1. NONLINEAR VECTOR OPERATOR EQUATIONS

1.1. Multivariate root-finding algorithms

Consider now nonlinear finite-dimensional mappings $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and the root-finding problem

$$
\begin{equation*}
f(x)=\mathbf{0} \tag{1}
\end{equation*}
$$

whose set of solutions generalize the linear mapping concept of a null space, $N(\boldsymbol{A})=\left\{\boldsymbol{x} \mid \boldsymbol{A x}=\mathbf{0}, \boldsymbol{A} \in \mathbb{C}^{d \times d}\right\}$. As in the scalar-valued case, algorithms are sought to construct an approximating sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$ whose limit is a root of (1), by approximating \boldsymbol{f} with \boldsymbol{g}_{k}, and solving

$$
\begin{equation*}
\boldsymbol{g}_{k}(\boldsymbol{x})=0 . \tag{2}
\end{equation*}
$$

Multivariate approximation is however considerably more complex than univariate approximation. For example, consider $d=2, f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, and the univariate monomial interpolants in Lagrange form

$$
\mathscr{L}_{t} \boldsymbol{f}(s, t)=\sum_{i=0}^{m} \boldsymbol{f}\left(x_{i}, t\right) l_{i}^{x}(s), \mathscr{L}_{s} \boldsymbol{f}(s, t)=\sum_{j=0}^{n} \boldsymbol{f}\left(s, y_{j}\right) l_{j}^{y}(t),
$$

with

$$
l_{i}^{x}(s)=\prod_{k=0}^{m \prime} \frac{s-x_{k}}{x_{i}-x_{k}}, l_{j}^{y}(s)=\prod_{l=0}^{n \prime} \frac{t-y_{l}}{y_{j}-y_{l}} .
$$

The operator \mathscr{L}_{t} carries out interpolation at fixed t value of the data set $\mathscr{D}_{x}=\left\{\left(x_{i}, \boldsymbol{f}\left(x_{i}, t\right)\right), i=0, \ldots, m\right\}$. Similarly, operator \mathscr{L}_{s} carries out interpolation at fixed s value of the data set $\mathscr{D}_{y}=\left\{\left(y_{j}, \boldsymbol{f}\left(s, y_{j}\right)\right), j=0, \ldots, n\right\}$. Multivariate interpolation of the data set

$$
\mathscr{D}=\left\{\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right), i=0, \ldots, m, j=0, \ldots, n\right\}
$$

can be carried out through multiple operator composition procedures.
Operator product. Define $\mathscr{L}=\mathscr{L}_{t} \otimes \mathscr{L}_{s}$ as

$$
\mathscr{L} \boldsymbol{f}(s, t)=\left(\mathscr{L}_{t} \mathscr{L}_{s}\right) \boldsymbol{f}(s, t)=\mathscr{L}_{t}\left(\mathscr{L}_{s} \boldsymbol{f}(s, t)\right)=\mathscr{L}_{t}\left(\sum_{i=0}^{m} \boldsymbol{f}\left(x_{i}, t\right) l_{i}^{x}(s)\right)=\sum_{i=0}^{m} \sum_{j=0}^{n} \boldsymbol{f}\left(x_{i}, y_{j}\right) l_{i}^{x}(s) l_{j}^{y}(t) .
$$

Operator Boolean sum. Define $\mathscr{L}=\mathscr{L}_{t} \oplus \mathscr{L}_{s}$ as $\mathscr{L}=\mathscr{L}_{t}+\mathscr{L}_{s}-\mathscr{L}_{t} \mathscr{L}_{s}$

$$
\mathscr{L} \boldsymbol{f}(s, t)=\sum_{i=0}^{m} \boldsymbol{f}\left(x_{i}, t\right) l_{i}^{x}(s)+\sum_{j=0}^{n} \boldsymbol{f}\left(s, y_{j}\right) l_{j}^{y}(t)-\sum_{i=0}^{m} \sum_{j=0}^{n} \boldsymbol{f}\left(x_{i}, y_{j}\right) l_{i}^{x}(s) l_{j}^{y}(t) .
$$

1.1.1. First-degree polynomial approximants

Secant method. Bivariate $(d=2)$ root-finding algorithms already exemplifies the additional complexity in constructing root finding algorithms. The goal is to determine a new approximation $\left(x_{k}, y_{k}\right)$ from the prior approximants

$$
\left(x_{0}, y_{0}\right), \ldots,\left(x_{k-2}, y_{k-2}\right),\left(x_{k-1}, y_{k-1}\right)
$$

