
MATH661 S02 - Linear combination approximations

Posted: 09/06/23
Due: 09/13/23, 11:59PM
Tracks 1 & 2: 1. Track 2: 2.

This homework introduces the fundamentals of additive approximation techniques in vector spaces. Read and
understand the concepts in L04: Linear combinations in Rm and C0[0; 2�), in particular to the example
presented in the text and in the code attached to L04: Figure 2. Additional Julia coding constructs are
also introduced. Remember to always execute the code snippets within the lecture notes to understand Julia
programming techniques.

1. Approximate b(t) = t(� ¡ t)(2� ¡ t) on the interval [0; 2�) by the following series and study the
convergence behavior of the solution. The pseudo-matrix A(t) arising in the approximation is shown
in each case

a) Cosine series

b(t)=�
X
k=0

n

xk cos(kt);

A(t)= [ 1 cos(t) cos(2t) ::: cos(nt) ]; A:R!Rn+1:

b) Trigonometric series

b(t)=�
X
k=0

n

[xk cos(kt)+ yk sin(kt)];

A(t)= [ 1 cos(t) sin(t) cos(2t) sin(2t) ::: cos(nt) sin(nt) ]; A(t):R!R2n+1:

c) Sine series

b(t)=�
X
k=1

n

yk sin(kt);

A(t)= [ sin(t) sin(2t) ::: sin(nt) ]; A:R!Rn:

d) Triangle wave series

b(t)=�
X
k=1

n

zkWk( t);

A(t)= [ W1(t) W2(t) ::: Wn( t) ]; A:R!Rn;

with

Wk(t)= 1¡ 4
��������12 ¡

s
1
4
+ kt
2�

{��������;
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where JxK is the fractional part of x, e.g., J1.15K= 0.15.

Solution. Sample b(t) at points tj= (j ¡ 1)h, j =1; 2; :::; m, with spacing h=2�/m, and let t denote the vector
with components tj. Let p denote the number of columns in the A(t) pseudo-matrix, i.e., the number of functions
uk(t) entering into the approximation of b(t) by the linear combination

fp(t)=
X
k=1

p

ckuk(t): (1)

Table 1 defines ck, uk(t) for each of the four cases, with k= 1; 2; :::; p. Case b also conforms to this pattern since
the presence of both cos(kt) and sin(kt) suggests the use of complex numbers

bn(t) =
X
k=0

n

[xk cos(kt)+ yk sin(kt)] =
1

2

X
k=0

n

[xk (e
ikt+ e¡ikt)¡ iyk (eikt¡ e¡ikt)])

bn(t)=
1
2

"X
k=0

n

(xk¡ iyk)eikt+
X
k=0

n

(xk+ iyk)e
¡ikt

#
=
1
2
[pn(t)+ qn(t)]:

As expected for bn(t)2R, pn(t); qn(t)2C are complex conjugates

p�n(t) =
X
k=0

n

(xk¡ iyk)eikt=
X
k=0

n

(xk+ iyk)e
¡ikt= qn(t);

hence only one need be computed and the expression

fp(t)= 2Re

(X
k=1

p

ck e
¡i(k¡1)t

)

is obtained, indeed conforming to the same pattern as the other cases.

Case ck uk(t)

a yk cos((k¡ 1) t)
b xk+ iyk e¡i(k¡1)t

c yk sin(kt)
d zk Wk(t)

Table 1. Coefficient, basis function definitions.

Problem solution consists of the following steps, leading to results in Fig. 1.

� Define b(t) and the basis functions u�(k; t), �2fa; b; c; dg to be investigated.

� Define a function to compute the error in approximating b(t) by a series with p termswith coefficients determined
by sampling at m points

E(m; p) = kfp(t)¡ b(t)k/kb(t)k;

with b(t); fp(t)2Rm vectors obtained by sampling b(t); fp(t) at t2Rm. With c2Rp the vector with components
ck, fp(t) is evaluated by the matrix-vector product

fp(t) =A(t) c:

� Test the error function by computing the coefficients for v(t)= cos(t) and w(t)= cos(t)+ cos(5t) using basis set
ua(k; t) = cos(kt). We should obtain zero error once enough terms are included.

