
MATH661 Homework 1 - Number approximation

Posted: 08/24/22

Due: 09/01/22, 11:55PM

Track 1: 1,2,3,6. Track 2: 1-6.

� Julia preamble

1. Construct a convergence plot in logarithmic coordinates for the following continued
fraction approximation of e

e=2+
1

1+
1

2+
2

3+
3
���

(1)

Identify the terms in the general expression of a continued fraction

Fn= b0+ K
k=1

n ak
bk
:

Compare with the additive approximation from a McLaurin series

ex=1+
x
1!
+
x2

2!
+ ���

Estimate the rate and order of convergence for both approximations.

Solution. Rewrite (1) as

e=2+
1
f
; f =1+

1

2+
2

3+
3
���

;

and introduce the continued fraction sequence fFngn2N,

Fn= b0+ K
k=1

n ak
bk
= b0+

a1

b1+
a2

b2+
a3

b3+ ���

;

F0= b0; F1= b0+
a1
b1
; F2= b0+

a1

b1+
a2
b2

; F3= b0+
a1

b1+
a2

b2+
a3
b3
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with assumed limit limn!1= f . Writing out the first few terms

F0=1; F1=1+
1
2
; F2=1+

1

2+
2

3

; F3=1+
1

2+
2

3+
3

4

; :::;

leads to identification of coefficients as

bk= k+1; ak= k:

� Define a function f to compute Fn and return En=2+1/Fn! e.

� Define a function g to compute

Mn=1+
1
1!
+
1
2!
+ ���+ 1

n!
:

The convergence behavior of the two approximations En;Mn is shown in Fig. 1.
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Figure 1. Convergence of continued fraction and additive approximations of e.

The definition of order p and rate r of convergence

lim
n!1

jxn+1¡xj
jxn¡xjp

= r;
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is based upon the assumption of power-law decrease of the error en= jxn¡xj,

en+1� en
p , en+1= ren

p :

In log-coordinates this assumption leads to a straight line representation

log en+1= p log en+ log r :

The (log n; log en) representation in Fig. 1 does not allow direct identification of an
order of convergence. However a plot of (log en; log en+1) is easily constructed (Fig.
2), and shows p=� 1, ln r=�¡2) r= e¡2=� 0.135.
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Figure 2. Order-of-convergence plot for approximations of e. Visual estimation indi-
cates p=1, linear sequence convergence.

2. Apply convergence acceleration to both the above approximations of e. Construct the
convergence plot of the accelerated sequences, and estimate the new rate and order
of convergence.

Solution. Since both sequences exhibit linear convergence the Aitken formula

an=xn¡
(xn¡xn¡1)2

xn¡ 2xn¡1+ xn¡2

is applicable. The resulting accelerated convergence plot is shown in Fig. 3. Conver-
gence acceleration to second order is observed for a small range of errors, ln e2 [¡7;
¡4]. For smaller errors, the floating point system cannot separate the small differences
appearing in the Aitken correction.
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Figure 3. Convergence of Aitken acceleration of e approximation sequences

3. Completely state the mathematical problem of taking the nth root of a positive real,
n2N. Find the absolute and relative condition numbers.

Solution. First, assume n > 0 fixed leading to the problem f :R+!R, f(x) = x1/n.
The absolute condition number is

�̂= lim
"!0

sup
j�xj6"

kf(x+ �x)¡ f(x)k
k�xk :

The condition number furnishes a bound for the change in the solution upon a change
in the input

kf(x+ �x)¡ f(x)k6 �̂ k�xk :

Using the absolute value norm kxk= jxj for x2R+ gives

�̂= lim
"!0

sup
j�xj6"

jf(x+ �x)¡ f(x)j
j�xj =

��������df(x)dx

��������= 1
n
x
1

n
¡1
=
1
n

1

x(n¡1)/n
; for x> 0:

Consider some simple cases:

� n=1, f(x)= x, �̂=1, hence perturbations in the input are not amplified

f(x)=x; f(x+ �x)=x+ �x; f(x+ �x)¡ f(x)= �x:

� The problem is well-conditioned.

� n=2, f(x)= x
p

,

�̂=
1

2 x
p :
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� at x=1/4, �̂=1, indicating no amplification of input perturbation

� as x!1, �̂!0, indicating input perturbations have negligible effect upon
output. This indicates incorrect identification of the variables in a problem.

� as x! 0+, �̂!1, indicating small input perturbations have arbitrarily
large effects upon output. This indicates an ill-posed problem

In general, the conditioning of the nth root operation

�̂=
1
n

1

x(n¡1)/n
; forx> 0

indicates ill-conditioning for x! 0, well conditioning for x� 1, incorrect model for
x!1.

Consider now what happens when n is also allowed to vary. The definition of the
condition number cannot be directly applied since the limit process is not defined for
n2N. One can however consider the problem g:R+�R+!R

g (x; y)=x1/y;

and notice that h:R+ �N!R, h(x; n) = x1/n is a restriction of g. The condition
number of h can be inferred from that of g

�̂= lim
"!0

sup
k�zk6"

jg(x+ �x; y+ �y)¡ g(x; y)j
k�zk ; z= [ �x �y ]T :

Use the 1-norm for �z 2R+
2 , k�zk1=max (�x; �y). When approaching zero pertur-

bation, k�zk! 0 above the first bisector, the inequality

�x<�y6 "

implies

�̂=

��������@g@y
��������:

Conversely, for k�zk! 0 below the first bisector

�̂=

�������� @g@x
��������:

In general, for some arbitrary path to approach zero,

�̂=max
��������� @g@x

��������; ��������@g@y
���������=max

�
1
y

1

x(y¡1)/y
;
x1/y lnx

y2

�
:
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When restricted to y=n2N,

�̂=max
�
1
n

1

x(n¡1)/n
;
x1/n lnx

n2

�
:
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Figure 4. Conditioning of nth-root x1/n with perturbations allowed in n.