Whereas in the scalar case two prior points allowed construction of a linear approximant, the two points in data

$$
\mathscr{D}=\left\{\left(x_{k-2}, y_{k-2}\right),\left(x_{k-1}, y_{k-1}\right)\right\}
$$

are insufficient to determine

$$
\mathscr{L} \boldsymbol{f}=\sum_{i=k-2}^{k-1} \sum_{j=k-2}^{k-1} \boldsymbol{f}\left(x_{i}, y_{j}\right) l_{i}^{x}(s) l_{j}^{y}(t)
$$

which requires four data points. Various approaches to exploit the additional degrees of freedom are available, of which the class of quasi-Newton methods finds widespread applicability.

Newton, quasi-Newton methods. A linear multivariate approximant in d dimensions requires 2^{d} data. A Hermite interpolant based upon function and partial derivative values can be constructed, but it is more direct to truncate the multivariate Taylor series

$$
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)+\cdots
$$

where

$$
\boldsymbol{J}=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}=\left[\begin{array}{llll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{d}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{d}} \\
\vdots & \vdots & \ddots & \\
\frac{\partial f_{d}}{\partial x_{1}} & \frac{\partial f_{d}}{\partial x_{2}} & \cdots & \frac{\partial f_{d}}{\partial x_{d}}
\end{array}\right]=\nabla \boldsymbol{f}
$$

is the Jacobian matrix of \boldsymbol{f}. Setting $\boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)=\mathbf{0}$, as the condition for the next iterate leads to the update

$$
\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)=-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right),
$$

a linear system that is solved at each iteration. Computation of the multiple partial derivatives arising in the Jacobian might not be possible or too expensive, hence approximations are sought $\boldsymbol{B}_{k} \cong \boldsymbol{J}\left(\boldsymbol{x}_{k}\right)$, similar in principle to the approximation of a tangent by a secant. In such quasi-Newton methods, a secant condition on \boldsymbol{B}_{k} is stated as

$$
\boldsymbol{B}_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)=\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{k-1}\right),
$$

and corresponds to a truncation of the Taylor series expansion around \boldsymbol{x}_{k-1}. The above secant condition is not sufficient by itself to determine \boldsymbol{B}_{k}, hence additional considerations can be imposed.

1. Recalling that the scalar Newton method for finding roots of $f(x)=0$ converges in a region where $f^{\prime}, f^{\prime \prime}>0$, imposing analogous behavior for \boldsymbol{B}_{k} suggests itself. This is typically done by requiring \boldsymbol{B}_{k} to be symmetric positive definite.
2. Assuming convergence of the approximating sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$ to a root, \boldsymbol{B}_{k+1} should be close to the previous approximation suggesting the condtion

$$
\min _{\boldsymbol{B}_{k+1}}\left\|\boldsymbol{B}_{k+1}-\boldsymbol{B}_{k}\right\| .
$$

Various algorithms arise from a particular choice of norm and procedure to apply (2).
One widely used quasi-Newton method, arising from a rank-two update at each iteration to maintain positive definiteness, is the Broyden-Fletcher-Goldfard-Shanno update

$$
\boldsymbol{B}_{k+1}=\boldsymbol{B}_{k}+\frac{\boldsymbol{y}_{k} \boldsymbol{y}_{k}^{T}}{\boldsymbol{y}_{k}^{T} \boldsymbol{s}_{k}}-\frac{\boldsymbol{B}_{k} \boldsymbol{s}_{k} \boldsymbol{s}_{k}^{T} \boldsymbol{B}_{k}^{T}}{\boldsymbol{s}_{k}^{T} \boldsymbol{B}_{k} \boldsymbol{s}_{k}},
$$

where the updates are determined by

1. Solving $\boldsymbol{B}_{k} \boldsymbol{p}_{k}=-\left[\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{k-1}\right)\right]$ to find a search direction \boldsymbol{p}_{k};
2. Finding the distance along the search direction by $\alpha_{k}=\operatorname{argmin}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}\right)\right\|_{2}$;
3. Updating the approximation $\boldsymbol{s}_{k}=\alpha_{k} \boldsymbol{p}_{k}, \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{s}_{k}$
4. Computing $\boldsymbol{y}_{k}=\boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$.
