
MATH661 Project 3 - Operator approximation in
Sturm-Liouville eigenbasis

Posted: 11/30/22

Due: 12/03/22 11:55PM (First Draft), 12/07/22, 5:00PM (Final Draft)

� Julia SpecialFunctions package installation (only needs to be invoked once, will be used in this
assignment)

This serves both as your final project and final examination. The topic you are exploring is the use
of problem-specific bases. In the project, an academic analytical cyclindrical function basis is used
to exemplify the idea, but in practice bases are extracted from the problem itself. The monograph
by Patera and Rozza in the MATH661/bibliography directory presents a full treatment. This
final examination is meant to be completed in 3-9 hours. Read through the Introduction prior to
December 3, add the SpecialFunctions package to your Julia environment, and complete a first
draft during the regularly scheduled Final Examination time of on Saturday, Dec. 3. Comments on
the first draft will be returned by 3:00PM on Monday Dec. 5. Address the comments and submit
a second, final draft during the reading day, Dec. 7.

1 Introduction

1.1 Sturm-Liouville eigenfunctions

It is traditional to introduce the main concepts in operator approximation using the monomial
basis M= f1; t; t2; :::g in which integration and differentiation operations are simple to carry out.
However, in numerical work algorithm conditioning, stability, and accuracy are more important
than easy-to-use analytical formulas. This final project brings together all main course concepts to
construct approximation procedures for problems that are naturally stated in the eigenfunctions
of a Sturm-Liouville problem for an orthogonal, curvilinear coordinate system.

1.1.1 Regular Sturm-Liouville problems

The regular Sturm-Liouville problem (SLP) is to find y: [a; b]!R, twice differentiable that satisfies

L (y)= d
dx
[w(x) y 0] + [q(x)+�p(x)]y=0; (1)

with the two-point boundary value conditions V (y)=0

A1 y(a)+B1y
0(a)=0;

A2 y(b)+B2y
0(b)= 0:

The functions p; q are continuous and w is differentiable. The SLP is linear in operator L and
boundary conditions V :When w(x)>0 and p(x)>0 the SLP is said to be regular. A singular SLP
results when w(x)= 0 for some x2 [a; b].

1.1.2 Physical conservation laws

The ubiquity of SLPs is due to physics being naturally expressed through a small set of conservation
laws, e.g., mass, momentum, energy, and electrical charge in classical physics (additional quantum
conservation laws arise from quantum mechanics). Consider the familiar statement from mechanics

F =ma;
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more properly written as

d
dt
(H)=F ;

stating that the rate of change of a point mass's momentum H is due to the sum of applied forces
F . In the absence of any external forces the momentum is conserved

d
dt
(H)= 0)H = constant:

When applied to continua, conservation laws lead to PDEs, for example the motion of a drumhead
membrane. An infinitesimal portion of membrane of area dA=dxdy has mass dm= �dA and is
brought out of its equilibrium position by small displacement w(x; y; t) along the z-axis, such that
the tangent makes angle �=� sin�=� tan�=@w/@x. The membrane is stretched from its equilibrium
position by tension T , and the resultant force on the infinitesimal portion is

T

�
@w
@x

�
x+ dx

2

�
¡ @w
@x

�
x¡ dx

2

��
=�T

@2w
@x2

:

A similar argument along the y-axis then gives the wave equation

wtt= c2div (gradw)= c2r � (rw)= c2(wxx+wyy);

with wxx= @2w/@x2, etc., and c2=T /�.

x

z

dx

w(x; y; t)

T
�
�
x+ dx

2

�

T
�
�
x¡ dx

2

�

For a square-shaped drumhead with edge-length a that is pinned along its perimeter, separation
of variables w(x; y; t)=X(x)Y (y)T (t) then leads to

1
c2
T 00

T
= X 00

X
+ Y 00

Y
=¡!

