
MATH661
Scientific Computing I

Summary. An introduction to scientific computing theory and practice covering approximation of numbers, real
functions, functionals, and operators. A presentation of classical numerical methods topics, but with a focus on how
key unifying ideas naturally lead from Newtonian interpolation to deep neural networks. A literate programming and
reproducible computation approach is utilized using the Julia language within live TEXMACS documents that allows
simultaneous presentation of theory and implementation, as well as reproducible computational experiments, trying
to adhere as much as possible to the adage:

“Beauty is truth, truth beauty, – that is all
Ye know on earth, and all ye need to know.”
John Keats, Ode on a Grecian Urn.

Course syllabus
Times MoWe 10:10AM-11:25PM, Phillips 228
Office hours MoWe 2:00PM-3:30PM, Tu 12:00-1:30PM Chapman 451, and by email appointment
Instructor Sorin Mitran
Assistant Emma Crawford (Office hours: We 9:00-10:00AM, Fr 11:30AM-12:30PM)
Jump to Tracks: 2.2 Lessons: 3.2 Homework: 3.3 Software: 4.2 Live documents: 4.5

(The instructor reserves the right to make changes to the syllabus. Any changes will be announced as early as possible.)

1 Introduction

1.1 Historical overview

Scientific computing encompasses a vast range of techniques and applications ranging from discrete computations on
graphs describing social networks to stochastic molecular dynamics of protein folding. Mathematical topics that arise
range from group theory and use of the Chinese Remainder Theorem to construct factorizations, to Gröbner bases
to solve polynomial systems, or combining optimization theory with analysis to solve non-linear systems through a
quasi-Newton method (Fig. 1).

Figure 1. Left: Schematic of Chinese Remainder Theorem. Center: Gröbner basis transformation of the system 3x2 + 2yz − 2x𝜆 = 0,
2xz− 2y𝜆=0, 2xy−2z−2z𝜆=0, x2+ y2 + z2=1 is actually easier to solve than the initial formulation since the last equation is only in z.
Right: Broyden-Fletcher-Goldfarb-Shanno algorithm to solve an optimization problem by including curvature information into a gradient
descent procedure.

1

A comparably large toolkit of software applications has been developed since the first general purpose digital computer
(ENIAC – Electronic Numerical Integrator and Computer) capable of about 500 FLOPS (floating point operations per
second) was introduced. ENIAC was initially “programmed” by physically linking certain wires between functional
units according to a flow-chart Fig. 2, a time-consuming and tedious process that was soon replaced by “coding”,
the practice of specifying a sequence of logic operations to control the machine, an idea that predates ENIAC, and
introduced through the assembly language of the Mark I computer input to the machine through a punched paper
tape Fig. 2. This approach was still being used when your current instructor was in high school in the 1970's working
on a electromechanical teleprinter, though the programming language had fortunately evolved to the more palat-
able BASIC language.

Figure 2. Left: Programming ENIAC by connecting wires to different functional units. Center: Flowchart guiding the wire connections.
Left: Part of a punched paper tape program.

1.2 Course goals
It is apparent that a single course can only provide an introduction to the myriad developments within scientific com-
puting from the past eight decades. The main goals of this course is to explore how a few key ideas can be applied to
representative problems encountered in scientific computation.

1.2.1 Mathematics

There are just four mathematics ideas that are considered in this course:

Approximation. The notion of replacing some complicated mathematical object by one that is simpler to com-
pute. In succession, the course presents the approximation of numbers, functions, and operators. The main
focus is on numerical approximation, but computational analytical approximation is also presented.

Linear combination. An approach to constructing complex objects by scaling and addition of simpler objects.
Note the link to approximation, in that “simpler to compute” is interpreted as scaling and addition.

Nonlinear combination. An approach to constructing complex objects by function composition, successive non-
linear transformation of simpler objects.

Limits. An approach to constructing complex objects by a sequence of approximations.

The above ideas have the character of a leitmotif in a Wagner opera: a salient feature that constantly makes its appear-
ance throughout a work. Irrespective of the particular field of scientific computing you choose to pursue, the above
ideas obstinately recur.

1.2.2 Computing

Comparable simplicity is encountered in computational ideas. Even though human passion can lead to “programming
language wars”, key computational concepts are few in number:

Memory management. Transfer and organization of data on a computer.
Repetition. Multiple execution of a task. Two repetition types are encountered:

Iteration. A portion of code that is repeatedly executed, typically within a loop.

