
LECTURE 30: IRREGULAR SPARSITY

1. Finite element discretization

For the steady-state heat equation �� Å (ü�u) = f with spatially-varying di�usivity, symmetric discretizations on

uniform grids lead to systems h�=� with h=h

T

, and a regular sparsity pattern. Irregular domain discretization will

lead to more complicated sparsity patterns that require di�erent approaches to solving the linear system. It is important

to link the changes in the structure of h to speci�c aspects of the approximation procedure. Consider the di�culties of

applying �nite di�erence discretization on a domain© of arbitrary shape with boundary�=�© (Fig. 1). At grid node

(i, j) closer to the boundary than the uniform spacing h, centered �nite di�erence formulas would refer to unde�ned

values outside the domain. One-sided �nite di�erence formulas would fail to take into account boundary values for

the problem. Taylor series expansions could be used,
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from which elimination of the second derivative leads to an approximation of the �rst derivative as
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Note that setting 	=�1 would place A at a grid node, u

A

=u

i�1, j

and from (1) the familiar centered �nite di�erence

approximation of the �rst derivative
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is recovered. For an arbitrary domain the values of 	,� would vary and the resulting linear system h�=� would no

longer be symmetric. From a physical perspective this might be surprising at �rst since the operator �=��Å (ü�)

is isotropic, but this is true for an ini�nitesimal domain. Upon irregular discretization the problem h�=� is only an

approximation of the physical problem �u= f , and can exhibit di�erent behavior, in this case loss of isotropy near

the boundaries.
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Figure 1. Left: Modi�ed �nite di�erence stencil near a boundary not aligned with the grid. Boundary points A,B are distances 	h, �h

from the nearest interior node, with 	,��(�1, 1). Right: Triangles covering the domain.

Computing the appropriate mesh size fractions (	h,�h) for all grid points near a boundary is an onerous task, and

suggests seeking a di�erent approach. A frutiful idea is to separate the problem of geometric description from that

of physics expressed by some operator �. Domains within �

d

of arbitrary complexity can be approximated to any
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desired precision by a simplicial covering. Simplicia are the simplest geometric objects with non-zero measure � in a

space. For d=1 these are line segments that can approximate arbitrary curves. The corresponding simplicia for d=2

and d=3 are triangles and tetrahedra, respectively. Consider d=2 and specify a set of triangles {T

k

| k=1, 2, . . . ,n}

with vertices V

j

, j=1, . . . ,m, that form a partition of precision �~0 of the domain©,

�k, l� {1,2, . . . ,n},�(T
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The above state that intersections of triangles must have zero measure in d=2, i.e., triangles can share edges or vertices

but cannot overlap over a non-zero area. The area of the union of triangles approximates the area of the overall domain

©.

�

(x

1

,y

1

)

(x

2

,y

2

)

(x

3

,y

3

)

(x,y)

Figure 2. Left: Triangulation of a domain with a hole. Right: Triangle form function

In a �nite di�erence discretization the function u:��© is approximated by a set of values {u

i, j

}, often referred to

as a grid function. Similarly, a set of values u

j

Eu(x

j

,y

j

) can be de�ned at the triangle vertices V

j

(x

j

,y

j

). Denote the

vertex coordinates of triangle T by (x

j

,y

j

), j=1, 2, 3. Values of u(x,y) within the triangle T are determined through

piecewise interpolation, a generalization of one-dimensional B-splines, using the form functions
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Note that for (x,y)�T the form functions give the fraction of the overall area occupied by the interior triangles such

that N

j

(x,y)� [0, 1]. The linear spline interpolation p

1

of u based upon the vertex values u

1

,u

2

,u

3

is

u(x,y)E p

1

(x,y)=y

j=1

3

u

j

N

j

(x,y), (2)

the familiar form of a linear combination. It is customary to set N

j

(x,y)=0 if (x,y)	T , recovering the framework of

B-splines. Since u(x,y) thus approximated is non-zero only over the single triangle T , such an approach is commonly

referred to as a �nite element method (FEM).



Various approaches can be applied to derive an algebraic system for the vertex values from the conservation law of

interest. Consider the operator�=��Å(ü�) and the static equilibrium equation�u= f in©with Dirichlet boundary

conditions u=g on �=�©. When u denotes temperature, this is a statement of thermal equilibrium where heat �uxes

q=�ü�u balance out external heating f and imposed temperature values on the boundary. One commonly used

approach closely resembles the least squares approximation of ���

n

,

min

���

n

���h�� .

The approximant �

Ü

of � in this case is its projection onto C(h), �

Ü

=xx

T

�, with h=xy the (incomplete) QR decom-

position of h. The error of this approximation is �=�

Ü

���N(h

T

) is orthogonal to C(h)

x

T

�=x

T

(xx

T

���)=Î. (3)

The generalization of (3) in which the �nite-dimensional vector ���

n

is replaced by the function u�C

(2)

(©) that

satis�es�u= f is
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for each triangle T

k

with (u,v) denoting the scalar product

(u,v)=5

©

u(x,y)v(x,y)d�.