2

c2

and three SLPs, e.g., along x

X 00+n2X =0; X(0)=X(a)= 0:

The eigenfunctions in this case are the familiar trig-functions sin(n�x/a). These eigenfunctions
play a fundamental role in problems stated in Cartesian coordinates, as exemplified by Fourier
transforms.
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1.1.3 Differential operators in curvilinear coordinates

Consider now a circular-shaped of radius r= a drum pinned along its perimeter, in which case it
is convenient to carry out separation of variables in polar coordinates w(r; �; t) = R(r)�(�)T (t).
The wave equation in polar coordinates

wtt= c2r � (rw)= c2
�
wrr+

1
r
wr+

1
r2
w��

�
;

then leads to

1
c2
T 00

T
= R00

R
+ 1
r
R0

R
+ 1
r2
�00

�
=¡!

2

c2
;

and assuming rotational symmetry around the z-axis, �00=0, gives two ODEs

T 00+!2 T =0)T (t)=A cos(!t)+B sin(!t);

for which initial conditions are given, and the SLP

R00+ 1
r
R0+ k2R=0; R(0) finite; R(a)= 0; k2= !2

c2
: (2)

The ODE has general solution

R(r)=AJ0(kr)+BY0(kr);

and imposing boundary conditions leads to B=0 (to maintain finite R(0)) and

J0(ka)= 0; (3)

with a denumerable set of solutions kn, n=1; 2; :::, the eigenvalues of the SLP, k1<k2< ��� . The
corressponding eigenfunctions are yn(r) = J0(kn r), and can be evaluated in Julia through the
besselj0() function. SLP eigenfunctions are orthogonal with respect to the scalar product

(f ; g)=
Z
0

a

p(r) f(r) g(r)dr;

i.e.

m=/ n)
Z
0

a

p(r)J0(km r) J0(kn r)dr=0 :

The Bessel function has an asymptotic approximation

J0(x)=�
2
�x

r
cos

�
x¡ �

4

�
;

useful in initial approximation of the eigenvalues from (3). Another useful result is

d
dx

J0(x)=¡J1(x);

evaluated by the besselj1() Julia function.

In the following length units are chosen such that the drumhead has radius a=1.
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2 Track 1 & 2 common problems

1. Use Newton's method to find the first n= 64 eigenvalues by solving (3) numerically to six-
digit accuracy (relative error " < 10¡6). Plot the eigenvalues. Plot the j = 1; 2; 4; 8; 16; 32
eigenfunctions yj(r). Comment on the basis functions by comparison, say, to the monomial
basis f1; r; r2; :::g.

2. Identify in (2) the functions w; r; p from the general formulation of a SLP (1). Verify
eigenfunction orthogonality numerically through the approximation

(ym; yn)=
Z
0

1

p(r) ym(r) yn(r) dr=� ymTPyn (4)

where ym is a sampling of the eigenfunction at nodes r= [ri]2RN

h=1/N; ri= ih; i=1; :::; N ;

and the scalar product weight p(r) determines the diagonal matrix P = diag(p(r)). The
approximation (4) is a (right) Darboux sum, or approximation of the integral by a piecewise
constant function. Plot the orthogonality error kY TPY k with increasing N =2q, q=3; :::;
12 in log coordinates.

3 Track 1 problems

3. Increase the accuracy of scalar product evaluation by replacing (4) by:

a) composite midpoint integration;

b) composite trapezoid integration;

c) composite Simpson integration.

For each of the above, plot the orthogonality error.

4. Determine the expansion of the initial condition w(0; r) = 1 ¡ r on the Bessel function
bases containing P =2r, r=4; 5; 6; 7 vectors.

4 Track 2 problems

3. Increase the accuracy of scalar product evaluation by replacing (4) by composite Gauss-
Legendre quadrature of with 2 and 3 points per subinterval. For each of the above, plot the
orthogonality error.

4. Generate Gauss quadrature formulas over the entire interval of orders q = 4; 6; 7; 8 by
orthogonalization of the monomial basis f1; r; r2; :::g with respect to the scalar product (3),
finding the roots of the polynomials of degree q, and determining the appropriate quadrature
coefficients Z

0

1

p(r) f(r) dr=
X
i=1

q

ci f(ri):
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