
k=1

K

sin(k𝜋x).
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Figure 2. Convergence of gradient descent. Blue: exact solution. Orange, green, red: iterates after 4, 40, 400 iterations.

3. Conjugate gradient
Steepest descent is characterized by a correction in the direction of the residual (5). Enforcing 𝒓k

T 𝒓k+1 = 0 leads to
orthogonality of both succesive residuals and correction directions. A more insightful interpretation of (3) is to rec-
ognize the role of the scalar products

( f ,g)= 1
2�

Ω
𝛼(∇ f ) ⋅ (∇g)d𝒙, (𝒖, 𝒗)= 1

2 𝒖T 𝑨𝒗,

in the continuum, discrete cases respectively. Similarly to how vectors that satisfy 𝒖T𝒗=0 are said to be orthogonal,
those that satisfy 𝒖T 𝑨𝒗=0 are said to be 𝑨-conjugate. Gradient descent minimizes the 2-norm of the error ‖𝒆k‖ at each
iteration. However, the variational formulation suggests that a more appropriate norm is the 𝑨-norm

‖𝒆k‖𝑨 =(𝒆k
T 𝑨𝒆k)1/2.

This leads to a modification of the search directions 𝒑k, which are no longer taken in the direction of the residual and
orthogonal, but rather 𝑨-conjugate

𝒑k+1
T 𝑨 𝒑k =0.

Algorithm Conjugate gradient

𝒙0=𝟎, 𝒓0 =𝒄,𝒑0=𝒓0
for k =1:MaxIter

𝛽k =𝒓k−1
T 𝒓k−1/(𝒑k−1

T 𝑨 𝒑k−1)
𝒙k =𝒙k−1 +𝛽k 𝒑k−1
𝒓k =𝒓k−1 −𝛽k𝑨 𝒑k−1
𝛾k =𝒓k

T 𝒓k /(𝒓k−1
T 𝒓k−1)

𝒑k =𝒓k +𝛽k 𝒑k−1
end
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