MATH661 Homework 3 - Least squares problems

Posted: 09/09/21
Due: 09/15/21, 11:55PM

This assigment addresses one of the fundamental topics within scientific computation: finding
economical descriptions of complex objects. Some object is described by y € C™ (with m typically
large), and a reduced description is sought by linear combination Ax, with A € C™*™ (n < m,
often n < m). The surprisingly simple Euclidean geometry of Fig. 1 (which should be committed
to memory) will be shown to have wide-ranging applicability to many different types of problems.
The error (or residual) in approximating y by A« is defined as

r=b—Ax,
and 2-norm minimization defines the least-squares problem

min ||b—Ax|.
xeCm

T C(4)
\
\ r=y— Az
\
\

z=Ax

Figure 1. Least squares (2-norm error minimization) problem.

1 Track 1

Consider data D={(t;,y:)[i=1,2,...,m} obtained by sampling a function f:R— R, with y;= f(¢;).
An approximation is sought by linear combination

f@) Zx1a1(t) + z2az(t) + - + xp an(t).
Introduce the vector-valued function A: R — R™ (organized as a row vector)
At)=[a1(t) az(t) ... an(t)],
such that
fO2AW) z,x=]21 22 ... z,]7.
With t=[t; to ... t,, |’ asampling of the function domain, a matrix is defined by

A= A(t) = [a1(t) ag(t) an(t)] x c RmXn,

Tasks. In each exercise below, construct the least-squares approximant for the stated range of
n €N, sample points ¢, and choice of A(¢). Plot in a single figure all components of A(t). Plot the
approximants, as well as f in a single figure. Construct a convergence plot of the approximations
by representation of point data £ ={(logn,log|ly — Az||)| A€ R™*™ ne N }. For the largest value
of n within NV, construct a figure superimposing increasing number of sampling points, m € M.
Comment on what you observe in each individual exercise. Also compare results from the different
exercises.

1. Start with the classical example due to Runge (1901)

P11 =R, f() = (Hl%tg),ti: 27(;:? _1,

M={16,32,64,128,256}, N = {4, 8,16, 32},
Aty=[1t 2 ... 71]

2. Instead of the equidistant point samples of the Runge example above use the Chebyshev

nodes
t; =cos 2i—1 T
(2 2m)

keeping other parameters as in Problem 1.

3. Instead of the monomial family of the Runge example, use the Fourier basis

A(t)=[1 coswt sinmt ... cosmnt sinmnt |

keeping other parameters as in Problem 1. In this case A € R™*(2n+1),

4. Instead of the monomial family of the Runge example, use the piecewise linear B-spline
basis

A(t):[Nl(t) N2(t) Nn(t)]a

0, t<ti_1
t—1t;—
hl Lt a<t<t; 9
Ni(t) = tiy1—t ’h:—_la
5 1<t <tign
0 tiv1 <t

keeping other parameters as in Problem 1.

2 Track 2

1. If Q € C™*" has orthonormal columns, prove that Pop = QQ* is an orthogonal projector
onto C(Q). Determine the expression of Py, the projector onto C(A), with A € C™*™.
Compare the number of arithmetic operations required to compute y = P4 x, by comparison
to first determining the @ R factorization, A= Q R, and then computing y=Q Q" x.

e Solution.

P is said to be an orthogonal projector if P= P* and P?=P ([1]). If Q € C™*" has
orthonormal columns, then it is an orthogonal matrix and therefore Q* = Q~!. Then
Po=QQ" = (QQ")*=Py. If Pg is an orthogonal projector onto the columns of Q,
then

PoQ = Q /Q*
Q"PgQ = I, sinceQisorthonormal

=Py = QQ~

Now if we want to determine the expression of P4, the projector onto C'(A), with
A € C™*"™ a general matrix. We think about the orthogonal projection of a general
vector v onto range(A), and denote it by y. Let a; is the jth column of the matrix A,
then aj(y —v) =0 for each j, or equivalently A*(y —v)=0. Now since y € range(A),
we can leverage that there exists @ such that Ax=1y. Then

A*(Axz—v) = 0
—=A"Ax = A*v
—z = (A*A) 'A%

Now since Az =y =y = A(A*A) ' A*v = Pyv. Whence
Pa— A(A*A)-1A*

The number of arithmetic operations required to calculate y = Pax is first 2mn? to
calculate (A*A), then for the inverse is 2n3 /3 (with Gaussian elimination), then for
the other two matrix multiplications we get 2mn?® + 2mn?. Hence the total cost is
6mn? + 2Tnd The number of arithmetic operations for the QR factorization computed
using the modified Gram-Schmidt algorithm is 2mn? ([1]) and then a 2 matrix vector
multiplication gives 4mn, hence a total of 2mn? + 4mn. Hence computing the QR
factorization first and then projecting is more efficient.

