MATH661 Scientific Computation I

Sorin Mitran

Applied Mathematics University of North Carolina Chapel Hill

Lesson 01

MATH661-L01

Scientific computation

MATH661-L01

- Scientific computation
 - History
 - Motivation
 - Approach

Applied mathematics

Typical approach

- Choose/develop appropriate mathematical theory for an application
- Formulate a solution strategy
- Find solutions under variety of assumptions
- Applied mathematics approaches
 - Analytical estimates
 - Numerical computation
 - Symbolic computation
 - Analog computation
- Computation devices
 - Mechanical devices from ca. 2500 BCE
 - Slide rule ca. 1620
 - AC/DC analog computers ca. 1900
 - Digital computers ca. 1950

Applied mathematics

Typical approach

- Choose/develop appropriate mathematical theory for an application
- Formulate a solution strategy
- Find solutions under variety of assumptions

Applied mathematics approaches

- Analytical estimates
- Numerical computation
- Symbolic computation
- Analog computation

Computation devices

- Mechanical devices from ca. 2500 BCE
- Slide rule ca. 1620
- AC/DC analog computers ca. 1900
- Digital computers ca. 1950

Applied mathematics

Typical approach

- Choose/develop appropriate mathematical theory for an application
- Formulate a solution strategy
- Find solutions under variety of assumptions

- Analytical estimates
- Numerical computation
- Symbolic computation
- Analog computation

Computation devices

- Mechanical devices from ca. 2500 BCE
- Slide rule ca. 1620
- AC/DC analog computers ca. 1900
- Digital computers ca. 1950

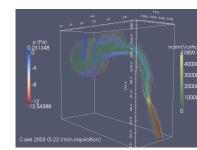
Motivation

Model complicated phenomena

- Euler equations of gas dynamics
- Diffraction of shock wave over a cavity

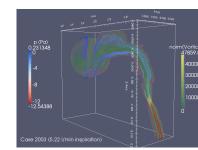
Provide otherwise inaccessible data

- Medical data
- Subsurface models (e.g., natural gas reservoirs)
- Astrophysical computation



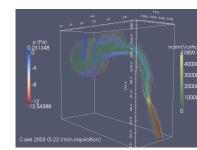
Provide otherwise inaccessible data

- Medical data
- Subsurface models (e.g., natural gas reservoirs)
- Astrophysical computation



Provide otherwise inaccessible data

- Medical data
- Subsurface models (e.g., natural gas reservoirs)
- Astrophysical computation



Digital numerical computation

Approach

- Digital computers are finite state machines
- Introduce finite number systems
 - $\mathbb{I} \subset \mathbb{N}$, e.g. \mathbb{I}_{64} a.k.a. long int
 - $\bullet~\mathbb{F}\subset\mathbb{Q}\subset\mathbb{R}$, e.g. \mathbb{F}_{64} a.k.a. double
- Discretize problem of interest in I, F
- Solve discretized problem
- Interpret results

- What is the effect of using approximations of \mathbb{N}, \mathbb{R} ?
- How do we establish correctness?
 - convergence
 - stability to errors
- How do we devise algorithms?
- What theoretical constructs are needed?

- What is the effect of using approximations of \mathbb{N} , \mathbb{R} ?
- How do we establish correctness?
 - convergence
 - stability to errors
- How do we devise algorithms?
- What theoretical constructs are needed?

- What is the effect of using approximations of \mathbb{N} , \mathbb{R} ?
- How do we establish correctness?
 - convergence
 - stability to errors
- How do we devise algorithms?
- What theoretical constructs are needed?

- What is the effect of using approximations of \mathbb{N} , \mathbb{R} ?
- How do we establish correctness?
 - convergence
 - stability to errors
- How do we devise algorithms?
- What theoretical constructs are needed?

