
LECTURE 35: NONLINEAR OPERATORS

1. Advection equation

In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x, t) and voltage

V(x, t)
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Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical formulation,

e.g., for the ODE for y(t)

dy

dt

+ay=b

Heaviside considered the associated algebraic problem for Y(s)

sY +aY =bÒY(s)=
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a+ s

Òy(t)=�

�1

[Y(s)]

Why should I refuse a good dinner simply because I don't understand the digestive processes

involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathematical

rigour.

" Russian mathematician 1920's established �rst results (Vladimirov)

" Theory of Distributions (Schwartz, 1950s)

2. Convection equation

Consider function f :�

d
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input. Seek g:�

n

��, T :�

d

��

n

such that

� f �g�T �<�

for some �>0.

Choose a basis set (Monomials, Exponentials, Wavelets) {�

1

,�

2

, . . .} to approximation of L

2

(�) func-

tions in Hibert space

g

n

(t)=y

j=1

n

( f ,�

j

)�

j

=y

j=1

n

c

j

�

j

The approximation is convergent if

lim
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� f �g�T �=0,

This assumes c

j

=( f ,�
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) rapidly decrease.

THEOREM. (Parseval) The Fourier transform is unitary. For A,B:���, square integrable, 2�-periodic

with Fourier series
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Bessel inequality:

y
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Fourier coe�cient decay: for f �C
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In practice: coe�cients decay as

" 1/n for functions with discontinuities on a set of Lebesgue measure 0;

" 1/n

2

for functions with discontinuous �rst derivative on a set of Lebesgue measure 0;

" 1/n

3

for functions with discontinuous second derivative on a set of Lebesgue measure 0.

Fourier coe�cients for analytic functions decay faster than any monomial power c

n

=
(n

�p

),�p��, a

property known as exponential convergence.

Denote such approximations by�, and they are linear

�(ü f +ýg)=ü�( f )+ý�(g)
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Denote such approximations by¢, and they are non-linear.

3. Discontinuous solutions

Consider function f :�

d

��, dk 1 assumed large, f of unknown form, di�cult to compute for general

input. Seek g:�

n

��, T :�

d

��

n

such that
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for some �>0.

What questions do you ask?

Does T exist?. � f ,�,�T , such that � f �g�T �<�

Can arbitrary µ be achieved?.

Can we construct T?.

� By what procedure?
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simple modi�cations of identity (ReLU)
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� At what cost?

How big is n?.

.
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