MATH661 - BACKGROUND QUIZ

Name:

1. Write the row echelon form \boldsymbol{E} of \boldsymbol{A} by observation, without carrying out any calculations

A	E			
$ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix} $				
$ \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & \frac{1}{2} \\ 0 & 4 & 0 \end{bmatrix} $				
$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 3 & 0 & 0 \end{array}\right]$				

a)
$$\boldsymbol{u}^T \boldsymbol{v}$$

b)
$$\boldsymbol{u}\boldsymbol{v}^T$$

3. For $f: [-1,1] \to \mathbb{R}, \ f$ differentiable an infinite number of times

a) Write the MacLaurin series of f (Taylor series around $x_0 = 0$)

b) What is the codomain of f?

c) What is the domain of f?

4. For $f: [-\pi, \pi] \times [-\pi, \pi] \to \mathbb{R}$, $f(x, y) = \sin x \cos y$ differentiable an infinite number of times

a) Write the MacLaurin series of f (Taylor series around $x_0 = 0$)

- b) What is the gradient of f?
- 5. Compute the products showing your calculation procedure

$$C = AB = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 2 \\ -1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 2 \\ -1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}, D = BA.$$

6.	Write	pseudo-code	that eva	luates a	polynomial	through	Horner's	scheme

$$p_n(x) = (\dots ((a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0$$

7. Write code in some language (e.g., Python, C, $\ \dots$) to implement Horner's scheme.

8. After class, use ChatGPT to obtain an implementation of Horner's scheme.