
MATH661 HW04 - Midterm review

Posted: 09/20/23
Due: 09/27/23, 11:59PM

At this point in the course homework has addressed:

HW0. Tools needed for scientific computation (number representation, number approximation
techniques, basic coding constructs, an environment for method documentation and repro-
ducible computational experiments).

HW2. Discretization of continuous functions leads to finite-dimensional vectors that can often
be approximated by linear combination of just a few of the basis vectors required for the
entire space.

HW3. Large data sets, readily acquired from observations, can guide selection of vectors within
a basis to obtain data compression or efficient data representation through linear combina-
tion.

Homework 4 reinforces analytical skills within the mathematical framework of finite-dimensional
vector spaces used for the above topics. Such technical proficiency is just as important as efficient
coding. The midterm examination verifies proficiency in such analytical skills

Note: The exercises below contain well-known results, but should be attempted individually and
independently, without recourse to references. Simply looking up a proof and transcribing it will
not aid understanding nor ensure good results on the midterm examination. If you do not obtain
an exercise proof within 10 minutes reread the relevant theoretical material from the lecture notes
and then try again for another 15 minutes.

1 Tracks 1 and 2

1. Prove the parallelogram identity

kx+ yk2+ kx¡ yk2=2(kxk2+ kyk2);

for x; y 2Cm, with k k denoting the 2-norm.

Solution. kx+ yk2+ kx ¡ yk2= (x+ y)T (x+ y) + (x ¡ y)T (x ¡ y) = (xT + yT)(x+ y) + (xT ¡
yT)(x¡ y) =xTx+ yTx+xTy+ yTy+xTx¡ yTx¡xTy+ yTy=2(xTx+ yTy)= 2(kxk2+ kyk2) .

2. Consider u; v 2 V , V = (V ;R;+; �) a vector space with norm induced by a scalar product
kuk2=(u;u). Prove that kuk= kvk) (u+v)?(u¡v). Is the converse true?

Solution. kuk= kvk)kuk2= kvk2)uTu=vTv)uTu¡vTv=0)uTu+vTu¡uTv¡vTv=0)
(uT +vT )(u¡v)= 0) (u+v)T(u¡v)= 0) (u+v)?(u¡v). Converse is also true:

(u+v)?(u¡v)) (u+v)T (u¡v)= 0)uTu+vTu¡uTv¡vTv=0)uTu=vTv)kuk= kvk:

3. Consider A2Rm�m, C(A)=Rm. Prove that

(xTATAx)1/2

is a norm. (Track 2: generalize above to Cm)
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Solution. Verify norm properties:

1. kxk=0)x=0. kxk2=xTATAx= yTy=0) y=0. Consider now Ax=0. Since A is of full
rank, x=0 is the only solution. Note that if rank(A)<m, the above is not a norm.

2. kcxk= jcjkxk. Compute: kcxk=(cxTATAcx)1/2= jcj(xTATAx)1/2= jcjkxk.

3. kx+ yk6 kxk+ kyk. When A= I the standard Euclidean 2-norm k k2 is obtained. For A=/ I

of full rank for any u; v there exist x; y such that u=Ax, v=Ay and

kxk=(xTATAx)1/2=(uTu)1/2= kuk2 :

Similarily kyk=kvk2, kx+yk=ku+vk2, hence it is sufficient to establish the triangle inequality
for the 2-norm ku+vk26 kuk2+ kvk2. Taking squares

ku + vk22 = (u + v)T(u + v) = uTu + vTv + 2uTv = kuk22 + kvk22 + 2uTv 6 kuk22 + kvk22 +
2kuk2kvk2)uTv6 kuk2kvk2;

so it remains to establish the last inequality (known as the Schwarz inequality). The Schwarz
inequality can be established by asking: when is equality obtained in the triangle inequality? This
occurs if u; v are colinear, and suggest building the vector w = kvk2u ¡ kuk2v that becomes
zero when u;v are colinear. Calculate

06wTw=(kvk2u¡kuk2v)T (kvk2u¡kuk2v)= 2 kuk22kvk22¡ 2kuk2kvk2uTv;

from which uTv6 kuk2kvk2, as desired.

4. Construct the matrix A that represents the mapping f :R3!R3, f reflects a vector across
the x1x2 plane. Construct the matrix B that represents the mapping g:R3!R3, g reflects
a vector across the x2x3 plane. Determine the mapping represented by C =BA.

Solution. Reflecting the point x= [ x1 x2 x3 ]
T across the x1x2 plane gives Ax= [ x1 x2 ¡x3 ]T ,

hence

A=

�
I2 0
0 ¡1

�
=

24 1 0 0
0 1 0
0 0 ¡1

35:
Note the block structure of A. Since the first two components of Ax are unchanged from those of x,
an identity matrix on these two components I2 appears. Similarily

B=

24 ¡1 0 0
0 1 0
0 0 1

35;C=BA=

24 ¡1 0 0
0 1 0
0 0 1

3524 1 0 0
0 1 0
0 0 ¡1

35=
24 ¡1 0 0
0 1 0
0 0 ¡1

35;
where C is the reflection across the x2 axis.

