
MATH661 Homework 3 - Least squares problems

by Leyi Zhang

09/15/21

This assigment addresses one of the fundamental topics within scientific computation: finding
economical descriptions of complex objects. Some object is described by y 2 Cm (with
m typically large), and a reduced description is sought by linear combination Ax, with
A2Cm�n (n<m, often n�m). The surprisingly simple Euclidean geometry of Fig. 1 (which
should be committed to memory) will be shown to have wide-ranging applicability to many
different types of problems. The error (or residual) in approximating y by Ax is defined as

r= b¡Ax;

and 2-norm minimization defines the least-squares problem

min
x2Cm

kb¡Axk:

C(A)y

z=Ax

r= y¡Ax

Figure 1. Least squares (2-norm error minimization) problem.

Track 1

Consider data D= f(ti; yi)ji= 1; 2; :::; mg obtained by sampling a function f :R!R, with
yi= f(ti). An approximation is sought by linear combination

f(t)=�x1 a1(t)+ x2 a2(t)+ ���+ xn an(t):

Introduce the vector-valued function A:R!Rn (organized as a row vector)

A(t)= [a1(t) a2(t) ::: an(t)];

1

such that

f(t)=�A(t)x;x= [x1 x2 ::: xn]
T :

With t= [t1 t2 ::: tm]T a sampling of the function domain, a matrix is defined by

A=A(t)x= [a1(t) a2(t) ::: an(t)]x2Rm�n:

Tasks. In each exercise below, construct the least-squares approximant for the stated range
of n 2 N , sample points t, and choice of A(t). Plot in a single figure all components of
A(t). Plot the approximants, as well as f in a single figure. Construct a convergence plot of
the approximations by representation of point data E = f(log n; log ky ¡Axk)jA 2Rm�n;
n 2 N g. For the largest value of n within N , construct a figure superimposing increasing
number of sampling points, m 2 M. Comment on what you observe in each individual
exercise. Also compare results from the different exercises.

Problem 1.1

Start with the classical example due to Runge (1901)

f : [¡1; 1]!R; f(t)=
1

(1+ 25t2)
; ti=

2(i¡ 1)
m¡ 1 ¡ 1;

M= f16; 32; 64; 128; 256g;N = f4; 8; 16; 32g;
A(t)=

�
1 t t2 ::: tn¡1

�
:

Problem 1.2

Instead of the equidistant point samples of the Runge example above use the Chebyshev
nodes

ti= cos
�
2i¡ 1
2m

�

�
;

keeping other parameters as in Problem 1.

Problem 1.3

Instead of the monomial family of the Runge example, use the Fourier basis

A(t)= [1 cos�t sin�t ::: cos�nt sin�nt]

keeping other parameters as in Problem 1. In this case A2Rm�(2n+1).

2

Problem 1.4

Instead of the monomial family of the Runge example, use the piecewise linear B-spline basis

A(t)= [N1(t) N2(t) ::: Nn(t)];

Ni(t)=

8>>>>>>>>>><>>>>>>>>>>:

0; t < ti¡1
t¡ ti¡1

h
ti¡16 t< ti

ti+1¡ t
h

ti6 t < ti+1

0 ti+1<t

; h=
2

m¡ 1 ;

keeping other parameters as in Problem 1.

) using Plots; using LinearAlgebra

)

Track 2

Problem 2.1

If Q2Cm�n has orthonormal columns, prove that PQ=QQ� is an orthogonal projector onto
C(Q). Determine the expression of PA, the projector onto C(A), with A2Cm�n. Compare
the number of arithmetic operations required to compute y =PAx, by comparison to first
determining the QR factorization, A=QR, and then computing y=QQ�x.

Solution:

Definition 1. A orthogonal projector is a square matrix P that satisfies P 2=P and P �=P.

