MATH661 S02 - Linear combination approximations

Posted: 09/06/23
Due: 09/13/23, 11:59PM
Tracks 1 \& 2: 1. Track 2: 2.
This homework introduces the fundamentals of additive approximation techniques in vector spaces. Read and understand the concepts in L04: Linear combinations in \mathcal{R}_{m} and $\mathcal{C}^{0}[0,2 \pi)$, in particular to the example presented in the text and in the code attached to L04: Figure 2. Additional Julia coding constructs are also introduced. Remember to always execute the code snippets within the lecture notes to understand Julia programming techniques.

1. Approximate $b(t)=t(\pi-t)(2 \pi-t)$ on the interval $[0,2 \pi)$ by the following series and study the convergence behavior of the solution. The pseudo-matrix $A(t)$ arising in the approximation is shown in each case
a) Cosine series

$$
\begin{aligned}
& b(t) \cong \sum_{k=0}^{n} x_{k} \cos (k t), \\
& A(t)=\left[\begin{array}{llll}
1 & \cos (t) & \cos (2 t) & \ldots \\
\cos (n t)
\end{array}\right], A: \mathbb{R} \rightarrow \mathbb{R}^{n+1} .
\end{aligned}
$$

b) Trigonometric series

$$
b(t) \cong \sum_{k=0}^{n}\left[x_{k} \cos (k t)+y_{k} \sin (k t)\right]
$$

$$
A(t)=\left[\begin{array}{lllllll}
1 & \cos (t) & \sin (t) & \cos (2 t) & \sin (2 t) & \ldots & \cos (n t)
\end{array} \sin (n t)\right], A(t): \mathbb{R} \rightarrow \mathbb{R}^{2 n+1}
$$

c) Sine series

$$
\begin{gathered}
b(t) \cong \sum_{k=1}^{n} y_{k} \sin (k t) \\
A(t)=\left[\begin{array}{lll}
\sin (t) & \sin (2 t) & \ldots \\
\sin (n t)
\end{array}\right], A: \mathbb{R} \rightarrow \mathbb{R}^{n}
\end{gathered}
$$

d) Triangle wave series

$$
\begin{gathered}
b(t) \cong \sum_{k=1}^{n} z_{k} W_{k}(t) \\
A(t)=\left[\begin{array}{llll}
W_{1}(t) & W_{2}(t) & \ldots & W_{n}(t)
\end{array}\right], A: \mathbb{R} \rightarrow \mathbb{R}^{n}
\end{gathered}
$$

with

$$
W_{k}(t)=1-4\left|\frac{1}{2}-\llbracket \frac{1}{4}+\frac{k t}{2 \pi} \rrbracket\right|,
$$

where $\llbracket x \rrbracket$ is the fractional part of x, e.g., $\llbracket 1.15 \rrbracket=0.15$.

Solution. Sample $b(t)$ at points $t_{j}=(j-1) h, j=1,2, \ldots, m$, with spacing $h=2 \pi / m$, and let \boldsymbol{t} denote the vector with components t_{j}. Let p denote the number of columns in the $A(t)$ pseudo-matrix, i.e., the number of functions $u_{k}(t)$ entering into the approximation of $b(t)$ by the linear combination

$$
\begin{equation*}
f_{p}(t)=\sum_{k=1}^{p} c_{k} u_{k}(t) \tag{1}
\end{equation*}
$$

Table 1 defines $c_{k}, u_{k}(t)$ for each of the four cases, with $k=1,2, \ldots, p$. Case b also conforms to this pattern since the presence of both $\cos (k t)$ and $\sin (k t)$ suggests the use of complex numbers

$$
\begin{aligned}
b_{n}(t)= & \sum_{k=0}^{n}\left[x_{k} \cos (k t)+y_{k} \sin (k t)\right]=\frac{1}{2} \sum_{k=0}^{n}\left[x_{k}\left(e^{i k t}+e^{-i k t}\right)-i y_{k}\left(e^{i k t}-e^{-i k t}\right)\right] \Rightarrow \\
& b_{n}(t)=\frac{1}{2}\left[\sum_{k=0}^{n}\left(x_{k}-i y_{k}\right) e^{i k t}+\sum_{k=0}^{n}\left(x_{k}+i y_{k}\right) e^{-i k t}\right]=\frac{1}{2}\left[p_{n}(t)+q_{n}(t)\right] .
\end{aligned}
$$

As expected for $b_{n}(t) \in \mathbb{R}, p_{n}(t), q_{n}(t) \in \mathbb{C}$ are complex conjugates

$$
\bar{p}_{n}(t)=\sum_{k=0}^{n} \overline{\left(x_{k}-i y_{k}\right)} \overline{e^{i k t}}=\sum_{k=0}^{n}\left(x_{k}+i y_{k}\right) e^{-i k t}=q_{n}(t)
$$

hence only one need be computed and the expression

$$
f_{p}(t)=2 \operatorname{Re}\left\{\sum_{k=1}^{p} c_{k} e^{-i(k-1) t}\right\}
$$

is obtained, indeed conforming to the same pattern as the other cases.

Case	c_{k}	$u_{k}(t)$
a	y_{k}	$\cos ((k-1) t)$
b	$x_{k}+i y_{k}$	$e^{-i(k-1) t}$
c	y_{k}	$\sin (k t)$
d	z_{k}	$W_{k}(t)$

Table 1. Coefficient, basis function definitions.

Problem solution consists of the following steps, leading to results in Fig. 1.

