Vandermonde matrix
In[29]:= |
V[n_]:=Table[Subscript[x, i]^j,{i, 0, n},{j, 0, n}];
n=3; n1=n+1; M=V[n] |
In[30]:= |
LU=Simplify[LUDecomposition[M]][[1]] |
In[31]:= |
L=Table[ If[i<j,LU[[j,i]], If[i==j, 1, 0]],{j,1,n1},{i,1,n1}] |
In[32]:= |
U=Table[ If[i>=j,LU[[j,i]], 0],{j,1,n1},{i,1,n1}] |
In[33]:= |
Simplify[Expand[L.U]] |
In[36]:= |
Linv=Simplify[Inverse[L]] |
In[37]:= |
Uinv=Simplify[Inverse[U]] |
In[43]:= |
Simplify[{1,x,x^2,x^3}.Uinv] |
In[44]:= |
Simplify[{1,x,x^2,x^3}.Uinv.Linv] |
Transpose Vandermonde matrix
In[7]:= |
LUT=Simplify[LUDecomposition[MT]][[1]] |
In[8]:= |
LT=Table[ If[i<j,LUT[[j,i]], If[i==j, 1, 0]],{j,1,n1},{i,1,n1}] |
In[9]:= |
UT=Table[ If[i>=j,LUT[[j,i]], 0],{j,1,n1},{i,1,n1}] |
In[12]:= |
Simplify[Expand[LT.UT]] |
In[13]:= |
LTinv=Simplify[Inverse[LT]] |
In[14]:= |
Factor /@ Evaluate[LTinv.{1,x,x^2,x^3}] |
Compare factorizations of
In[44]:= |
V[n_]:=Table[Subscript[x, i]^j,{i, 0, n},{j, 0, n}];
n=3; n1=n+1; B=V[n] |
In[45]:= |
LU=Simplify[LUDecomposition[B]][[1]] |
In[46]:= |
L=Table[ If[i<j,LU[[j,i]], If[i==j, 1, 0]],{j,1,n1},{i,1,n1}] |
In[47]:= |
U=Table[ If[i>=j,LU[[j,i]], 0],{j,1,n1},{i,1,n1}] |
In[48]:= |
Simplify[Expand[L.U]] |
In[54]:= |
Linv=Simplify[Inverse[L]] |
In[61]:= |
b=Table[{Subscript[y, i]},{i,0,n}] |
In[62]:= |
Simplify[Linv.b] |
In[65]:= |
Simplify[LinearSolve[B,b]] |
In[68]:= |
Simplify[LinearSolve[L,b]] |
In[69]:= |
T[n_]:=Table[(t-Subscript[x, i])^j,{i, 0, n},{j, 0, n}];
n=3; n1=n+1; B=T[n] |
In[22]:= |
V[n_]:=Table[Subscript[x, i]^j,{i, 0, n},{j, 0, n}];
n=1; n1=n+1; B=V[n] |
In[24]:= |
GaussJordan[B_]:=Module[{BI,m=Length[B],I},
BI = Transpose[Catenate[{Transpose[B],IdentityMatrix[m]}]];
For[k=1, k<m, k++,
For[i=k+1, i<=m, i++,
lik = -BI[[i,k]]/BI[[k,k]];
For[j=1, j<=2m, j++,
BI[[i,j]] = Simplify[BI[[i,j]] + lik BI[[k,j]]]
];
];
];
For[k=m, k>1, k--,
For[i=1, i<k, i++,
lik = -BI[[i,k]]/BI[[k,k]];
For[j=1, j<=2m, j++,
BI[[i,j]] = Simplify[BI[[i,j]] + lik BI[[k,j]]]
];
];
];
Return[BI]
];
GaussJordan[B] |
Set::wrsym: Symbol I is Protected.
The observations that lead to the
Newton basis are also recovered by symbolic computation software that
readily carries out the requisite
calculations, exemplified here for ,
In[77]:= |
V[n_]:=Table[Subscript[x, i]^j,{i, 0, n},{j, 0, n}];
n=3; n1=n+1; M=V[n]; MT=Transpose[V[n]] |
In[78]:= |
LU=Simplify[LUDecomposition[M]][[1]] |
In[79]:= |
L=Table[ If[i<j,LU[[j,i]], If[i==j, 1, 0]],{j,1,n1},{i,1,n1}] |
In[80]:= |
U=Table[ If[i>=j,LU[[j,i]], 0],{j,1,n1},{i,1,n1}] |
In[81]:= |
Simplify[Expand[L.U]] |
In[59]:= |
Linv=Simplify[Inverse[L]] |
In[74]:= |
n=Factor /@ Evaluate[Linv.{1,x,x^2,x^3}] |
In[73]:= |
Uinv=Simplify[Inverse[U]] |
In[76]:= |
Together /@ Evaluate[Uinv . n] |