
MATH661 Homework 2 - Multivariate approxima-
tion

Posted: Sep 6 Due: 11:55PM, Sep 20

1 Problem statement

Many physical phenomena are determined by the shape of surfaces separating one domain from
another. Examples include:

� �ow around a body;

� inclusions of one phase in another, e.g., air bubble in water;

� accumulation of defects in a crystal at boundaries, e.g., formation of metal grains.

A �rst step in modeling such phenomena is to approximate the bounding surface in an accurate
and computationally e�cient manner. The parametric form of the surface is f : R2 ! R3, with
components (f1(u; v); f2(u; v); f3(u; v)), and the goal is to seek an approximation (g1(u; v); g2(u; v);
g3(u; v)). The approximation will be constructed as a superposition of basis functions Bjk(u; v)
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clmBlm(u; v): (1)

Formula (1) generalizes the univariate case, e.g., in Newton's form of the global interpolating
polynomial
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(x¡xj): (2)

A commonly encountered problem is time evolution of a bounding surface, which can be described
through a separation of variables approach as

g(t; u; v)=
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q

clm(t)Blm(u; v): (3)

A simple example is a sphere with time varying radius r(t),

f(t; �; ') = r(t)(cos � sin '; sin � sin '; cos ');

for which p= q = 0, c00(t) = r(t), B00(�; ') = (cos � sin '; sin � sin '; cos '). A more interesting
example is a superposition of spherical harmonics as would occur in the oscillation of a liquid
droplet, or the change in an equipotential surface in quantum mechanical descriptions of an atom
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with Pl
m(cos �) denoting the associated Legendre polynomials de�ned in terms of the ordinary

Legendre polynomials Pl(x) by

Pl
m(cos �)= (¡1)m(1¡x2)m/2 d

m

dxm
Pl(x):
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This homework will investigate ways of approximating the spherical harmonics Ylm(�; '), in con-
junction with the univariate approximation of univariate functions clm(t). The theoretical exercises
build up the foundation of construction of orthogonal polynomial bases. The computational part
uses these results to approximate the spherical harmonics, and produce physically relevant predi-
tions.

2 Theoretical exercises

1. K&C, 6.8.1, p.404

2. K&C, 6.8.2, p.404 (include a plot comparing exact function and approximations from exer-
cises 1 and 2)

3. K&C, 6.8.5, p.404

4. K&C, 6.8.21, p.405

5. K&C, 6.9.8, p.420. Use both elementary calculus and application of Chebyshev alternation
theorem

6. K&C, 6.10.17, p. 438.

3 Computational application

The following tasks will be fully formulated and partially solved in classroom work.

1. Generate data. Choose p; q 2 f2; 3; 4; 5; 6g, and coe�cients clm(t) = alm sin(!lm t), alm
random numbers uniformly distributed in [0,1], !lm = 2�(l +m), l = 0; :::; p, m= 0; :::; q.
Compute the positions of points on the surface at times tl= l�t, �t= 1/N , N = 32, l = 0;
1; :::; N , and angles �j=2�j/P ; 'k=�k/P , P = 18.

2. Investigate recovery of time-varying coe�cients by projection onto the spherical harmonic
basis.

3. Construct a piecewise linear approximation of the spherical harmonics.

4. Investigate approximation of the time-varying coe�cients by projection of the data onto
the piecewise linear basis. Compare to exact coe�cients.
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