
MATH661 Homework 6 - Optimization problems

Posted: Nov 15, Due: 11:55PM, Nov 22 (theoretical exercises), Dec 6 (computational application)

1 Problem statement

Optimization problems arise throughout scienti�c computing. Typically, problem-speci�c consid-
erations impose constraints on allowable solutions. In this homework, some basic procedures of
�nding optimal solutions are considered.

2 Theoretical exercises

1. K&C, 10.1.5, p. 688.

Solution. This is good practice on proving set equalities and understanding set of convex
combinations. By de�nition the convex hull of set S, co(S) = fz: 9x; y 2 S; 9�; 0 6 � 6 1;
z=�x+(1¡�)yg, i.e., the set of all convex combinations of points in S. Prove the requested
set equalities by double inclusion. In all the following assume 06 �6 1, x; y 2S

a) co(�S)��co(S): 8z 2 co(�S), z= � (�x)+ (1¡ �)(�y)=�w, with w= �x+(1¡ �)y,
and w 2 co(S)�.

b) �co(S)� co(�S): 8z 2 co(S), z = �x+ (1¡ �)y, hence �z = � (�x) + (1¡ �)(�y) 2
co(�S)�.

c) co(S+T )� co(S)+ co(T ): 8z2 co(S+T ); z=�u+(1¡ �)v, with u; v2S+T , hence
u=x+ p, v= y+ q, x; y 2S, p; q 2T . Replacing u; v into expression for z gives

z= �(x+ p)+ (1¡ �)(y+ q) = �x+(1¡ �)y+ �p+(1¡ �)q= a+ b

with a2 co(S); b2 co(T )�.
d) co(S) + co(T ) � co(S + T ): 8a 2 co(S); b 2 co(T ), 9x; y < S, 9p; q 2 T such that

a= �x+(1¡ �)y, b2 �p+(1¡ �)q, hence a+ b2 co(S+T )�.
2. K&C, 10.1.21, p. 688.

Solution. This is a very useful exercise to gain understanding of the concepts of convexity,
open and closed sets, dimensionality, and critical points. Read through the solution care-
fully. The important aspect is how the sequence of reasoning steps leads to the example
asked for in this problem. At each step something is learned about the required properties
of the example asked for. Unsuccesful attempts to come up with an example are marked6,
the �nal example is marked �.

i. First, note that if S is convex, then S = co(S), so the convex hull of a convex set S
has all the properties of S. Therefore, the example asked for in the problem cannot
be convex.

ii. Recall that a closed set is a set whose complement is open, and O is an open set if
any point in O has a neighborhood contained in O.
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iii. Try to form a closed, non-convex set on the real axis, S=U [V .

a) First try to form a non-convex set by union of subsets of lower dimension
S= f0g[f1g. The complement of S is RnS=(¡1; 0)[ (0; 1)[ (1;1) and is
open, hence S is closed. The convex hull of S is co(S) = [0; 1] and is closed.
In general the convex hull of a union of disjoint points on the real axis will be
the closed interval de�ned by the extremal points, and itself be closed. 6

b) Next try to form a non-convex closed set by union of subsets of the same
dimension, say S = [¡2;¡1][ [1; 2]. The convex hull is co(S) = [¡2; 2] and is
closed. In general, the convex hull of closed non-convex intervals on the real
axis will just yield the enclosing closed interval. 6

Deduce from the above that the example must be sought in Rn with n > 1. Note
that the sequence of attempted steps was: dimU =dimV =0, dimU =dimV =1. An
attempt through dimU =0, dimV =1 would have led to the same result.