2

Recursion. A portion of code organized as a function that calls itself.
We shall present the close correspondence between the computer science concepts of iteration and recursion
to the mathematical concepts of linear and nonlinear combination, respectively.

Condition testing. Carrying out decisions based on data.

The above basic concepts have been embodied into dozens of computer languages (e.g., FORTRAN, LISP, BASIC,
Pascal, ALGOL, Ada, C, C++, MATLAB, Perl, Python), with useful features from each often appearing in subse-
quent revisions of others (e.g., Fortran 2018 contains many features from C++ and MATLAB). In practice, a sound
understanding of one language is sufficient to quickly pick up another.

This course adopts the Julia programming language, a general-purpose language that incorporates many prior ideas
found useful for scientific computing.

1.2.3 Scholarship

Relevance of computational approaches to science requires adoption of the scientific method of verification of the
predictions resulting from conjectures (or hypotheses or theories). For scientific computing, the conjectures are the
mathematical approach and implementation into a program executed by a computer. Predictions are obtained from
program execution and verified by comparison to known results or experiments. Such computational predictions
should be reproducible.

A key part of the scientific method is documentation of an investigation, clearly citing sources, approaches, hypotheses,
and results. An important goal of this course is to instill this practice of scholarship into all aspects of scientific
computing. As the case of general-purpose languages, several specialized programming languages have been devel-
oped for this purpose (TEX, LATEX, Markdown), some with an explicit focus on documenting theoretical approach
and computer implementation simultaneously (Web), a practice known as literate programming.

This graduate course utilizes a literate programming approach based upon the TEXMACS platform in conjunction with
Zotero reference management. While the focus of undergraduate education is to accumulate knowledge and optionally
be exposed to research, that of graduate education is to acquire the skill set needed to carry out new original research.
To aid in this transition, course tasks are organized as steps in the production of a research paper. Supplementing the
presentation of course topics in TEXMACS, sample documentation and Julia implementations are also provided in the
Pluto environment.

1.3 Course outcomes
Upon successful course completion students will be:

• able to recognize particular types of approximation;
• proficient in the basic operations of numerical linear algebra;
• able to determine the computational complexity of an algorithm;
• capable of recognizing mathematical problems that are inherently difficult to compute (e.g., “ill-conditioned”),

and estimating the error arising from numerical approximation;
• exposed to computational analytical approximations, and capable of comparing numerical and analytical

approximations to verify algorithm performance;
• introduced to both traditional additive approximations based upon linear combination and the burgeoning field

of approximations based upon function composition inspired by brain functionality (neural networks).

2 Course information
2.1 Honor code
Unless explicitly stated otherwise, all work is individual. You may discuss various approaches to homework problems
with students, instructors, but must draft your answers by yourself. All external sources consulted must be acknowl-
edged and cited. Students implicitly accept this honor code by submission of any work for grading.

3

2.2 Course policies

• Class attendance is expected and essential for understanding of course topics. There is no need to inform
instructor of planned absences. Office hour attendance is recorded and required at a minimum of one half-
hour every two weeks. Self-organize into teams of two or three students and prepare questions prior to office
hours. Be prepared to be quizzed on definitions during office hours. Come prepared with: notes, laptops, well-
formulated questions. Students not prepared for office hours will be invited to come at a later date.

• Course grade is based upon accumulation of credit points (0-100). There is no “grading on a curve”. Extra
credit opportunities are offered for an additional 12 grade points, to allow for missed homework or tests.

• Homework is to be submitted in typeset form (TEXMACS preferred, Pluto notebook accepted) electronically
through Canvas. Handwritten homework is not accepted. The assignment deadlines are strictly enforced. Late
homework is accepted only in the case of University approved class absences. E-mail messages requesting
acceptance of late homework due to any other circumstance are deleted without review or response. Students
are advised to prepare and submit homework well in advance of the Canvas deadline to allow for unforseen
difficulties. Suspension of classes due to campus-wide events (weather, pandemic, etc.) will lead to modifica-
tion of due dates or elimination of specific assignments for the entire class.

• Two different tracks are offered for users and developers of scientific computation. The same theory is covered,
but assignments differ between the two tracks. Both tracks are presented at the graduate level of study.

1. Scientific computation users. Students interested in applying existing computational techniques. Typi-
cally, most undergraduates and many non-mathematics graduates are within this group. The emphasis
of the coursework is on understanding theoretical approaches and practical aspects of computing.
Coursework requires only material presented in class notes.