2. Continuing Problem 1, determine || Pg||2, and express || Pal|2 in terms of the singular value
decomposition of A. Comment the result, considering, say, length of shadows at various
times of day.

e Solution.

[Pal2 = [A(A*A)"1A*||
= [USV*VZ U UV 'VE U,
= |[USVVE SV VI U*|,
= |[USV*V(ZZ*)"WV*VE U*|,
= U (ZZH)1Z U,

Also we have that for an orthogonal matrix V' € C™*"™ and a vector « € C", || V| =

[[Vx||. with ||| any matrix norm. Hence ||[U U*||2=|U*||2 and also
1Pallz = [1QQ|:2
= Q72

Both of the proyections are equivalent. We see that the norm of a projection depends
on which space the vector belongs. Remark that

2] = [l Poz|| + (T - Po)z|| = [Pox | + || Po 12|

For example we can take Pg= Q Q" as this is more insightful form of the proyector. Then
the norm of the projection will depend mainly if x € span(Q), in this case for example
|Pox| =|z|. If ©€span(Pg1) then the norm ||Pga| =0. So between this two cases
there is a spectrum of intermediate cases.

Now for the general case of projections (not necesssarily orthogonal) we can also have
the case that | P|| > 1. This is the case of the length of shadows at various times of
day, for example at the sunset one could see a shadow bigger than ourselves because
the projection is oblique. But when the sun is just above the length of the shadow it’s
0 because we are not in the span of the projection.

3. A matrix A={a;;] € C™*" is said to be banded with bandwidth B if a;; =0 for |i — j| > B.
Implement the modified Gram-Schmidt algorithm for A € C™*™ a banded matrix with
bandwidth B using as few arithmetic operations as possible.

e Solution.

First let’s review the modified Gram-Schmidt algorithm

Algorithm (Gram-Schmidt) . function mgs(A)
Given n vectors aq, ..., G, m,n=size(A); Q=copy(A); R=zeros(n,n)
Initialize ¢; = aq,..,q,=a,, R=1, for i=1:n
fori=1ton Rli,il=sqrt(Q[:,i]’*Q[:,1])
rii=(al ;)2 it (R[i,i]<eps())
if r;; < € break; break
qi=qi/Tii end
for j=i+1ton QC:,i1=Q[:,i]/R[i,i]
rij:qiTaj; q;=4q; —Ti;q; for j=i+l:n
end R[i,j1=Q[:,i1°*A[:,]]
end Ql:,31=Q[:,j]1-R[1,j1*Q[:,1i]
return Q, R end
end
return Q,R
end;

Remark that as A = [a;;] € C"™*" is banded with bandwidth B, then as a;; = 0 for
|i — 7] > B implies that some of the dot products and for loops could be simplified since
the matrix is sparse. For example when j > i+ B (since j goes from i+ 1 to n in the inner
loop), then ajj is zero and this implies the inner for loop can be done more efficiently.
Then the algorithm becomes

Algorithm (Gram-Schmidt banded) .. function mgsb(A,B)

Given n vectors aq, ..., G, m,n=size(A); Q=copy(A); R=zeros(n,n)
Initialize ¢ = aq,..,qn=a,, R=1, for i=1:n
fori=1ton R[i,i]l=sqrt(Q[:,i]’*Q[:,1])
ri=(al ¢:)"* if (R[i,il<eps())
if r;; < € break; break
qi=qi/7ii end
for j=i+1 to i+ B+1 QC:,i1=Q[:,il/R[i,di]
Tij = qiTaj; q;=q; —1i;9; for j=i+1:min(i+B+1,n)
end R[i,j1=QL:,1]°*A[:,]]
end Ql:,j1=Q[:,j]-R[1,j1*Q[:,1]
return Q, R end
end
return Q,R
end;

. function Bandmat (A,B)
A=copy (&) ;
m=size(A) [1];
n=size (A) [2];
for i=1:m

for j=1:n
if abs(i-j)>B
Ali,j1=0
end
end
end
return A
end

Bandmat
‘. B=1;A=rand(3,3)
0.788201240252665 0.800702885511285 0.3620861532942121 |

0.03623830569412734 0.7908612002223709 0.9572458333691343 (1)
| 0.29918102203657027 0.7757522597991917 0.9005393912547199 |

. Ab=Bandmat (A,B)

0.788201240252665 0.800702885511285 0.0
0.03623830569412734 0.7908612002223709 0.9572458333691343 (2)
0.0 0.7757522597991917 0.9005393912547199 |