Let Q=[q1 q2 ��� qn]2Cm�n, where qj=[qj ;1 qj ;2 ���qj ;m]T is a column vector with qj ;i2C for
every i2f1; :::;mg and j 2f1; :::; ng. Then Q�=[q1 q2 ��� qn]�2Cn�m. If we write them out,
we have

Q= [q1 q2 ��� qn] =

26666664
q1;1 q2;1 ��� qn;1
q1;2 q2;2 ������ ��� ���
q1;m ��� ��� qn;m

37777775;

Q�=

26666664
q1
�

q2
�

���
qn
�

37777775=
26666664
q1;1 q1;2 ��� q1;m
q2;1 q2;2 ������ ��� ���
qn;1 ��� ��� qn;m

37777775:

3

First, we want to show that PQ� = PQ. We know that for any matrices A; B, we have
(AB)�=B�A�. Thus

PQ
� =(QQ�)�=(Q�)�Q�=QQ�=PQ:

Then we want to show that PQ2 =PQ. We are given that PQ=QQ�, so we have

PQ
2 =QQ�QQ�:

Consider

Q�Q=

26666664
q1
�

q2
�

���
qn
�

37777775[q1 q2 ��� qn] =
26666664
q1
�q1 q1

�q2 ��� q1
�qn

q2
�q1 q2

�q2 ������ ��� ���
qn
�q1 ��� ��� qn�qn

377777752Cn�n:

Since Q has orthonormal columns, we know that qi�qj= �ij for every i; j 2 f1; :::; ng. That
gives us

Q�Q= In;

and we have

PQ
2 =QQ�QQ�=Q (Q�Q)Q�=QInQ�=QQ�=P :

Therefore, we conclude taht PQ is indeed an orthogonal projector.

Suppose we have a matrix A=[a1a2 ���an]2Cm�n, where aj=[aj ;1aj ;2 ���aj ;m]T with aj ;i2C
for every i 2 f1; :::; mg and j 2 f1; :::; ng. Then A� = [a1 a2 ���an] �2Cn×m. That means
PA=AA

�2Cm�m such that

PA=AA
�=

2666666664
P

j=1

n
aj ;1 � aj ;1

P
j=1

n
aj ;2 � aj ;1 ���

P
j=1

n
aj ;m � aj ;1P

j=1

n
aj ;1 � aj ;2

P
j=1

n
aj ;2 � aj ;2 ���

��� ��� ���P
j=1

n
aj ;1 � aj ;m ��� ���

P
j=1

n
aj ;m � aj;m

3777777775:

PA=AA
� =

2666666664
P

j=1

n
aj ;1 � aj ;1

P
j=1

n
aj ;2 � aj ;1 ���

P
j=1

n
aj;m � aj ;1P

j=1

n
aj ;1 � aj ;2

P
j=1

n
aj ;2 � aj;2 ���

��� ��� ���P
j=1

n
aj ;1 � aj ;m ��� ���

P
j=1

n
aj ;m � aj ;m

3777777775
=

"X
j=1

n

aj ;1aj
X
j=1

n

aj ;2aj ���
X
j=1

n

aj ;maj

#
:

4

For every entry of PA, we will need to carry our n multiplications and n¡ 1 additions, i.e.
2n¡1 operations in total. Since PA is a m�m matrix, it has m2 entries. Thus we will need
to carry out m2(2n¡ 1) arithmetic operations to compute PA. Now suppose x 2Cm, then
we need another m multiplications and m¡ 1 additions to compute each of the m entries of
PAx. Therefore, the total number of operations to compute PAx will be

m2(2n¡ 1)+m(2m¡ 1)=m2(2n+1)¡m:

Assume we are using the modified Gram-Schmidt process to carry out the QR decomposition
of A. Consider qi=ai with length m, one of the n columns of A. We first need to compute
its norm q

i
�qi, which will take m multiplications, m ¡ 1 additions, and m square roots, so

3m¡1 operations. Then we normalize qi by dividing each entry by its norm, and that takesm
operations. Then for each j2fi+1; :::;ng, we will computeRij with a dot product qi�aj with
m nultiplications and m¡1 additions, and then compute qj with a dot product ri�qj with m
multiplications andm¡1 additions, and then subtract the dot product from each entry of qj
withm operations. That is, for each j, we need (2m¡1)+(3m¡1)=5m¡2 operations, and
there are n¡ i¡ 1 of j's for each i from 1 to n¡ 1. Thus for each i from 1 to n¡ 1, we need
(4m¡1)+(5m¡2)(n¡ i¡1) operations, and for i=n, only 4m¡1 operations are needed.