iv. Choose n = 2. Seek a non-convex set S formed by union of closed subsets U ; V ,
S=U [V : As before, systematically go through dimU ; dimV 2f0; 1; 2g

a) U =f(0;0)g, V =f(a; b)g. Convex hull is line segment from (0,0) to (a; b) and
is closed. 6

b) U =f(0; 0)g, V = f(0; y): 06 y6 1g. Convex hull is line segment from (0; 0) to
(0; 1) and is closed. 6

c) U = f(x; 0): x > 0g,V = f(0; y): y > 0g. Convex hull is �rst quadrant and is
closed. 6

d) U = f(x; 0): x > 0g,V = f(0; y): 1 > y > 0g. By de�nition, the convex hull is
co(S)= fw:w= �u+(1¡ �)v; u2U ; v 2V ; 06 �6 1g, and can be written as

co(S)= f(x; y):x> 0; 06 y < 1g[f0; 1g:�
Note what occurs in the construction of the convex hull in this case. The
only way to obtain point (x; y) with y = 1 is to choose � = 0 in which case
x=0. The resulting convex hull is now not closed (e.g., the complement would
contain a point (a; 1), with a > 0 for which no neighborhood can be de�ned
that would be enclosed in the complement), and the required example has
been determined. Indeed, (0; 1) is a critical point of the convex hull.

Examples that solve this exercise can readily be found through a web search. You should
ask yourself though whether your objective is expertise in employing a search engine or
understanding mathematics. If the later, follow the train of reasoning that leads to the
solution. Though apparently abstract with little relevance to practical application, this topic
frequently arises in optimization of linear functionals, and in fact appears in the solution to
the computational problem proposed in this homework.

3. K&C, 10.2.1, 10.2.2, p. 694

Solution. 10.2.1. From linear algebra, A2Rm�n, Rm=C(A)�N(AT),

m= dimC(A)+ dimN(AT): (1)
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ATy>0 implies N(AT)=0 and dimN(AT)=0, while Ax=0 for x>0 implies columns of
A are linearly dependent hence dimC(A)<m, contradicting (1). The statement is also a
direct application of Theorem 6 (p.693) with b=0.

10.2.2. Apply Theorem 7 (p.693) with b=0.

4. K&C, 10.2.6, p. 694

Solution. Accept all results from 10.2.3-10.2.5, and follow the hint.

5. K&C, 10.3.1, p. 700

Solution. Recall that standard form (A; b; c) is

max cTx;Ax6 b;x>0;

and the dual is (¡AT ;¡c;¡b).

(a) min (3x1+x2¡ 5x3+2),min ( 3x1+x2¡ 5x3),max (¡3x1¡x2+5x3)

Replace: x1=u1¡u4; x2=¡u2; x3=u3¡u5, with u> 0 to obtain

max (¡3u1+u2+5u3+3u4¡ 5u5)

x1>x2) x2¡x16 0)¡u2¡u1+u46 0)¡u1¡u2+u46 0

¡x1+4x3> 0)x1¡ 4x36 0)u1¡u4¡ 4u3+4u56 0) u1¡ 4u3¡u4+4u56 0

x1+x2+x3=0)x1+x2+x36 0 andx1+x2+x3> 0 leading to

¡u1+u2¡u3+u4+u56 0 and u1¡u2+u3¡u4¡u56 0. The standard form is

A=

0BB@
¡1 ¡1 0 1 0
1 0 ¡4 ¡1 4
¡1 1 ¡1 1 1
1 ¡1 1 ¡1 ¡1

1CCA; b=
0BB@

0
0
0
0

1CCA; c=
0BBBB@
¡3
1
5
3
¡5

1CCCCA:

The dual form written out in full is

max (¡bTy);ATy> c; y> 0,ATy> c; y> 0 since b=0:

(b) Replace: u1 = ¡x1 > 0, x2 = u2 ¡ u4, u2; u4 > 0, u3 = x3 ¡ 2 > 0. Rewrite remaining
constraints

x1¡x2=5 ) ¡u1¡u2+u46 5 and u1+u2¡u46 5
x2¡x3=7 ) u2¡u4¡u36 5 and ¡u2+u3+u46 5

Objective function becomes

jx1+x2+x3j= j¡u1+u2¡u4+u3+2j:

Recall that jxj is shorthand for two function branches, hence

min j¡u1+u2¡u4+u3+2j=
�

max (u1¡u2¡u3+u4¡ 2) if¡u1+u2+u3¡u4+2> 0
max (¡u1+u2+u3¡u4+2) if¡u1+u2+u3¡u4+26 0
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The two problems are therefore

max c1Tu1;A1u16 b1;u1>0;

A1=

0BBBB@
¡1 ¡1 0 1
1 1 0 ¡1
0 1 ¡1 ¡1
0 ¡1 1 1
1 ¡1 ¡1 1

1CCCCA; b1=
0BBBB@

5
5
5
5
2

1CCCCA; c1=
0BB@

1
¡1
¡1
1

1CCA:

max c2Tu2;A2u26 b2;u2>0;

A2=

0BBBB@
¡1 ¡1 0 1
1 1 0 ¡1
0 1 ¡1 ¡1
0 ¡1 1 1
¡1 1 1 ¡1

1CCCCA; b2=
0BBBB@

5
5
5
5
¡2

1CCCCA; c2=
0BB@
¡1
1
1
¡1

1CCA:

The overall solution to the problem would be given by max (max c1Tu1;max c2Tu2).

(c) As above, but now the presence of two absolute values leads to four branches

min (jx1j ¡ jx2j),

max (x1¡x2) if x16 0; x26 0
max (¡x1¡x2) if x1> 0; x26 0
max (x1+x2) if x16 0; x2> 0
max (¡x1+x2) if x1> 0; x2> 0

Replace: x1=u1¡u4, u1; u4>0, x2=u2¡u5, u2; u5>0, u3=x3¡4>0. The remaining steps
are shown for the �rst branch only. Objective function

max (x1¡x2),max (u1¡u2¡u4+u5)

Constraints: u> 0 and

u1¡u46 0
u2¡u56 0
u1+u2¡u4¡u56 5
¡u1¡u2+u4+u56 5
2u1+3u2¡u3¡ 2u4¡ 3u56 4

A1=

0BBBB@
1 0 0 ¡1 0
0 1 0 0 ¡1
0 1 0 ¡1 ¡1
¡1 ¡1 0 1 1
2 3 ¡1 ¡2 ¡3

1CCCCA; b1=
0BBBB@

0
0
5
5
4

1CCCCA; c1=
0BBBB@

1
¡1
0
¡1
1

1CCCCA:

6. K&C, 10.4.3, p. 710

Solution. Rewrite inequalities as Ax6 b, introduce slack variables, and rewrite problem

MaximizeF (x)= 2x1¡ 3x2+0x3+0x4
¡2x1¡ 5x2+x3=¡10
x1+8x2+x4= 24
x1> 0; x2> 0; x3> 0; x4> 0
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with tableau

2 ¡3 0 0 0

¡2 ¡5 1 0 10
1 8 0 1 24
0 0 10 24

First step. Increase x1 as much as possible, hold x2=0 �xed. Constraints:

x3=¡10+2x1> 0)x1> 5
x4= 24¡x1> 0)x16 24

;

hence choose x1= 24. New x vector is x=( 24 0 0 19 )T , new basic variables are x1; x4.
Express F in terms of nonbasic variables

F (x)= 10¡x3¡ 3x2:

No further increase in F is possible for x2; x3> 0 hence solution is x1= 24, x2=0. Check in
Mathematica.

In[3]:= LinearProgramming[{-2, 3}, {{2, 5}, {-1, -8}}, {10, -24}]

f24; 0g

In[4]:=

3 Realistic optimization problm

Revisit the di�usion problem from Homework 5 that de�nes u(t;x), u: [0;T ]� [0;�]!R; as solution
of

@u
@t

=
@2u
@x2

+
X
i=1

n

Ai exp
�
¡(x¡xi)

2

(�/20)2

�
H(t);

u(t; x=0)=0; u(t; x= �) = 0;
u(t=0; x)= sin(x):

(2)

This models the evolution of concetration u from initial condition u(t=0; x) due to di�usion and
sources placed at positions xi and intensityAi turned on after t>0 (H(t) is the Heaviside function).
The problem is inspired from cell biology with [0; �] the extent of the cell and u the concentration
of Ca. Where should additional calcium sources be placed within the cell, and at what intensity
should they release calcium such that the resultis a calcium concentration waveu0(t;x)=H(x¡vt),
with v=6 over time interval [0; 1].