- Define $b(t)$ and the basis functions $u_{\alpha}(k, t), \alpha \in\{a, b, c, d\}$ to be investigated.
- Define a function to compute the error in approximating $b(t)$ by a series with p terms with coefficients determined by sampling at m points

$$
E(m, p)=\left\|f_{p}(\boldsymbol{t})-b(\boldsymbol{t})\right\| /\|b(\boldsymbol{t})\|,
$$

with $b(\boldsymbol{t}), f_{p}(\boldsymbol{t}) \in \mathbb{R}^{m}$ vectors obtained by sampling $b(t), f_{p}(t)$ at $\boldsymbol{t} \in \mathbb{R}^{m}$. With $\boldsymbol{c} \in \mathbb{R}^{p}$ the vector with components $c_{k}, f_{p}(\boldsymbol{t})$ is evaluated by the matrix-vector product

$$
f_{p}(\boldsymbol{t})=A(\boldsymbol{t}) \boldsymbol{c}
$$

- Test the error function by computing the coefficients for $v(t)=\cos (t)$ and $w(t)=\cos (t)+\cos (5 t)$ using basis set $u_{a}(k, t)=\cos (k t)$. We should obtain zero error once enough terms are included.
- Define a function to construct a convergence plot by evaluating $E(m, p)$ on a of range p values ε
- Choose sufficient sample points to resolve the function $b(t)$, say $m=100$, and construct convergence plots for the four cases

Figure 1. Comparison of convergence for different basis sets. No convergence is obtained for $u_{a}(k, t)=\cos (k t)$ since the basis set is even but $b(t)$ is odd. Convergence is observed for the other basis sets. Faster convergence is obtained for $u_{b}(k, t)=e^{-i k t}, u_{c}(k, t)=\sin (k t)$, with $\varepsilon \cong 10^{-3}$ (3 significant digits) obtained with $p=11$ terms. Convergence is significantly slower for the triangle functions $u_{d}(k, t)=W_{k}(t)$.
2. Study the analytical theory underlying the above approximations by considering the following.
a) State the convergence theorem for Fourier series and the Fourier coefficient formulas (see, e.g., [1]). Analytically compute the Fourier coefficients for $b(t)=t(\pi-t)(2 \pi-t)$. Use of a symbolic computation package (e.g., Maxima, Mathematica) eliminates tedious hand computation.

Solution. For $b: \mathbb{R} \rightarrow \mathbb{R}$ with a finite set $\left\{t_{j}\right\}$ of isolated discontinuity points,

$$
b(t)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left[x_{k} \cos (k t)+y_{k} \sin (k t)\right]
$$

At points of discontinuity

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left[x_{k} \cos (k t)+y_{k} \sin (k t)\right]=\frac{1}{2}\left[b\left(t_{j}^{-}\right)+b\left(t_{j}^{+}\right)\right] .
$$

- The Fourier coefficients are computed by (MATH529: L15)

$$
x_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} b(t) \cos (k t) \mathrm{d} t=0, y_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} b(t) \sin (k t) \mathrm{d} t=\frac{12}{k^{3}}
$$

b) Compare the analytically computed Fourier coefficients with the numerical results obtained in Problem 1, a)-c). Assess the analytically predicted Fourier series convergence by comparison to the numerical results.

Solution. The relevant basis is case b, and numerically computed coefficients are compared against analytical results in Fig. 2.

Figure 2. Numerical $x_{k}(\bullet), y_{k}(\times)$, recover analytical $x_{k}=0, y_{k}=12 / k^{3}(\bullet)$.
c) Carry out series approximations as in Problem 1, a)-d) of

$$
c(t)=\frac{\pi^{3}}{4}[H(t)-2 H(t-\pi)]
$$

where $H(x)$ is the Heaviside step function

$$
H(x)= \begin{cases}0 & x<0 \\ 1 & x>0\end{cases}
$$

Solution. The steps of Problem 1 are repeated for $c(t)$ leading to Fig. 3

- Define $H(t), c(t)$
- Sample the function $c(t)$, and construct convergence plots for the four cases

Figure 3. Comparison of convergence of approximation of $c(t)$ for different basis sets. Slower convergence is observed by comparison to approximation of $b(t)$. The fastest convergence is observed for the triangle wave basis $W_{k}(t)$.
d) Again, compare analytically evaluated Fourier coefficients with numerical results. How do the approximations of $c(t)$ behave differently from those of $b(t)$?

Solution. Plot $b(t)$ and $c(t)$ to gain insight into different behavior (Fig. 4). Note that $c(t)$ is a discontinuous analogue of $b(t)$.

Figure 4. $b(t)$ (blue), $c(t)$ (red)

The Fourier coefficients are now

$$
x_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} c(t) \cos (k t) \mathrm{d} t=0, y_{2 j+1}=\frac{1}{\pi} \int_{0}^{2 \pi} b(t) \sin (k t) \mathrm{d} t=\frac{\pi^{2}}{2 j+1}, y_{2 j}=0 .
$$

Figure 5. Numerical $y_{k}(\times)$, recovers analytical $y_{2 j+1}=\pi^{2} /(2 j+1)(\bullet)$

Convergence is obtained for both $b(t)$ and $c(t)$. Convergence is faster for $b(t)$ in the continuous Fourier basis, while for $c(t)$ it is faster in the discontinuous triangle wave basis. Convergence is slower for the discontinuous function $c(t)$ with coefficient decay $\sim 1 / k$ by comparison to the coefficient decay $\sim 1 / k^{3}$ for the continuous function $b(t)$.

Bibliography

[1] Erwin Kreyszig. Advanced engineering mathematics. Hoboken, NJ : John Wiley, c2006., 9th ed. edition, 2006.

