
CHAPTER 1

Introduction to nonlinear approximation

1.1. HISTORICAL ANALOGUES

1.1.1. Operator calculus

1.1.1.1. Heavisde study of telgraphist equation

In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x, t) and voltage
V(x, t)

∂
∂xV(x, t)=−L ∂

∂t I(x, t)−RI(x, t)

∂
∂xI(x, t)=−C ∂

∂t C(x, t)−GV(x, t)

Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical formulation,
e.g., for the ODE for y(t)

dy
dt +ay=b

Heaviside considered the associated algebraic problem for Y(s)

sY +aY =b⇒Y(s)= b
a+ s ⇒y(t)=ℒ−1[Y(s)]

1.1.1.2. Development of mathematical theory of operator calculus

Why should I refuse a good dinner simply because I don't understand the digestive processes
involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathematical
rigour.

• Russian mathematician 1920's established first results (Vladimirov)

• Theory of Distributions (Schwartz, 1950s)

1.2. BASIC APPROXIMATION THEORY

1.2.1. Problem definition
Consider function f : ℝd → ℝ, d ≫ 1 assumed large, f of unknown form, difficult to compute for general
input. Seek g:ℝn →ℝ, T :ℝd →ℝn such that

‖ f −g∘T‖<𝜀
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for some 𝜀>0.

1.2.1.1. Linear approximation example

Choose a basis set (Monomials, Exponentials, Wavelets) {𝜙1,𝜙2, . . .} to approximation of L2(ℝ) functions
in Hibert space

gn(t)=�
j=1

n

( f ,𝜙j)𝜙j = �
j=1

n

cj 𝜙j

The approximation is convergent if

lim
n→∞

‖ f −g∘T‖=0,

This assumes cj =( f ,𝜙j) rapidly decrease.

THEOREM. (Parseval) The Fourier transform is unitary. For A,B:ℝ→ℂ, square integrable, 2𝜋-periodic
with Fourier series

A(t)= �
n=−∞

∞

ane int,B(t)= �
n=−∞

∞

bn e int,

�
n=−∞

∞

an b̄n = 1
2𝜋�

−𝜋

𝜋
A(t)B̄(t)dt.

Bessel inequality:

�
j=1

n

|( f ,𝜙j)|2 ⩽‖ f ‖2 .

Fourier coefficient decay: for f ∈C (k−1)(ℝ), f (k−1) absolutely continuous,

|cn|⩽ min
0⩽ j⩽k

‖ f (j)‖1

|n| j
.

In practice: coefficients decay as

• 1/n for functions with discontinuities on a set of Lebesgue measure 0;

• 1/n2 for functions with discontinuous first derivative on a set of Lebesgue measure 0;

• 1/n3 for functions with discontinuous second derivative on a set of Lebesgue measure 0.

Fourier coefficients for analytic functions decay faster than any monomial power cn = 𝜊(n−p), ∀p ∈ ℕ, a
property known as exponential convergence.

Denote such approximations by ℒ, and they are linear

ℒ(𝛼 f +𝛽g)=𝛼ℒ( f )+𝛽ℒ(g)

•

1.2.1.2. Non-Linear approximation example

Choose a basis set (Monomials, Exponentials, Wavelets) {𝜙1,𝜙2, . . .} to approximation of L2(ℝ) functions
in Hibert space

gn(t)= �
j=1

n

cj𝜙j

Let Φn ={𝜑k(1),𝜑k(2), . . . ,𝜑k(n)} such

( f ,𝜑k(1))⩾( f ,𝜑k(2))⩾ ⋅ ⋅ ⋅ ⩾ ( f ,𝜑k(n)).

Choose cj=( f ,𝜑k(j)), and

gn(t)=�
j=1

n

cj𝜙j .

Denote such approximations by 𝒢, and they are non-linear.
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1.2.2. Nonlinear approximation by composition
Consider function f : ℝd → ℝ, d ≫ 1 assumed large, f of unknown form, difficult to compute for general
input. Seek g:ℝn →ℝ, T :ℝd →ℝn such that

‖ f −g∘T‖<𝜀

for some 𝜀>0.
What questions do you ask?

Does T exist?. ∀ f , 𝜀,∃T , such that ‖ f −g∘T‖<𝜀

Can arbitrary ε be achieved?.

Can we construct T?.

→ By what procedure?
T =T1 ∘T2 ∘ . . . ∘TJ

with Ti simple modifications of identity (ReLU)

min
T1, . . .TJ

‖ f −g∘T1∘T2∘ . . . ∘TJ‖

𝑻j(𝒙)=𝜂(𝑨j 𝒙+𝒃j)

𝜂(t)={{{{{{{{{{{{{{{{{{{{ 0 t <0
t t ⩾0

→ At what cost?

How big is n?.

.
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