� Define a function to construct a convergence plot by evaluating E(m; p) on a of range p values "

� Choose sufficient sample points to resolve the function b(t), say m= 100, and construct convergence plots for
the four cases
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1e−16 Convergence plot for u(t)=cos(kt)
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Convergence plot for u(t)=sin(kt)
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Convergence plot for u(t)=Wk(t)

Figure 1. Comparison of convergence for different basis sets. No convergence is obtained for ua(k;t)=cos(kt)
since the basis set is even but b(t) is odd. Convergence is observed for the other basis sets. Faster convergence
is obtained for ub(k; t) = e¡ikt; uc(k; t) = sin(kt), with "=� 10¡3 (3 significant digits) obtained with p= 11
terms. Convergence is significantly slower for the triangle functions ud(k; t)=Wk(t).

2. Study the analytical theory underlying the above approximations by considering the following.

a) State the convergence theorem for Fourier series and the Fourier coefficient formulas (see, e.g.,
[1]). Analytically compute the Fourier coefficients for b(t)= t(�¡ t)(2�¡ t). Use of a symbolic
computation package (e.g., Maxima, Mathematica) eliminates tedious hand computation.

Solution. For b:R!R with a finite set ftjg of isolated discontinuity points,

b(t) = lim
n!1

X
k=0

n

[xk cos(kt)+ yk sin(kt)]:

At points of discontinuity

lim
n!1

X
k=0

n

[xk cos(kt)+ yk sin(kt)]=
1

2
[b(tj

¡)+ b(tj
+)]:

� The Fourier coefficients are computed by (MATH529: L15)

xk=
1
�

Z
0

2�

b(t) cos(kt) dt=0; yk=
1
�

Z
0

2�

b(t) sin(kt) dt= 12
k3
:

b) Compare the analytically computed Fourier coefficients with the numerical results obtained in
Problem 1, a)-c). Assess the analytically predicted Fourier series convergence by comparison
to the numerical results.

Solution. The relevant basis is case b, and numerically computed coefficients are compared against ana-
lytical results in Fig. 2 .
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Comparison of numerical (xn, yn), analytic (ya) Fourier coefficients

Figure 2. Numerical xk (�), yk (�), recover analytical xk=0, yk= 12/k3 (�).

c) Carry out series approximations as in Problem 1, a)-d) of

c(t)= �3

4
[H(t)¡ 2H(t¡�)]

where H(x) is the Heaviside step function

H(x)=
�
0 x< 0
1 x> 0

:

Solution. The steps of Problem 1 are repeated for c(t) leading to Fig. 3

� Define H(t); c(t)

� Sample the function c(t), and construct convergence plots for the four cases
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Figure 3. Comparison of convergence of approximation of c(t) for different basis sets. Slower
convergence is observed by comparison to approximation of b(t). The fastest convergence is observed
for the triangle wave basis Wk(t).
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d) Again, compare analytically evaluated Fourier coefficients with numerical results. How do the
approximations of c(t) behave differently from those of b(t)?

Solution. Plot b(t) and c(t) to gain insight into different behavior (Fig. 4). Note that c(t) is a discontinuous
analogue of b(t).
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Figure 4. b(t) (blue), c(t) (red)

The Fourier coefficients are now

xk=
1
�

Z
0

2�

c(t) cos(kt) dt=0; y2j+1=
1
�

Z
0

2�

b(t) sin(kt) dt= �2

2j+1
; y2j=0:

�
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Figure 5. Numerical yk (�), recovers analytical y2j+1=�2/(2j+1) (�).

Convergence is obtained for both b(t) and c(t). Convergence is faster for b(t) in the continuous Fourier basis,
while for c(t) it is faster in the discontinuous triangle wave basis. Convergence is slower for the discontinuous
function c(t) with coefficient decay �1/k by comparison to the coefficient decay �1/k3 for the continuous
function b(t).
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