MATHG661 Homework 2 - Multivariate approxima-
tion

Posted: Sep 6 Due: 11:55PM, Sep 20

1 Problem statement

Many physical phenomena are determined by the shape of surfaces separating one domain from
another. Examples include:

e flow around a body;

e inclusions of one phase in another, e.g., air bubble in water;

e accumulation of defects in a crystal at boundaries, e.g., formation of metal grains.
A first step in modeling such phenomena is to approximate the bounding surface in an accurate
and computationally efficient manner. The parametric form of the surface is f: R? — R3, with

components (f1(u,v), fo(u,v), f3(u,v)), and the goal is to seek an approximation (g1(u, v), g2(u, v),
g3(u, v)). The approximation will be constructed as a superposition of basis functions Bx(u, v)
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Formula (1) generalizes the univariate case, e.g., in Newton’s form of the global interpolating
polynomial
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A commonly encountered problem is time evolution of a bounding surface, which can be described
through a separation of variables approach as

g(t,u,v) ii Cim(t) Bim(u, v). (3)

1=0 m=0
A simple example is a sphere with time varying radius r(t),
f(t,0,9)=r(t)(cosfsin @, sin fsin @, cos @),
for which p=¢ =0, coo(t) =7(t), Boo(#, ¢) = (cos 0 sin ¢, sin 0 sin ¢, cos ). A more interesting

example is a superposition of spherical harmonics as would occur in the oscillation of a liquid
droplet, or the change in an equipotential surface in quantum mechanical descriptions of an atom

P a
r(t,0, 9) Z Z 0,9), Y™ (0, ) =e""?P"(cosb),
1—0 m—1

with P/™(cos 6) denoting the associated Legendre polynomials defined in terms of the ordinary
Legendre polynomials P;(x) by

P (cosf) = (—1)™(1 — xQ)m/Q;x_ma(x).



This homework will investigate ways of approximating the spherical harmonics Y;"(0, ¢), in con-
junction with the univariate approximation of univariate functions ¢;,,(t). The theoretical exercises
build up the foundation of construction of orthogonal polynomial bases. The computational part
uses these results to approximate the spherical harmonics, and produce physically relevant predi-
tions.

2 Theoretical exercises
1. K&C, 6.8.1, p.404

2. K&C, 6.8.2, p.404 (include a plot comparing exact function and approximations from exer-
cises 1 and 2)

3. K&C, 6.8.5, p.404
4. K&C, 6.8.21, p.405

5. K&C, 6.9.8, p.420. Use both elementary calculus and application of Chebyshev alternation
theorem

6. K&C, 6.10.17, p. 438.

3 Computational application
The following tasks will be fully formulated and partially solved in classroom work.

1. Generate data. Choose p, ¢ € {2, 3, 4, 5, 6}, and coefficients ¢;,(t) = aim sin(wim t), aim
random numbers uniformly distributed in [0,1], wim =27 +m), =0, ..., p, m=0, ..., q.
Compute the positions of points on the surface at times t; =10t, t =1/ N, N =32,1=0,
1,..., N, and angles 0;=2nj /P, pp=7k /P, P=18.

2. Investigate recovery of time-varying coefficients by projection onto the spherical harmonic
basis.

3. Construct a piecewise linear approximation of the spherical harmonics.

4. Investigate approximation of the time-varying coefficients by projection of the data onto
the piecewise linear basis. Compare to exact coefficients.
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