2. Scientific computation developers. Students interested in extending existing computational techniques
or devising new approaches. Mathematics graduate students must follow this track. Other students
expecting to apply computational methods during their careers should also follow this track. This track
is also available on an assignment by assignment basis to any student wishing to explore development
of advanced computational methods. The emphasis of the coursework is theoretical analysis, novel
algorithm formulation, and carrying out algorithm validation. Comparison of course material to alter-
native sources is required.

Accessibility resources and services. The University of North Carolina at Chapel Hill facilitates the implementation
of reasonable accommodations, including resources and services, for students with disabilities, chronic medical con-
ditions, a temporary disability or pregnancy complications resulting in barriers to fully accessing University courses,
programs and activities.

Accommodations are determined through the Office of Accessibility Resources and Service (ARS) for individuals
with documented qualifying disabilities in accordance with applicable state and federal laws. See the ARS Website
for contact information: https://ars.unc.edu or email ars@unc.edu.

Counseling and psychological services (CAPS). CAPS is strongly committed to addressing the mental health needs
of a diverse student body through timely access to consultation and connection to clinically appropriate services,
whether for short or long-term needs. Go to their website: https://caps.unc.edu/ or visit their facilities on the third floor
of the Campus Health Services building for a walk-in evaluation to learn more.

Title IX resources. Any student who is impacted by discrimination, harassment, interpersonal (relationship) violence,
sexual violence, sexual exploitation, or stalking is encouraged to seek resources on campus or in the community.
Reports can be made online to the EOC at https://eoc.unc.edu/report-an-incident/. Please contact the University's
Title IX Coordinator (Elizabeth Hall, interim – titleixcoordinator@unc.edu), Report and Response Coordinators in
the Equal Opportunity and Compliance Office (reportandresponse@unc.edu), Counseling and Psychological Services
(confidential), or the Gender Violence Services Coordinators (gvsc@unc.edu; confidential) to discuss your specific
needs. Additional resources are available at safe.unc.edu.

4

2.3 Grading

Coursework involves multiple activities, differentiated between user and developer tracks.

• Homework aids assimilation of basic course concepts through small-scale applications:
10 assignments × 4 points = 40 points.
Eleven assignments are given allowing students to miss one homework due to personal reasons or to use as
extra credit. HW00 is meant to familiarize students with the homework drafting process and expectations, and
though not graded is returned with comments that must be respected in future assignment submissions.

• Projects explore medium-scale applications and scholarly practices:
2 projects × 8 points = 16 points.

• Office hour participation: 8 visits × 0.5 point = 4 points.

• Midterm examination 1 (in-class, 60 minutes) in Week 6 on linear algebra: 10 points.

• Midterm examination 2 (in-class, 60 minutes) in Week 10 on real function approximation: 10 points.

• Final examination covering all course material scheduled at 8:00AM on Th, Dec. 14, 2023: 20 points.

• Extra credit on supplementary topics: 2 topics × 4 points = 8 points.

• All coursework is graded at the graduate level. Undergraduate students are allocated an initial 20 course points
to reward participation in an advanced course.

Mapping of point scores to letter grades

Grade Points Grade Points Grade Points Grade Points
H++, A+ 101-112 H-, B+ 86-90 P-, C+ 71-75 L-, D+ 56-60
H+, A 96-100 P+, B 81-85 L+, C 66-70 L-, D 50-55
H, A- 91-95 P, B- 76-80 L, C- 61-65 F 0-49

A passing score can be obtained solely through homework, projects and office hour participation (60 points, L-/D+
grade). Undergraduate students who participate in office hours and correctly complete homework and projects attain
80 points (B- grade), with additional points available from examinations and extra credit. Latin honors are used
for A+, H+, H++ grades, i.e., H++ (112 points) is entered as H with a transcript annotation of summa cum laude, at
instructor's discretion.

3 Lesson plan

3.1 Course modules

Though unitary in nature, the course is organized in distinct modules that may be useful for auditors from diverse
backgrounds not interested in taking the full course.

Module Topics
Number approximation Computational representations of ℕ,ℤ,ℚ,ℝ,ℂ
Numerical linear algebra Introduction to approximation by linear combination.
Real function approximation Approximation of functions f :ℝ→ℝ
Linear operator approximation Approximation of linear functions defined on a vector space 𝒰, i.e., scalar-valued

linear functionals f :𝒰→ℝ, and vector-valued linear operators f :𝒰→𝒱.
Nonlinear operator approximation Approximation of non-linear functionals and operators.