Feel free to collaborate in small groups on how to solve this problem. Here are some questions to
consider:

1. How to de�ne a cost functional. The unknowns of the problem are (xi;Ai), i=1; :::; n, hence
a functional f :Rm!R, m=2n must be de�ned. Some possibilities:

a) f(z)=ku(t; x;z)¡H(x¡ vt)kk, Find minz2Rmf(z) for various choices of norm, e.g.,
k=1, k=2, k=1

b) f(z) =
P

j=1
p bj

P
i=1
n ci [u(t

j ; xi; z)¡H(xi¡ vtj)]. Here a weighted combination of
the di�erence between the desired distribution H(xi ¡ vtj), and that obtained for
some choice of z is minimized w.r.t. z
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2. What algorithm is suitable for minimizing the cost functional? Choices include:

a) simplex

b) gradient descent

c) Nelder-Mead

d) Genetic algorithms

e) Simulated annealing

Full credit is awarded for work on one choice of cost functional and one choice of minimization
algorithm. The best way to work on this application is for di�erent people in each group to make
alternative choices as to cost functional and algorithm and compare results.

This application re�ects how scienti�c computing applications arise in the real world: nobody
will state that you have to solve K&C 10.4.5 on page 710. Rather, there exists an interest in a
real phenomenon that is transposed into a mathematical model, and then a solution is sought.
Furthermore, codes previously developed are reused; in this case the numerical ODE solver from
Homework 5 is to be reused to evaluate the cost functional.

In the �nal Homework, we will solve the same problem using stochastic methods.

Solution.

De�ne a Runge-Kutta function to advance in time the ODE system resulting from method of lines
discretization

octave> function [xj,U1]=RK4(m,dt,nt,param)
h=pi/m; x=(0:m)*h; T=nt*dt; xj=(1:m-1)*h; dt2=0.5*dt;
U0=f(xj); U0b=[0 U0 0]; sig=dt/h^2; t=0;
for k=1:nt
U0b=[0 U0 0]; U0l(1:m-1)=U0b(3:m+1); U0r(1:m-1)=U0b(1:m-1);
K1=sig*(U0l-2*U0+U0r)+dt*sigma(t,xj,param);
U1=U0+0.5*K1;
U1b=[0 U1 0]; U1l(1:m-1)=U1b(3:m+1); U1r(1:m-1)=U1b(1:m-1);
K2=sig*(U1l-2*U1+U1r)+dt*sigma(t+dt2,xj,param);
U1=U0+0.5*K2;
U1b=[0 U1 0]; U1l(1:m-1)=U1b(3:m+1); U1r(1:m-1)=U1b(1:m-1);
K3=sig*(U1l-2*U1+U1r)+dt*sigma(t+dt2,xj,param);
U1=U0+K3;
U1b=[0 U1 0]; U1l(1:m-1)=U1b(3:m+1); U1r(1:m-1)=U1b(1:m-1);
K4=sig*(U1l-2*U1+U1r)+dt*sigma(t+dt,xj,param);
U1=U0+(K1+2*K2+2*K3+K4)/6.;
U0=U1; t=t+dt;

end;
end;

octave> function y=f(x)
y=sin(x).*exp(-(x-pi/2).^2);

end;

octave> function s=sigma(t,xj,param)
n=length(param)/3;
A(1:n)=param(1:n); xi=param(n+1:2*n); ti=param(2*n+1:3*n);
s=zeros(1,length(xj)); sig=(pi/20.)^2;
for i=1:n
if (t>ti(i))
s = s + A(i)*exp(-(xj-xi(i)).^2/sig);

end;
end;

end;
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