MATH661 HWO04 - Midterm review

Posted: 09/20/23
Due: 09/27/23, 11:59PM

At this point in the course homework has addressed:

HWO. Tools needed for scientific computation (number representation, number approzimation
techniques, basic coding constructs, an environment for method documentation and repro-
ducible computational experiments).

HW2. Discretization of continuous functions leads to finite-dimensional vectors that can often
be approximated by linear combination of just a few of the basis vectors required for the
entire space.

HWS3. Large data sets, readily acquired from observations, can guide selection of vectors within
a basis to obtain data compression or efficient data representation through linear combina-
tion.

Homework j reinforces analytical skills within the mathematical framework of finite-dimensional
vector spaces used for the above topics. Such technical proficiency is just as important as efficient
coding. The midterm examination verifies proficiency in such analytical skills

Note: The exercises below contain well-known results, but should be attempted individually and
independently, without recourse to references. Simply looking up a proof and transcribing it will
not aid understanding nor ensure good results on the midterm eramination. If you do not obtain
an exercise proof within 10 minutes reread the relevant theoretical material from the lecture notes
and then try again for another 15 minutes.

1 Tracks 1 and 2

1. Prove the parallelogram identity
lz+yl?+lz —yl*=2(= >+ [y]*),

for &,y € C™, with ||| denoting the 2-norm.

Solution. [z + y[?>+ [z — y[?’=(x+ v (@ +y) + (@ -y (x—y) =T +y")(@+y) + (7 -
YN -y)=zz+yz+zTy+yTy+ 27z — yTz — Ty + yTy =2(xTx + yTy) =2(||l=|* + |y [|?) .

2. Consider u,v eV, V=(V R, +,:) a vector space with norm induced by a scalar product

|lw||?= (u,u). Prove that ||u| =|v| = (u+wv)L(u—v). Is the converse true?
Solution. |ul|=||v| = |lul?2=|v|?= v Tu=vTv=uTu —vTv=0=vwTu+vTu —uTv —vTv=0=

W+ o) (u—v)=0= (u+v)T(u—v)=0= (u+v)L(u—v). Converse is also true:

(u+v) Lu—v)= (u+v)T(u—-v)=0=uvTu+vTu —uTv —vTv=0=vTu=vTv=|lu| = ||
3. Consider A€ R™*™ (C(A)=R". Prove that
(:ETATA:B)l/Q

is a norm. (Track 2: generalize above to C™)



Solution. Verify norm properties:

1.

lz]|=0=2x=0. |z|?=2TAT Az = yTy =0=y=0. Consider now Az =0. Since A is of full
rank, = 0 is the only solution. Note that if rank(A) < m, the above is not a norm.

. llez|| =|c|l|lz]|. Compute: ||cz|| = (cxTAT Acz)'/? = |c|(xTAT Ax) /% =|c||z||.

M+ yll <zl + lyll. When A=1T the standard Euclidean 2-norm || ||2 is obtained. For A # I

of full rank for any u, v there exist , y such that u= Ax, v= Ay and
o] = (@TAT Az)'/? = (uTu)'/2 = [[u],.

Similarily ||y ||=||v||2, &+ y||=]|w+v]|2, hence it is sufficient to establish the triangle inequality
for the 2-norm ||u + v|j2 < ||ul|2 + ||v]|2. Taking squares

lu+ 03 = (u+v)"(u +v) = wu + 0" + 200 = [Jul3 + [v]3 + 2u"v < ulF + [v]3 +
2lull2llvll2 = w"v < [lull2llv]2,

so it remains to establish the last inequality (known as the Schwarz inequality). The Schwarz
inequality can be established by asking: when is equality obtained in the triangle inequality? This

occurs if u, v are colinear, and suggest building the vector w = ||v||2u — ||u||2v that becomes
zero when u, v are colinear. Calculate

0<ww= (v]lzu — ul20)(lvl2u — lull20) = 2 [lu|3]v]I3 - 2|lu2llv]2 uo,

from which u"v < ||u||2||v||2, as desired.

4. Construct the matrix A that represents the mapping f:R®— IR3, f reflects a vector across
the z129 plane. Construct the matrix B that represents the mapping g: R? — R3, g reflects
a vector across the xox3 plane. Determine the mapping represented by C' = BA.

Solution. Reflecting the point € =[ 21 z2 =3 }T across the zizg plane gives Az =21 9 —x3 }T,

hence

100
A:[é2 21}: 010
00 —1

Note the block structure of A. Since the first two components of Ax are unchanged from those of x,
an identity matrix on these two components I> appears. Similarily

-1
,C=BA=|0
0

-1
B=|0
0

o = O
= o O
o = O
= o O
o O =
o = O
o o
|
o o
o = O
o o

where C is the reflection across the zo axis.