Therefore, the total number of operations we will need for the modified Gram-Schmidt
process is

(4m¡ 1)n+
X
i=1

n¡1

(5m¡ 2)(n¡ i¡ 1)= (4m¡ 1)n+(5m¡ 2)(n¡ 2)(n¡ 1):

Now we know that Q� 2Cn�m, Q 2 Cm�n, and x 2Cm. So each of the n entries of Q� x
will take m multiplications and m¡ 1 additions to compute, so n(2m¡ 1) in total for Q�x.
Then for each of the m entries of QQ�x, we will need n multiplications and n¡1 additions,
so m(2n ¡ 1) in total for QQ� x. Thus we need n(2m ¡ 1) +m(2n ¡ 1) = 4mn ¡m ¡ n
operations to compute QQ�x.

In the end, the number of operations we need to first determine the QR decomposition of
A and then compute QQ�x would be

(5m¡ 2)n2¡ 14mn+9m+4n¡ 4:

Thus the cost of computing PAx directly would be of orderm2n, while the cost of computing
QQ� x after QR decomposition would be of order mn2. The QR decomposition method
will be much more efficient in the situations where we have m�n, which is often the case.

Problem 2.2

Continuing Problem 1, determine kPQk2, and express kPAk2 in terms of the singular value
decomposition of A. Comment the result, considering, say, length of shadows at various
times of day.

5

Solution:

Definition 2. The 2-norm of a matrix A2Cm�n is defined to be

kAk2= sup
x2Cn;kxk2=1

kAxk2:

Since PQ=PQ� and PQ=PQ2 , for any x2Cm, we have

kPQxk22=(PQx)�PQx=x�PQ
�PQx=x

�PQ
2x=x�PQx:

Consider Q:Cn!Cm. We know that the codomain Cm=C(Q)�N(Q�). That means any
vector x2Cm, can be written as x=v+w with unique vectors v2C(Q) and w2N(Q�).

Since v is an element in C(Q), there exists some y2Cn, such that v=Qy. Since PQ=QQ�,
we get PQv=QQ�Qy. We have shown earlier that Q�Q= In, so PQv=Qy=v.

Since w is an element in N(Q�), we have Q�w = 0 by definition. Thus we get PQw =
QQ�w=0.

Therefore, we have

kPQxk22=x�PQx = (v+w)�PQ(v+w)

= (v�+w�)(PQv+PQw)

= (v�+w�)v

= v�v+w�v

We know that C(Q)?N(Q�), so we have w�v=0, and

kPQxk22=v�v= kvk22:

Since x=v+w and kxk2=1,

1= kxk22 = (v+w)�(v+w)

= (v�+w�)(v+w)

= v�v+v�w+w�v+w�w

= kvk22+ kwk22:

That means we have kvk22� 1 with kvk22=1 when kwk22=0. Thus we conclude that

sup
x2Cn;kxk2=1

kPQxk22= sup
x2Cn;kxk2=1

kvk22=1;

and

kPQk2= sup
x2Cn;kxk2=1

kPQxk2= sup
x2Cn;kxk2=1

kPQxk22
r

=1:

6

Suppose there exist matrices U 2 Cm�m, V 2 Cn�n and � 2 Cm�n with U�U = Im and
V �V = In, such that

A=U�V �:

Then

AA� = (U�V �)(U�V �)�

= U�V �V ��U�

= U���U �;

and we have

kPAxk22 = (PAx)�PAx=x�PA
�PAx=x

�PA
2x

= x�U���U �U���U �x

= x�U������U �x

= x�U(���)2U �x:

In this problem, we found that the projection, or the �shadow�, of a vector on the the
comlumn space of a matrix cannot be longer than itself, but in real life the length of the
shadow can have arbitrary length depending on the angle of the incoming light. I guess in this
case, the projection is more similar to the shadow created by a light source that is directly
above the object, like the shadow of an object on the equator at noon.