5. Prove that the inverse of a rank-1 perturbation of I is itself a rank-1 perturbation of I,
namely

(I +uv�)¡1= I + �uv�:

Determine the scalar �.

Solution. Assume u; v=/ 0. By definition of an inverse

I =(I +uv�)(I +uv�)¡1=(I +uv�)(I + �uv�)= I +(�+1)uv�+ �uv�uv�)

(�+1)uv�+ �uv�uv�=0:

Note that in uv�uv� the product v�u is a scalar, hence uv�uv�= (v�u)uv�, and the above matrix
equality becomes

[�+1+ �v�u ]uv�=0:
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For the above to be true for any u; v choose � such that

�+1+ �v�u=0) �=¡ 1

1+v�u
;

if v�u=/ ¡1. When would v�u=¡1? An example is ¡ekTek in which case

I ¡ ekT ek

has a kth column of zeros and is therefore singular.

6. Determine the rank of B=A¡1uv�.

Solution. The inverseA¡1 exists only if A is square,A2Cm�m and of full rank, hence rank(A¡1)=m.
What is A¡1uv�? Recall that a matrix-vector product Cw is a linear combination of the columns of
C, and the matrix-matrix product CD is simply a collection of matrix vector products

CD=C[ d1 d2 ::: dn ] = [ Cd1 Cd2 ::: Cdn ]:

Now D=uv� is of rank one, rank(uv�) =1 with colinear columns

D= [ v�1u v�2u ::: v�nu ]:

Multiplying with C gives

CD= [ v�1Cu v�2Cu ::: v�nCu ];

again with colinear columns such that rank(CD)= 1. Deduce that rank(B)= rank(A¡1uv�)= 1.

7. Write the inverse (I +A¡1uv�)¡1 as a rank-1 perturbation of I.

Solution. Since A¡1uv�=wv� is of rank one with w=A¡1u, use

(I +wv�)¡1= I ¡ wv�

1+v�w
;

to obtain

(I +A¡1uv�)¡1= I ¡ A¡1uv�

1+v�A¡1u
:

8. Consider C =A+uv�=A(I+A¡1uv�). Write C¡1 as a rank-1 perturbation of A¡1.

Solution. Apply above results

C¡1= [A(I +A¡1uv�)]¡1=(I +A¡1uv�)¡1A¡1=

�
I ¡ A¡1uv�

1+v�A¡1u

�
A¡1=A¡1¡A¡1uv�A¡1

1+v�A¡1u

2 Track 2

1. For x2Rm, prove kxk16 kxk2.

Solution. By definition

kxk1=max
i
jxij= jxkj;

with k the index of the (not necessarily unique) maximal element. Then

kxk2=

0@xk
2+

X
j=1;j=/ k

m

xj
2

1A1/2=(xk
2+ a)1/2>xk;
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since a> 0.

2. For x2Rm, prove kxk26 m
p

kxk1.

Solution. With above notations, jxj j6 jxkj, hence

kxk2=

0@X
j=1

m

xj
2

1A1/26 (mxk
2)1/2= m

p kxk1:

3. For A2Rm�n, prove kAk16 n
p

kAk2.

Solution. By definition

kAk1= sup
kxk1=1

kAxk1:

For y=Ax2Rm apply above results (1. and 2.) and kABk6 kAk kBk to obtain

kAxk1= kyk16 kyk2= kAxk26 kAk2kxk26 n
p kAk2 kxk1;

and establish the bound
kAxk1
kxk1

6 n
p kAk2

for any x, with the upper bound of the left hand side being kAk1, hence

kAk16 n
p kAk2 :

4. For A2Rm�n, prove kAk26 m
p

kAk1.

Solution. For y=Ax2Rm apply above results (1. and 2.)

kAxk2
kxk2

6 m
p kAxk1

kxk2
6 m
p kAxk1
kxk1

6 m
p kAk1;

for all x including the one for which kAk2 is attained, hence kAk26 m
p kAk1.

5. Prove the Minkowski inequality: for p> 1, x; y 2Rm, kx+ ykp6 kxkp+ kykp.
Solution. The Minkowski inequality results from the Hölder inequality, for 1/p+1/q=1,

X
i=1

m

jxi yij6
 X
i=1

m

jxijp
!
1/p
 X
i=1

m

jyijq
!
1/q

for q= p/p¡ 1.

6. Construct the matrixD that represents the mapping f :R3!R3, f rotates a vector around
the x3 axis by angle �. Construct the matrix E that represents the mapping f :R3!R3,
f rotates a vector around the x2 axis by angle '.

Solution.

D=

24 cos�
sin�
0

¡sin�
cos�
0

0
0
1

35;E=

24 cos' 0 ¡sin'
0 1 0
sin' 0 cos'

35
7. What do DE and ED represent?

Solution. Composite rotation in different order,DE first around x2 then around x3, ED first around
x3 then around x2:

8. Is DE=ED true? Explain.

Solution. No, this is an example of non-commutative matrix multiplication. Counter-example �= '=

�/2, and

DEe2=

24 ¡10
0

35=/
24 0
0
¡1

35=EDe2:
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