4. Completely state the mathematical problem of solving the initial value problem for an
ordinary differential equation of first order. Find the absolute and relative condition
numbers.

Solution. The IVP

y 0= f(y); y(0)= y0

is formulated as the mathematical problem

F :C0;1(R)�R!C(R);

that when evaluated for some slope function f and initial condition y0 gives the
integral curve y: [0; a)!R, a > 0. F (f ; y0) = y. In the above C(R) is the space of
continuous functions and C0;1 is the space of Lipschitz continuous functions.

As in the nth-root problem there are two inputs to F , and it is useful to start with
the case in which the slope function f is fixed and only y0 varies. The Lyapunov
exponent L is defined as

�y(t)=� eLt �y0;

to characterize this case and the condition number is simply

�̂(t)= eLt;
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i.e., the condition number and the Lyapunov exponent express the same concept.

The condition number for the case of variation of the slope function requires a concept
of taking a derivative with respect to a function f , a generalization of the calculus
concept of taking a derivative with respect to a variable. This is known as a functional
derivative and can be defined in the Fréchet sense for normed spaces and in the
Gateaux sense for Banach spaces.

5. Completely state the mathematical problem of finding the roots of a cubic polynomial.
Find the absolute and relative condition numbers.

Solution. Consider the cubic x3+ a2x
2+ a1x+ a0= 0 with roots x1; x2; x3 related to

the polynomial coefficients by the Vieta relations

x1+x2+ x3=¡a2; x1x2+ x1x3+ x2x3= a1; x1x2x3=¡a0 :

The mathematical problem of finding the roots of the cubic is f :R3!C3

f(a)=x;a=

24 a0
a1
a2

35;x=
24 x1
x2
x3

35
Consider the effect of small changes �a upon the roots by taking differentials

�x1+ �x2+ �x3 = ¡�a2
(x2+x3)�x1+(x3+x1)�x2+(x1+ x2)�x3 = �a1

x2x3 �x1+ x3x1 �x2+x1x2 �x3 = ¡�a0

This is a linear system for �x with matrix

B=

24 1 1 1
x2+ x3 x3+ x1 x1+x2
x2x3 x3x1 x1x2

35:
The condition number for f is the maximal amplification by the matrix B or

�̂= kBk:

Consider some specific cases:

� For x1= x2= x3= �,

B= [ b b b ]; b=

24 1
2�
�2

35
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6. Numerically compare the approximation of b(t) = t(� ¡ t)(2� ¡ t) by linear combi-
nation of T = fsin t; sin 2t; sin 3t; :::g with that of linear combinations of E = f1; et;
e2t; e3t; :::g. Present a study of the aproximation error as the number of terms in the
linear combination increases. Estimate the order of convergence in both cases.

Solution. The approximation is stated as

b(t)=� b̂n(t)=
X
k=1

n

ck ak(t)

with the basis functions chosen either as ak(t) = sin(kt) or ak(t) = e(k¡1)t. The
approximation error e(t)= b(t)¡ b̂n(t) can be measured in various norms, e.g., the 2-
norm

"2= ke(t)k22=
Z
0

2�

(b(t)¡ b̂n(t))2dt=�
2�
m

X
i=1

m

(b(ti)¡ b̂n(ti))2:

� Based upon the code from Fig.1 in L04, define a function that returns the approx-
imation error for given basis set ak(t), number of terms n, and evaluation pointsm.

) function err(m,n,a,dbg=false)
h=2.0*p/m; j=1:m; t=h*j;
A = a.(1,t)
for k=2:n
A = [A a.(k,t)]

end
if dbg
return A

end
bt=t.*(p.-t).*(2*p.-t)
x=A\bt; b=A*x;
return norm(b-bt)*(2*pi)/m

end
err

)

� Define the two basis sets of interest

) s(k,t) = sin(k*t); e(k,t)=exp((k-1)*t);

)

� Verify the err function constructs the expected matrix. Note that the basis func-
tion is passed as an argument.
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The numerical values within the matrixA are hard to interpret for largem, hence plot
the columns in Fig. 5. The basis fubnctino plots already indicate that the exponential
family is likely to lead to bad approximations since with respect to e(n¡1)t, all ekt for
k<n¡1 are negligibly small, hence A is likely to have only one independent column
vector.
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Figure 5. Left: Sine basis functions. Right: Exponential basis functions.

� Test the err function for larger m values (more samples).

The convergence behavior is shown in Fig. 6. As expected as the number of terms in
the linear combination increases the sine approximation converges, while that for the
exponential basis has a constant error (numerically, the rank of the matrix remains 1).

�

2.5 3.0 3.5 4.0 4.5
log(n)

−12

−10

−8

−6

−4

−2

0

lo
g(

er
r)

Convergence behavior for sine, exp basis

sine
exp

Figure 6. Convergence of sine, exp basis approximation of b(t) with increasing number
of terms.
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