Problem 2.3

A matrix A= [aij]2Cm�n is said to be banded with bandwidth B if aij=0 for ji¡ j j>B.
Implement the modified Gram-Schmidt algorithm for A 2 Cm�n a banded matrix with
bandwidth B using as few arithmetic operations as possible.

(I don't have a working solution for this problem yet. I will read more and work on it over
the next week.)

If B< 0, then A would be a matrix of zeros, so we only consider the case where B � 0. Let
b2N be the largest natural number such that b�B, i.e. we have b�B<b+1. If ji¡ j j>B
for any i; j, then ji¡ j j � b+1.

Suppose A= [a1a2 ���an] where aj = [aj ;1 aj ;2 ���aj ;m] with aj ;k 2C for all j 2 f1; :::; ng and
k 2f1; :::;mg. Then for each j, we have aj ;1=���= aj;j¡b¡1= aj;j+b+1= ���= aj ;m=0, i.e. there
are at most 2b+1 nonzero entries in each aj.

For any aj with j <b+1, we only need to consider j+ b entries. For any aj with j >m¡ b,
we need to consider m+ b ¡ j entries. For aj with b+ 1� j �m ¡ b, we need to consider
2b+1 entries.

7

Problem 2.4

(Solve Problem 1, Track 1.) Start with the classical example due to Runge (1901)

f : [¡1; 1]!R; f(t)=
1

(1+ 25t2)
; ti=

2(i¡ 1)
m¡ 1 ¡ 1;

M= f16; 32; 64; 128; 256g;N = f4; 8; 16; 32g;
A(t)=

�
1 t t2 ::: tn¡1

�
:

Julia (1.6.2) session in GNU TeXmacs

) function runge_f(t)
f_t = 1 ./ (25*(t .^2) .+1)
return f_t

end

runge_f

) function monomial(n,m)
h = 2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = ones(m,1)
for i=1:n-1

A = [A (t .^ i)]
end
return A

end

monomial

) function monomial_coef(n,m)
h = 2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = monomial(n,m)
y = runge_f.(t)
x = A\y
return x

end

monomial_coef

) M = 512; H = 2.0/(M-1); T = [(i*H-1) for i=0:(M-1)]; Y = runge_f(T);

) m_values = 2 .^ collect(4:8); m_size = length(m_values); err =
Array{Float64}(undef, m_size);

)

8

) for i=1:4
n = 2^(i+1)
m=96
h = 2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = ones(m,1)
for i=1:n-1

A = [A (t .^ i)]
end
display(Plots.plot(A, legend=false))

end
┌ Warning: Assignment to `n` in soft scope is ambiguous because a
global variable by the same name exists: `n` will be treated as a new
local. Disambiguate by using `local n` to suppress this warning or
`global n` to assign to the existing global variable.
└ @ none:2

Base.Meta.ParseError("extra token after end of expression")

)

) n=4; B=monomial(n,M); Approx=zeros(M,m_size);

) for i=1:m_size
m=m_values[i];
x=monomial_coef(n,m);
Approx[:,i]=B*x;

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

)

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

9

) print("The rate of convergence is","\n",s)

The rate of convergence is
1.1570229053972054

)

) n=8; B=monomial(n,M); Approx=zeros(M,m_size);

) for i=1:m_size
m=m_values[i];
x=monomial_coef(n,m);
Approx[:,i]=B*x;

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

)

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.40277320620291507

) print("The rate of convergence is","\n",s)

The rate of convergence is
1.5031719274633308

)

) n=16; B=monomial(n,M); Approx=zeros(M,m_size);

) for i=1:m_size
m=m_values[i];
x=monomial_coef(n,m);
Approx[:,i]=B*x;

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

)

10

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.22324262284808913

) print("The rate of convergence is","\n",s)