3.2 Course topics, test dates, and notes

Midterm dates are indicated in bold red.

5

Lesson Schedule

Week Notes Exercises Date Topic
01 L01

L02
L03

E01
E02

08/21

08/23

Floating point arithmetic. Approximating sequences. Order of convergence. Finite
difference approximation of derivative and catastrophic loss of precision. Condition
number.

02 L04
L05
L06

E03 08/28 Linear combinations. Vector and matrix norms. Linear functionals and mappings.
Vector spaces and subspaces. Bases. Dimension. Orthogonal matrices. Matrix sub-
spaces.

03 L07
L08
L09 09/06

Bases. Dimension. Orthogonal matrices. Matrix subspaces. Fundamental theorem
of linear algebra. Rank-nullity.

04 L10
L11
L12

E04 09/11

09/13

Singular value decomposition theorem & proof. Karhunen-Loève. Rank-1 expan-
sions. Operator approximation. Linear statement of applied mathematics problems:
coordinate changes (linear systems), reduced-order models (least squares), operator
invariants (eigenproblems). SVD solutions. Pseudo-inverse.

05 L13
L14
L15

09/18

09/20

QR least-squares solution. Additional operator representations: QR, LU, LL∗, QTQ∗.
Computational complexity. Projection: Householder, Givens. Eigenvalue algorithms,
Rayleigh iteration.

06 09/27 Midterm examination 1 on linear algebra topics.
07 L18

L19
10/02

10/04

Approximation in the monomial basis. Interpolation. Newton, Lagrange forms.
Taylor series. Polynomial interpolation error.

08 L20
L21

10/09

10/11

Hermite interpolation. Splines. B-spline basis. Finite elements.

09 L22
L23

10/16

10/18

Approximation in spectral bases. Fourier, Wavelet approximations. L1,L2,L∞ approx-
imants. Minimax.

10 L24 10/23

10/25 Midterm examination 2 on real function approximation.
11 L25

L26
E07 10/30

11/01

Linear operator approximation 1: quadrature (∫ dxn). Newton-Cotes. Moments.
Gauss quadrature. Convergence. Romberg.
Linear operator approximation 2: differentiation (dn/dxn,∇,∇2).

12 L27
L28

11/06

11/08

Linear ODE (∑k ak d/dx k).

Convergence. Stability

13 L29
L30

11/13

11/15

Non-linear operator approximation 1: f :ℝ→ℝ, f (x)=0, 0,1,2-degree approximants
(secant, Newton, Steffensen, Halley, Householder). Convergence, fixed points.

14 L31
L32

11/20 Non-linear operator approximation 2: f : ℝn → ℝ, f (x) = 0. 0,1,2-degree approxi-
mants. Convexity, steepest descent. Stochastic steepest descent.

15 L33
L34

11/27

11/29

Non-linear operator approximation 3: F:ℝn→ℝn,F(x)=0. Quasi-Newton methods.

16 L35
L36

12/04

12/06

Non-linear combinations. Neural networks. Neural network approximation of real
scalar functions, real functionals, real vector functions. Neural network approxima-
tion of operators.

6

3.3 Homework and Projects

Nr. Topic Issue Date Due Date Problems Solution
HW00 Number approximation 08/23 09/06 H00 S00
HW01 Numerical linear algebra
HW02 09/06 09/13 H02 S02
HW03 09/13 09/20 H03 S03
HW04 09/20 09/27 H04 S04
P01 10/02 10/16,11/20 P01
HW05 10/04 10/11 H05 S05
HW06 Real function approximation 10/11 10/18 H06 S06
HW07 10/16 10/23 H07 S07
EC 10/25 11/08 EC
HW08 Linear operator approximation 10/25 11/06 H08 S08
HW09 11/13 11/20 H09 S09
P02 11/15 11/27 P02
HW10 Nonlinear operator approximation 11/27 12/06 H10 S10
HW11 11/29 12/06 H11 S11

3.4 Test preparation and solutions

Midterm 1 Midterm 2 Final
Questions M1 M2
Solutions M1Sol M2Sol

3.5 Extra credit topics

For each of the topics below:

• read the relevant class notes or indicated textbook presentation

• look up and read original sources

• try a small sample computation

• present influence of work in the field by following citations of original sources

Nr. Issue Date Due Date Topic
01 09/27 10/23 Linear model reduction
02 10/23 12/04 Fractional derivative approximation

3.6 Bibliography

Course textbook: Scientific Computation by S. Mitran.