5. Prove that the inverse of a rank-1 perturbation of I is itself a rank-1 perturbation of I,

namely

(I +uv*) =TI+ 0uv*.

Determine the scalar 6.

Solution. Assume u, v # 0. By definition of an inverse

I=(I+uv)(I+uv) =T +uv*) I +0uv*) =1+ (0 + 1)uv* + uvuv* =

(0 +1)uv* 4 buv*uv*=0.

Note that in uv*uv* the product v*u is a scalar, hence uv*uv* = (v*u)uv*, and the above matrix

equality becomes

0+1+60vu]uv*=0.



For the above to be true for any u, v choose 6 such that

0+1+6’v*u:0é6:—1+ﬁ,
if v*u# —1. When would v*u=—17 An example is fegek in which case
I— ezek

has a k' column of zeros and is therefore singular.

6. Determine the rank of B=A"1uv*.

Solution. The inverse A~! exists only if A is square, A € C™*™ and of full rank, hence rank(A =) =m.
What is A~ uv*? Recall that a matrix-vector product Cw is a linear combination of the columns of
C, and the matrix-matrix product C D is simply a collection of matrix vector products

CD=C|d, dy ... d,]=[Cd, Cdsy .. Cd,].
Now D =wuwv* is of rank one, rank(uv*) =1 with colinear columns

D=[v1u v2u .. Tpu].
Multiplying with C' gives

CD=[9Cu 92Cu ... 5,Cu ],
again with colinear columns such that rank(C D)= 1. Deduce that rank(B) = rank(A ™ luv*) =1.
7. Write the inverse (I + A~ uv*)~! as a rank-1 perturbation of I.

Solution. Since A~!uv* =wwv* is of rank one with w =A~"1u, use

*

w—1_7g_ WV
I+wv*)~t=1I Trow’
to obtain
A lyv*
I+A gyt l=1- = =7 |
I+ uo’) 1+ v A~ lu

8. Consider C = A +uv*=A(I + A~ uv*). Write C~! as a rank-1 perturbation of A~
Solution. Apply above results

—1 * —1 * A—1
C—1:[A(I+A—luv*)]—l:(I_,’_A—lu,v*)—lA—l:(I A uv )A—1:A—1_A uv*A

T 1+ vrA 1+v*A~ 1y

2 Track 2

1. For x e R™, prove ||z < |22

Solution. By definition

l[a£]l o0 = max|ai| = |2k,

with k the index of the (not necessarily unique) maximal element. Then

1/2

m
o=+ > of ) =Gita2zm,
j=1,j#k



since a > 0.
2. For x € R™, prove ||z||2 <+v/m ||Z]co-

Solution. With above notations, |z;| < |zx|, hence

1/2

m
lzllo={ 3" a2 | <(mad)/2=m |zl
=1

3. For Ae R™*", prove ||A|cc < /N || A2

Solution. By definition
[Allco= sup [[Az|o.
1

llee|l o=
For y=Ax € R™ apply above results (1. and 2.) and ||[AB| <||A| ||B]| to obtain
[Az[loc =Yoo < lyllz=[Az[2< [|All2]lzll2 < VR [|All2 2]l oo,

and establish the bound

Ax
[E[PSS

for any @, with the upper bound of the left hand side being || A ||, hence
[Alloe < v/ [|All2-

4. For A€ R™*™, prove ||A]2<vm ||Allco-

Solution. For y=Ax € R™ apply above results (1. and 2.)

Az m||Ax m ||Ax
|Awls VT [ Al VT IAT0e oy
[l]2 lll2 [EJ[PSS

for all « including the one for which ||A||2 is attained, hence ||A |2 < v/m || A co-
5. Prove the Minkowski inequality: for p>1, z,y € R™, |z +y|, < |z, + ||yl
Solution. The Minkowski inequality results from the Holder inequality, for 1/p+1/qg=1,

m m 1/p/ m 1/q
> l“z'yi|<<z l“ip> <Z |yiq>

=1 =1 =1
for g=p/p—1.
6. Construct the matrix D that represents the mapping f:RR3>— 1IR3, f rotates a vector around
the x3 axis by angle 6. Construct the matrix E that represents the mapping f: R? — R3,
f rotates a vector around the zo axis by angle .

Solution.
cosf —sinf 0 cosep 0 —sing
D=| sinf cosf O [,E=]| 0 10
0 0 1 sing 0 cose

7. What do DFE and E D represent?

Solution. Composite rotation in different order, D E first around z2 then around z3, E D first around
x3 then around xs.

8. Is DE =FED true? Explain.

Solution. No, this is an example of non-commutative matrix multiplication. Counter-example 6 = @ =
w /2, and
-1 0
DEe>;=| 0 #10 =EDe-.
0 -1
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