The rate of convergence is
0.41982876451361223

)

) n=32; B=monomial(n,M); Approx=zeros(M,m_size);

) for i=1:m_size
m=m_values[i];
x=monomial_coef(n,m);
Approx[:,i]=B*x;

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

)

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
-1.2579998394391712

11

) print("The rate of convergence is","\n",s)

The rate of convergence is
5.536127644117644

)

Problem 2.5
(Solve Problem 4, Track 1.) Instead of the monomial family of the Runge example, use the
piecewise linear B-spline basis

A(t)= [N1(t) N2(t) ::: Nn(t)];

Ni(t)=

8>>>>>>>>>><>>>>>>>>>>:

0; t < ti¡1
t¡ ti¡1

h
ti¡16 t< ti

ti+1¡ t
h

ti6 t < ti+1

0 ti+1<t

; h=
2

m¡ 1 ;

keeping other parameters as in Problem 1.

(The plots I got seem quite strange but I'm not sure why that would be the case.)

) function bspline(n,m,M)
h_m = 2.0/(m-1)
h_M = 2.0/(M-1)
t = [(i*h_m-1) for i=0:(m+1)]
B = zeros(M,n)
for i=1:n

j_min = Int(max(ceil((i-1)*h_m/h_M),1))
j_med = Int(ceil(i*h_m/h_M)-1)
j_max = Int(min(ceil((i+1)*h_m/h_M)-1,M))
for j=j_min:Int(min(j_med,M))

B[j,i] = (j*h_M-1-t[i])/h_m
end
if j_med+1 < M

for j=(j_med+1):j_max
B[j,i] = (t[i+2]-j*h_M+1)/h_m

end
end

end
return B

end

bspline

12

Julia (1.6.2) session in GNU TeXmacs

) # an alternative way to define the bspline basis
function bspline_alt(n,m,M)

p = max(n,m)
h_m = 2.0/(m-1)
h_M = 2.0/(M-1)
t = [(i*h_m-1) for i=0:(p+1)]
T = [(i*h_M-1) for i=0:(M+1)]
B = zeros(M,n)
for k=1:n

for i=1:M
for j=1:m

if T[i+1] >= t[k] && T[i+1] < t[k+1]
B[i,k]=(T[i+1]-t[k])/h_m

elseif T[i+1] >= t[k+1] && T[i+1] < t[k+2]
B[i,k]=(t[k+2]-T[i+1])/h_m

end
end

end
end
return B

end

bspline_alt

)

) function bspline_coef(n,m)
h = 2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = bspline_alt(n,m,m)
y = runge_f.(t)
x = A\y
return x

end

bspline_coef

)

) for i=1:4
local n = 2^(i+1)
m=96
h = 2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = bspline_alt(n,m,m)
display(Plots.plot(A, legend=false))

end

UndefVarError(:Plots)

13

) B = bspline(16,16,512); Plots.plot(B)

Plot{Plots.GRBackend() n=16}

)

) M = 512; H = 2.0/(M-1); T = [(i*H-1) for i=0:(M-1)]; Y = runge_f(T);

) m_values = 2 .^ collect(4:8); m_size = length(m_values); err =
Array{Float64}(undef, m_size);

)

) n = 4; Approx = zeros(M,m_size);

) for i=1:m_size
m = m_values[i]
x = bspline_coef(n,m)
local B = bspline(n,m,M)
Approx[:,i] = B*x

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

) print("The rate of convergence is","\n",s)

The rate of convergence is
1.1570229053972054

)

) n = 8; Approx = zeros(M,m_size);

14

) for i=1:m_size
m = m_values[i]
x = bspline_coef(n,m)
local B = bspline(n,m,M)
Approx[:,i] = B*x

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

) print("The rate of convergence is","\n",s)

The rate of convergence is
1.1570229053972054

)

) n = 16; Approx = zeros(M,m_size);

) for i=1:m_size
m = m_values[i]
x = bspline_coef(n,m)
local B = bspline(n,m,M)
Approx[:,i] = B*x