Perusal of the following texts is highly recommended for all, and is required for Track 2 students who can expect to
be quizzed on topics from these texts during office hour visits.

Numerical Linear Algebra, by L.N. Trefethen and D. Bau.

Matrix Computations, by G.H. Golub and C.F. Van Loan

Applied Numerical Linear Algebra, by J.W. Demmel

Matrix Iterative Analysis, by R.S. Varga

Methods of Mathematical Physics, by R. Courant and D. Hilbert

Methods of Theoretical Physics, by P.M. Morse and H. Feshbach

7

Mathematics for the Physical Sciences, by L. Schwartz

Computational Functional Analysis, by R. Moore

4 Computational resources

4.1 Hardware

Students are required to have a computer, preferably a laptop, that conforms to CCI minimal standards. Current com-
puters use either a CISC (complex instruction set computer) or RISC (reduced instruction set computer) architecture.
A recommended laptop based on the CISC Intel x86-64 architecture would be equipped with a 6-core processor, 4
GB NVIDIA GPU, 16GB RAM, 512 GB SSD or better. A recommended laptop based on the Apple arm64 RISC
architecture would be equipped with an 8-core processor, 16GB unified RAM, 512 GB SSD or better. The course will
explore algorithm parallelism both on multi-core CPUs and on GPUs, and algorithm verification will often require
consideration of larger problems.

4.2 Software

Modern software systems allow efficient, productive formulation and solution of mathematical models. A key goal
of the course is to familiarize students with these capabilities and acquire the practical skills needed for scientific
computing. Three software approaches are possible:

Preconfigured virtual machine. This is the preferred and fully supported option. On machines with the x86-64
architecture, install the SciComp@UNC environment in which tools required for modern scientific computa-
tion have been preconfigured for immediate use. Follow instructions at SciComp@UNC to install on a laptop
with at least 24GB free disk space and 8GB RAM.

Individual software package installation. For students comfortable in system administration. Limited support
only for arm64 architecture. On machines with either x86-64 or arm64 architecture, install the main software
packages used in the course.
Windows OS.

1. Create a directory named C:\courses

2. Install TortoiseSVN

3. Open File Explorer and right-click to open options (“See more options” in Windows 11) for folder C:\
courses. Select SVN checkout option and enter:
URL repository: svn://mitran-lab.amath.unc.edu/courses/MATH661
Checkout directory: C:\courses\MATH661
Click OK, and a copy of the course material repository is downloaded to your laptop.

4. Julia programming language. Choose installation directory C:\courses\julia
Modify the System variable PATH to include C:\courses\julia\bin
In Julia terminal session install the Printf, Latexify, PyPlot, LinearAlgebra, Revise packages. Add the
path to the julia executable to your system PATH variable. For example, to install Latexify within
a Julia session:

∴ import Pkg

∴ Pkg.add("Latexify")

5. TEXMACS editing platform. Choose installation directory C:\courses\texmacs

6. Zotero reference management system.

7. Open File Explorer and right-click to open options (“See more options in Windows 11”) for folder C:\
courses\texmacs\plugins. Select SVN checkout option and enter:

8

URL repository:
svn://mitran-lab.amath.unc.edu/courses/texmacs/plugins/
julia
Checkout directory: C:\courses\texmacs\plugins\julia

Mac OS.

1. Open the Terminal app and create a directory named ~/courses
cd ~; mkdir courses

2. Install SmartSVN

3. Open SmartSVN and select option Check out project from repository, click OK. Enter:
Repository:svn://mitran-lab.amath.unc.edu/courses/MATH661, select MATH661
directory
Local directory: ~/courses/MATH661
Click Continue, and a copy of the course material repository is downloaded to your laptop.

4. Julia programming language. Choose installation directory C:\courses\julia
Modify the System variable PATH to include/Applications/Julia-1.6.app/Contents/
Resources/julia/bin
In Julia terminal session install the Printf, Latexify, PyPlot, LinearAlgebra packages. Add the path to
the julia executable to your system PATH variable. For example, to install Latexify within a Julia
session:

∴ import Pkg

∴ Pkg.add("Latexify")

5. TEXMACS editing platform.

6. Zotero reference management system.

7. Open SmartSVN and select option Check out project from repository, click OK. Enter:
Repository:
svn://mitran-lab.amath.unc.edu/courses/texmacs/plugins/
julia
Checkout directory: /Applications/TeXmacs.app/Contents/Resources/share/
TeXmacs/plugins

Students are responsible for software configuration. Help will be given through posted instructions within
available time. Since the course focuses on the mathematics of scientific computing, e-mail or office hour
support for this software option is not possible, and such requests will uniformly be answered by the suggestion
to install the preconfigured SciComp@UNC environment.