. Q1,R1=mgs (Ab) ;
. Q2,R2=mgsb(Ab,B);
. print (Q1==Q2) ;print ("\n"); print(norm(Q1-Q2,2))

true
0.0

. B=2;A=rand(4,4);

. Ab=Bandmat (A,B);

. Q1,R1=mgs (Ab);

. Q2,R2=mgsb(Ab,B) ;

. print (Q1==Q2) ;print ("\n"); print(norm(Q1-Q2,2))

true
0.0

Hence we can verify that the algorithm continues giving the QR decomposition but now it is
much more efficient. It is worth mentioning that the product (g’ g;) could also be optimized
but this is a sort of less important optimization.

4. Solve Problem 1, Track 1.

e Solution (Julia Code).

©. m=256; n=32; h=2.0/(m-1); t=(0:m-1)*h .- 1; N=2 .~(2:5);

. function RungeB(m,n,t)
A=ones(m, 1) ;
for j=1:n-1
A=T[At . j]
end
return A
end;

‘. ¢1f() ;Basis=RungeB(m,maximum(N),t) ;cd("//Volumes//GoogleDrive//Mi unidad//Docs Drive/,

. for nin in 1:8
plot(t,Basis[:,nin]);
end;

. grid("on") ;xlabel("t"),ylabel("A(t)");title("Monomials");
‘. savefig("HO301.eps");
. £(t)=1/(1+25%t~2) ;y=f. (t) ;error=zeros(length(N));

. close();figure(figsize=(8,6));s=2; i=1:s:m; ts=t[i];
ys=f. (ts) ;plot(ts,ys,"ok");

. for (idx,nk) in enumerate(N)
local x; local b; local bassis;
basis=Basis[:,1:nk];
x=basis\y;
b=basis*x;
error [idx]=norm((y.-b),2)/length(t)
plot(t,b);

end;

. labels=["f(t) sampled";"Approximant, with n=4";"Approximant with n=8";!'Approximant witl
legend(labels,loc="upper left"); xlabel("t");ylabel("A(t)");
grid("on");title("Runge approximation of \$f(t)\$");

*. savefig("H0302.eps");

The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.

. clf () ;figure(figsize=(8,6)) ;plot(log.(2,N),log. (2,error));

. xlabel("t") ;ylabel ("\$\\mathcal{E}\$"); grid("on");title("Log-
log plot of jthe ,error");

". savefig("H0303.eps");

. M=2 .~ (4:8);n=2"5; close();figure(figsize=(8,6));s=2; i=1:s:m;
ts=t[i]; ys=f.(ts);plot(ts,ys,"ok");

. for (idx,mk) in enumerate (M)
local x; local b; local bassis; local h; local t; local y;
h=2.0/(mk-1) ;
t=(0:mk-1)*h .- 1;
y=f.(t);
basis=RungeB(mk,n,t) ;
x=basis\y;
b=basis*x;
plot(t,b,linewidth=3) ;

end;

. labels=["f(t) sampled";"Approximant with m=16";"Approximant with m=32';"Approximant, w:
legend(labels,loc="upper left"); xlabel("t");ylabel("A(t)");
grid("on");title("Runge approximation of \$f(t)\$");

". savefig("H0304.eps");

The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.

Monomials Runge approximation of f(t)

10{ @ f(t)sampled

—— Approximant with n=4
Approximant with n=8

—— Approximant with n=16

—— Approximant with n=32

0.8

0.6

A(t)
°
S
8

A(t)

0.4

0.2

0.0

-0.2

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
t t

Figure 2. Components of A(¢), the Runge basis monomials (left). Approximants of f(t) in con-
junction with f(¢) sampled at the black dots (right).

Remark the basis of monomials have a similar shape all with the same root =0 (multiple
for order large than n=1). The basis only reaches a “good” approximation of f(¢) for n=232.
For n =4 we have a sort of moving average of f(t) and for n =8 we get oscillations when
the convexity of the function changes.

Log-log plot of the error Runge approximation of f(t)

10{ @ f(t)sampled
—— Approximant with m=16
=7 e Approximant with m=32
—— Approximant with m=64.

—— Approximant with m=128

-8 0.8
—— Approximant with m=256

=13 0.2

T T T T T T T 0.0
2.0 25 3.0 35 4.0 4.5 5.0 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
t

Figure 3. Convergence plot of the approximations by representation of point data & =
{(log n, log |ly — A=z|)] A € R™*™ n € N} (left). Superposition of increasing number of
sampling points, m € M with n =32 (right).

