MATH661 Homework 1 - Univariate approximation

Posted: Aug 23 Due: 11:55PM, Sep 6

1 Problem statement

Approximating a complicated function $f: \mathbb{R} \to \mathbb{R}$, by a simpler to compute function $g: \mathbb{R} \to \mathbb{R}$ is a fundamental operation within scientific computation. This homework investigates various techniques to solve this problem in the context of describing a 2D curve (x(t), y(t)).

Choose a contour of complexity comparable to the examples below that presents interest to you:

- \rightarrow car silhouette (e.g., K&C, Fig. 6.6, p365)
- \rightarrow blood vessel bifurcation
- \rightarrow side profile of a rabbit or a whale.

Place your chosen contour in the figure space below, and display a table of points on the contour. Also record the value of derivatives (x'_i, y'_i) at some of the nodes.

Figure 1. Contour

i	x_i	y_i	x'_i	y'_i	i	x_i	y_i	x'_i	y'_i	i	x_i	y_i	x'_i	y'_i	i	x_i	y_i	x'_i	y'_i
0					5					10					15				
1					6					11					16				
2					7					12					17				
3					8					13					18				
4					9					14					19				

Table 1. Contour coordinates and tangent vectors

2 Theoretical exercises

- 1. K&C, 1.2.14, p.26 (include plots of the ODE solution for various c, and use Sage and Maxima to try to solve the ODE)
- 2. K&C, 1.2.25, p.26
- 3. K&C, 1.3.14-16, p.35
- 4. K&C, 6.1.31-32, p.326
- 5. K&C, 6.1.37, p327. Compare prediction to current prices. Present an analysis of any discrepancy
- 6. K&C, 6.3.13, p. 349. Repeat for n = 3, 4, using symbolic computation.

3 Implementation and analysis

- 1. Construct the Newton interpolation of the contour and compare to original.
- 2. Construct the Hermite interpolation of the contour and compare to original.
- 3. Construct the spline interpolation of the contour and compare to original.
- 4. Provide an analysis of the interpolation error and compare to your computational results.