4.3 Tutorials

Software usage is introduced gradually in each class, so the first resource students should use is careful, active reading
of the material posted in class. In particular, carry out small tasks until it becomes clear what the software commands
accomplish. Some additional resources:

• TeXmacs:

− http://www.texmacs.org/tmweb/help/tutorial.en.html
− https://www.youtube.com/watch?v=mlcqGRv7xhc

• Julia:

− https://julialang.org/learning/
− https://www.youtube.com/user/JuliaLanguage/playlists

9

4.4 Course material repository

Course materials are stored in a repository that is accessed through the subversion utility, available on all major
operating systems. The URL of the material is svn://mitran-lab.amath.unc.edu/courses/MATH661

In the SciComp@UNC virtual machine the initial checkout can be carried out through the terminal commands

cd ~/courses
make MATH661

Update the course materials before each lecture by:

cd ~/courses/MATH661
svn update

Links to course materials will also be posted to this site, but the most up-to-date version is that from the subversion
repository, so carry out the svn update procedure prior to each lecture.

4.5 Interactive documents

All course material is presented as TEXMACS documents with embedded interactive Julia sessions. Such documents
have a .tm extension and are available through svn download from the course repository. Notes posted on the lesson
plan contain translations of the live documents to .pdf formats.

Live documents allow immediate application of course topics, shown here for the simple case of a bisection method to
solve the equation f (x)=0, when f ∈C[a,b], and f (a) f (b)⩽0. The algorithm constructs sequences {an}n∈ℕ, {bn}n∈ℕ
that bracket the root c, with the root approximation at iteration n given by cn = (an + bn)/2 to within a maximum
absolute error of 𝛿n =(bn −an)/2.

Algorithm - Bisection method

Input: f ,a,b, 𝜀
if a>b then swap(a,b)
fa← f (a); fb← f (b)
𝛿←b−a
while 𝛿>𝜀 and fa ⋅ fb⩽0

𝛿←𝛿/2; c←a+𝛿; fc← f (c)
if fa ⋅ fc⩽0

b←c; fb←fc
else

a←c; fa←fc
return c

Julia (1.6.1) session in GNU TeXmacs

∴ function bisect(f,a,b,ε)
if (a>b) a,b=b,a end
fa=f(a); fb=f(b)
δ=b-a; c=(a+b)/2
while ((δ>ε) && (fa*fb<=0))
δ=δ/2; c=a+δ; fc=f(c)
if (fa*fc<=0)

b,fb=c,fc
else

a,fa=c,fc
end

end
return c

end;

∴ f(x)=x^2-2; a=1; b=2; ε=0.01;

∴ [bisect(f,a,b,ε) sqrt(2.0)]

[1.4140625 1.4142135623730951] (1)

∴ g(x)=x^2-3; a=1; b=2; ε=0.001;

∴ [bisect(g,a,b,ε) sqrt(3.0)]

[1.7314453125 1.7320508075688772] (2)

∴

10

Pluto has an analogous approach, but with fewer capabilities, e.g., the table organization shown above that allows
immediate transcription of the pseudocode for the bisection method into Julia. More importantly, TEXMACS is an
efficient medium for prototyping ideas and subsequently transforming them into formal scientific communication, i.e.,
research papers.

11

	Course syllabus
	1 Introduction
	1.1 Historical overview
	1.2 Course goals
	1.2.1 Mathematics
	1.2.2 Computing
	1.2.3 Scholarship

	1.3 Course outcomes

	2 Course information
	2.1 Honor code
	2.2 Course policies
	2.3 Grading
	Mapping of point scores to letter grades

	3 Lesson plan
	3.1 Course modules
	3.2 Course topics, test dates, and notes
	3.3 Homework and Projects
	3.4 Test preparation and solutions
	3.5 Extra credit topics
	3.6 Bibliography

	4 Computational resources
	4.1 Hardware
	4.2 Software
	4.3 Tutorials
	4.4 Course material repository
	4.5 Interactive documents