We see that the error decreases about 28 times when N changes 23. For the increasing
number of sample points we can note that the approximation of the peak of f(¢) has a
considerable error when m is small.

5. Solve Problem 4, Track 1.
e Julia code.

©. m=256; n=32; h=2.0/(m-1); t=(0:m-1)*h .- 1; N=2 .~ (2:5);

‘. function BSpline(m,n,t);
local A;
A = zeros(m,n);
h=2.0/(m-1);
tm=t;
hn = 2.0/(n-1);
tn=(0:n-1)*hn .- 1
h=2.0/(m-1);
for j=1:n
for i=1:m
if tn[max(1,j-1)I<=tm[i]l<tn[j]
Ali,jl=(tm[i]-tn[max(1,j-1)]1)/h;
elseif tn[jl<=tm[il<tn[min(j+1,n)]
Ali,jl=(Ctn[min(m, j+1)]1-tm[i]) /h;
end
end
end
return A
end;

*. Basis=BSpline(m,32,t);clf();cd("//Volumes//GoogleDrive//Mi junidad//Docs Drive//UNC//Se

. for nin in 1:n
plot(t,Basis[:,nin]);
end;

. grid("on") ;xlabel("t"),ylabel ("A(t)");title("B-spline basis");
", savefig("HO3P501.eps");
. £(t)=1/(1+26%t~2) ;y=f. (t) ;error=zeros(length(N)) ;

. clf () ;figure(figsize=(8,6));s=2; i=1:s:m; ts=t[i];
ys=f. (ts) ;plot(ts,ys,"ok");

. for (idx,nk) in enumerate (N)
local x; local b; local bassis;
basis=BSpline(m,nk,t);
x=basis\y;
b=basis*x;
error [idx]=norm((y.-b),2)/length(t)
plot(t,b);

end;

. labels=["f(t) sampled";"Approximant with n=4";"Approximant with n=8";|'Approximant witl
legend(labels,loc="upper left"); xlabel("t");ylabel("A(t)");
grid("on");title("B-spline approximation of \$f(t)\$");

", savefig("HO3P502.eps");

The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.

. close();figure(figsize=(8,6)) ;plot(log.(2,N),log. (2,error));

. xlabel("t");ylabel("\$\\mathcal{E}\$"); grid("on");title("Log-
log plot of jthe error");

*. savefig("HO3P503.eps");

. M=2 .~ (4:8);n=2"5; close();figure(figsize=(8,6));s=2; i=1:s:m;
ts=t[i]; ys=f.(ts);plot(ts,ys,"ok");

. for (idx,mk) in enumerate (M)
local x; local b; local bassis; local h; local t; local y;
h=2.0/(mk-1) ;
t=(0:mk-1)*h .- 1;
y=f.(t);
basis=BSpline (mk,n,t);
x=basis\y;
b=basis*x;
plot(t,b,linewidth=3);

end;

. labels=["f(t) sampled";"Approximant with m=16";"Approximant with m=32';"Approximant, w:
legend(labels,loc="upper left"); xlabel("t");ylabel("A(t)");
grid("on");title("B-spline approximation of ,\$f (t)\$");

*. savefig("HO3P504.eps");

The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.

B-spline basis B-spline approximation of f(t)

10{ @ f(t)sampled
81 —— Approximant with n=4
—— Approximant with n=8
—— Approximant with n=16
0.8 1 —— Approximant with n=32

A(t)
IS
s
Alt)
°
S

0.0

-100 -075 -050 -025 000 025 050 075 1.00 -0 -075 -0.50 -025 000 025 050 075 100
t
t

Figure 4. Components of A(t), the B-spline basis (left). Approximants of f(¢) in conjunction with
f(t) sampled at the black dots (right).

Remark that the shape of this basis is much less smooth than any polynomial basis. Since
the function to be approximated is a polynomial the approximation is less precise given it
is non-smooth. However the approximation with a smaller bassis exhibits less oscillations

with respect to the monomial basis and the approximation at the beggining is better.

Log-log plot of the error B-spline approximation of f(t)

101 ® f(t)sampled

= Approximant with m=16
Approximant with m=32

= Approximant with m=64

0.8 | = Approximant with m=128

= Approximant with m=256

0.2

0.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
t

Figure 5. Convergence plot of the approximations by representation of point data & =
{(log n, log |ly — Az|))] A € R™*™ n € N} (left). Superposition of increasing number of
sampling points, m € M with n =32 (right).

We see that the error decreases about 26 times when N changes 2°. Hence the approximation
is not as good as the one with the monomial bassis for large n, but for small n we see
that the error is less with the respect to the monomial basis. For the increasing number of
sample points we can note that the main error is with m =16 in the peak of f(¢) because
the derivative is higher there.