The analogy can be understood by recognizing that �nite element approximants lie within the span of the form func-

tions {N

i

k

} for all triangles T

k

and their vertices j =1, 2, 3. This known as a Galerkin method with (4) expressing

orthogonality of the error e=�u

Ü

� f and all form functions {N

i

k

}, leading to
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The null result of applying the second-order di�erential operator �=�� Å (ü�) onto a linear form function N

j

is

avoided through integration by parts (divergence theorem

5

T
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Assembling contributions from all triangles T

k

results in a linear system h�= �, expressing an approximation of the

steady-state heat equation�u= f .

It is illuminating to note that though the physical process itself is isotropic, the FEM approximation typically leads

to a non-symmetric system matrix h due to the di�erent sizes of the triangularization elements. The fact that the

approximation depends on the domain discretization is not surprising; this also occurred for �nite di�erence approx-

imations as evidenced by the eigenvalue dependency on grid spacing h, e.g., v

l

=4 sin

2

(l�h/2). The particularity

of FEM discretization is that the single parameter h has been replaced by the individual geometry of all triangles

within the domain partition. It is to be expected that the resulting matrices will exhibit condition numbers that are

monotonic with respect to max

k

�(T

k

)/min

k

�(T

k

), the ratio of the area of the largest triangle area to the smallest.

This is readily understood: when min

k

�(T

k

)� 0 the spanning set {N

i

k

} becomes linearly dependent since one of its

members approaches the zero element. The same e�ect is obtained if the aspect ratio of a triangle becomes large (i.e.,

one of its angles is close to zero), since again the spanning set is close to linearly dependent. A �nite element system

matrix h will still exhibit sparsity since the form functions are non-zero on only one triangle. The sparsity pattern is

however determined by the connectivity, i.e., the number of triangles at each shared vertex. A typical sparsity matrix

is shown in Fig. 3. If the physical principle of action and reaction (Newton's third law) is respected by discretization

the matrix will still be symmetric, a considerable advantage with respect to the use of Taylor series to extend �nite

di�erence methods to arbitrary domains.
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Figure 3. Non-zero elements with h��

m×m

, m=3948 of a matrix from the Boeing-Harwell collection.

2. Krylov methods, Arnoldi iteration

From the above general observations it becomes apparent that solution techniques considered up to now are inad-

equate. Factorization methods such as LU or QR would lead to �ll-in and loss of sparsity. Additive splitting is no

longer trivially implemented since connectivity has be accounted for other than by simple loops. The already slow

convergence rate of methods based upon additive splitting is likely to degrade further or perhaps diverge due to the

in�uence the spatial discretization has upon eigenvalues of the iteration matrix t= p �ih. Similar considerations

apply to gradient descent.

An alternative approach is to seek a suitable basis ,= {�

1

, �

2

, . . . , �

m

} in which to iteratively construct improved

approximations �

k

of the solution � of the discretized system h�=�,
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Vectors within the basis set should be economical to compute and also lead to fast convergence in the sense that the

coe�cient vector � should have components that rapidly decrease in absolute value. One idea is to recognize that for

a sparse system matrix h with an average of pjm nonzero elements per row the cost to evaluate the matrix-vector

product h� is onlyª(mp) as opposed toª(m

2

) for a full system with p=m. This suggests considering a vector set

{�,h�,h

2

�, . . . },

starting from some arbitrary vector �. The resulting sequence of vectors has been encountered already in the power

iteration method for computing eigenvalues and eigenvectors of h, and for large n, h

n

� will tend to belong to the null

space associated with the largest eigenvalue, leading to the ill-conditioned matrices

}

n

=�

� h� . . . h

n�1

�
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.

As in the development of power iteration into theQRmethod for eigenvalue approximation, the ill-conditioning of }

n

can be eliminating by orthogonalization of }

n

. In fact, the procedure can be organized so as to iteratively add one more

vector �
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n

=[
�

1

�

2

. . . �

n

] already obtained from orthogonalization of }
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The above can be written as.
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The resulting algorithm is known as the Arnoldi iteration.

Algorithm (Arnoldi)

�, �

1

=�/���

for n=1,2, . . .

�=h�

n

for j=1 to n

h

jn

=�

j

T

�

�=��h

jn

�

j

end

h

n+1,n

= ���

�

n+1

=�/h

n+1,n

end

3. GMRES

Approximate solutions �

n

�C(x

n

) to the system h�= � can now be obtained by choosing the starting vector of the

embedded Krylov spaces as �=� and solving the least squares problem

min

�

n

�hx

n

�

n

���. (7)

Problem (7) is reformulated using (6) as
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