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

15

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

) print("The rate of convergence is","\n",s)

The rate of convergence is
1.1570229053972054

)

) n = 32; Approx = zeros(M,m_size);

) for i=1:m_size
m = m_values[i]
x = bspline_coef(n,m)
local B = bspline(n,m,M)
Approx[:,i] = B*x

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

) print("The rate of convergence is","\n",s)

The rate of convergence is
1.1570229053972054

)

Problem 2.6

In Problem 1, Track 1, replace the monomial basis with the Legendre polynomials, whose

16

samples are determined by QR decomposition QR=A. The resulting least squares problem
is now

min
x2Rn

ky¡Qxk2 :

) function legendre(n,m)
h = 2.0/(m-1)
t = [(i*h-1) for i=0:m-1]
A = monomial(n,m)
Q,R = qr(A)
S = diagm(1.0 ./ Q[m,:])
P = Q*S
return P[:,1:n]

end

legendre

) function legendre_coef(n,m)
h = 2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = legendre(n,m)
y = runge_f.(t)
x = A\y
return x

end

legendre_coef

)

) M = 512; H = 2.0/(M-1); T = [(i*H-1) for i=0:(M-1)]; Y = runge_f(T);

) m_values = 2 .^ collect(4:8); m_size = length(m_values); err =
Array{Float64}(undef, m_size);

) for i=1:3
local n = 2^(i+1)
m=96
h = 2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
P = legendre(n,m)
display(Plots.plot(P, legend=false))

end

)

) n = 4; B = legendre(n,M); Approx = zeros(M,m_size);

17

) for i=1:m_size
m = m_values[i]
x = legendre_coef(n,m)
Approx[:,i] = B*x

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

)

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2408324715806308

) print("The rate of convergence is","\n",s)

The rate of convergence is
3.058988236991122

)

) n = 8; B = legendre(n,M); Approx = zeros(M,m_size);

) for i=1:m_size
m = m_values[i]
x = legendre_coef(n,m)
Approx[:,i] = B*x

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

)

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

18

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.38479479155555435

) print("The rate of convergence is","\n",s)

The rate of convergence is
1.521563387971189

)

) n = 16; B = legendre(n,M); Approx = zeros(M,m_size);

) for i=1:m_size
m = m_values[i]
x = legendre_coef(n,m)
Approx[:,i] = B*x

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

)

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
1.0650633160226346

) print("The rate of convergence is","\n",s)

The rate of convergence is
0.6086171218702784

)

19

) n = 32; B = legendre(n,M); Approx = zeros(M,m_size-1);

) for i=1:m_size-1
m = m_values[i+1];
x = legendre_coef(n,m);
Approx[:,i] = B*x;

end

) Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

)

) for i=1:m_size
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^0.5);

) display(Plots.plot(log.(m_values),err, label="error"))

) num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; q=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size]-q*err[1:m_size-1])/(m_size-1));

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2408324715806308

) print("The rate of convergence is","\n",s)

The rate of convergence is
3.058988236991122

)

) err = zeros(m_size-1);

) for i=1:m_size-1
err_abs = abs.(Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)

end

) err = log.(err .^ 0.5);

) a = [4; 4.5; 5];

) Plots.plot(log.(m_values[1:m_size-1]),err, label="error");
display(plot!(a, (a*(-1.5) .+ 6), label="slope=-1.5"));

) num=err[3:m_size-1] .- err[2:(m_size-2)];
den=err[2:m_size-2]-err[1:m_size-3]; q=sum(num ./ den)/(m_size-3);
s=exp(sum(err[2:m_size-1]-q*err[1:m_size-2])/(m_size-2));

20

) print("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
1.396601993488745

) print("The rate of convergence is","\n",s)

The rate of convergence is
0.46366810375093176

)

21

	Track 1
	Problem 1.1
	Problem 1.2
	Problem 1.3
	Problem 1.4

	Track 2
	Problem 2.1
	Problem 2.2
	Problem 2.3
	Problem 2.4
	Problem 2.5
	Problem 2.6