. In Problem 1, Track 1, replace the monomial basis with the Legendre polynomials, whose
samples are determined by @ R decomposition Q R= A. The resulting least squares problem
is now

min ||y - Q|-

Solution.

e Julia code.

©. m=256; n=32; h=2.0/(m-1); t=(0:m-1)*h .- 1; N=2 .~(2:5);

. function Legendre(m,n,t);
local Bassis;
M=RungeB (m,maximum(N) ,t) ;
Q,R=qr (M) ;
S=diagm(1.0 ./ Q[m,:1);
Bassis=Q*S;
return Bassis
end

Legendre
‘. Bassis=Legendre(m,n,t);close();

. for nin in 1:8
plot(t,Bassis[:,nin]);
end;

10

. grid("on") ;xlabel("t"),ylabel("A(t)");title("Legendre polynomials");
*. savefig("HO3P601.eps");
. £(t)=1/(1+25%t~2) ;y=f. (t) ;error=zeros(length(N));

. clf () ;figure(figsize=(8,6));s=2; i=1:s:m; ts=t[i];
ys=f. (ts) ;plot(ts,ys,"ok");

. for (idx,nk) in enumerate(N)
local x; local b; local bassis;
bassis=Bassis[:,1:nk];
x=bassis\y;
b=bassis*x;
error [idx]=norm((y.-b),2)/length(t)
plot(t,b);

end;

*. labels=["f(t) sampled";"Approximant with n=4";"Approximant with n=8";!'Approximant witl
legend(labels,loc="upper left"); xlabel("t");ylabel("A(t)");
grid("on");title("Legendre approximation of \$f(t)\$");

", savefig("HO3P602.eps");

The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.

. clf();figure(figsize=(8,6)) ;plot(log.(2,N),log. (2,error));

. xlabel("t");ylabel("\$\\mathcal{E}\$"); grid("on");title("Log-
log plot of jthe error");

*. savefig("HO3P603.eps");

. M=2 .~ (4:8);n=2"5; close();figure(figsize=(8,6));s=2; i=1:s:m;
ts=t[i]; ys=f.(ts);plot(ts,ys,"ok");

. for (idx,mk) in enumerate (M)
local x; local b; local bassis; local h; local t; local y;
h=2.0/(mk-1) ;
t=(0:mk-1)*h .- 1;
y=f.(t);
bassis=Legendre (mk,n,t) ;
x=bassis\y;
b=bassis*x;
plot(t,b,linewidth=3) ;

end;

*. labels=["f(t) sampled";"Approximant, with m=16";"Approximant with m=32';"Approximant, w:
legend(labels,loc="upper left"); xlabel("t");ylabel("A(t)");
grid("on");title("Legendre approximation of \$f(t)\$");

*. savefig("HO3P604.eps");

The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially
transparent artists will be rendered opaque.

11

Legendre polynomials Legendre approximation of f(t)

1.00 4 104 ® f(t)sampled
—— Approximant with n=4
—— Approximant with n=8
0.75 4 —— Approximant with n=16
087 ___ Approximant with n=32
0.50
0.6
0.25 4
£ 0.004 2 o4
—0.25 1
02
—0.50 +
0.0
—0.75 1
—1.00 4 -0.2
—1‘.00 —0‘.75 —0‘.50 —0‘.25 0.2)0 0.‘25 0.:50 0.‘75 l.bO -1.00 -075 -050 -0.25 0.00 0.25 0.50 0.75 1.00
t
t

Figure 6. Components of A(t), the Legendre polynomials bassis (left). Approximants of f(t) in
the Legendre bassis in conjunction with f(¢) sampled at the black dots (right).

We can easily see that the bassis has changed dramatically to the one of Runge monomials.
However the approximants didn’t change. This is due to the fact that taking the least
squares still utilizes the same polynomial approximation in the end most probably.

Log-log plot of the error Legendre approximation of f(t)

10{ @ f(t)sampled
—— Approximant with m=16
=7 e Approximant with m=32
—— Approximant with m=64
—— Approximant with m=128
—— Approximant with m=256

=13 0.2

T T T T T T T 0.0
2.0 25 3.0 35 4.0 4.5 5.0 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
t

Figure 7. Convergence plot of the approximations by representation of point data & =
{(log n, log |ly — Az|)] A € R™*™ n € N} (left). Superposition of increasing number of
sampling points, m € M with n =32 (right).

We see that the error decreases about 28 times when N changes 23 also. For the increasing
number of sample points we note that over m =64 the approximation does not change.

Bibliography

[1] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.

	1 Track 1
	2 Track 2
	Bibliography

