MATHG661 Homework 3 - Least squares problems

BY LEYI ZHANG
09/15/21

This assigment addresses one of the fundamental topics within scientific computation: finding
economical descriptions of complex objects. Some object is described by y € C™ (with
m typically large), and a reduced description is sought by linear combination Ax, with
A eC™*" (n<m,often n<<m). The surprisingly simple Euclidean geometry of Fig. 1 (which
should be committed to memory) will be shown to have wide-ranging applicability to many
different types of problems. The error (or residual) in approximating y by A« is defined as

r=b— Ax,
and 2-norm minimization defines the least-squares problem

min ||b— Ax|.
zeCm

z=Azx

Figure 1. Least squares (2-norm error minimization) problem.

Track 1

Consider data D ={(t;, vi)[i =1, 2, ...,m} obtained by sampling a function f: R — R, with
y; = f(t;). An approximation is sought by linear combination

ft) Zxrai(t) +zaaz(t) + - 4+ xpan(t).

Introduce the vector-valued function A: R — R"™ (organized as a row vector)

At)=[a1(t) as(t) ... an(t)],

such that

fO AWz, z=[21 29 ... 7,]".
With t=[t; t, ... t, |’ asampling of the function domain, a matrix is defined by
A=At)x=]ai(t) ax(t) ... a,(t)]z ecR™*".

Tasks. In each exercise below, construct the least-squares approximant for the stated range
of n € N, sample points ¢, and choice of A(t). Plot in a single figure all components of
A(t). Plot the approximants, as well as f in a single figure. Construct a convergence plot of
the approximations by representation of point data & = {(logn,log ||y — Az|)| A € R™*",
n € N'}. For the largest value of n within A/, construct a figure superimposing increasing
number of sampling points, m € M. Comment on what you observe in each individual
exercise. Also compare results from the different exercises.

Problem 1.1

Start with the classical example due to Runge (1901)
) B 1 o 2(i—1)

M =1{16,32,64,128,256}, N = {4,8,16, 32},
Ay=[1 ¢t 2 ... 1]

—1,

Problem 1.2

Instead of the equidistant point samples of the Runge example above use the Chebyshev

nodes
t; = cos 2i — 17T
7 2m)

keeping other parameters as in Problem 1.

Problem 1.3

Instead of the monomial family of the Runge example, use the Fourier basis

A(t)=[1 cosmt sinmt ... cosmnt sinmnt |

keeping other parameters as in Problem 1. In this case A € R™* @1,

Problem 1.4

Instead of the monomial family of the Runge example, use the piecewise linear B-spline basis

A(t) =[Ni(t) Na(t) ... Na(t)],

(

0, t<ti_i
t_;i_l i1 <t<iy 9
Nz(t): ti—l—l_t ah:m_la
— ;<<
h +1
0 tiv1 <t

\

keeping other parameters as in Problem 1.

. using Plots; using LinearAlgebra

Track 2
Problem 2.1

If Q€ C™*" has orthonormal columns, prove that Pg= Q Q" is an orthogonal projector onto
C(Q). Determine the expression of Pa, the projector onto C'(A), with A € C"™*". Compare
the number of arithmetic operations required to compute y = P4 @, by comparison to first
determining the) R factorization, A = Q R, and then computing y=Q Q" x.

Solution:
Definition 1. A orthogonal projector is a square matriz P that satisfies P?= P and P*= P.

Let Q=[q1 g2 o) €C™ ™ where q;=1[¢;1¢j2"*¢j.m)" is a column vector with ¢; ; € C for
every i €{1l,....,m} and j€{1,...,n}. Then Q*=[q1 g2+ q,,]* €C"*™. If we write them out,
we have

’VQ1,1 g1 - Qn,l—l

Q=lqiqq)=| 7 P ,
ql’m e e qn’m
gi | | @ @z - @ |
Q= (I2 _| &1 %2
q;; C]TJ e Gom

First, we want to show that P = Pg. We know that for any matrices A, B, we have
(AB)*=B*A*. Thus

Py=(QQ)=(Q) Q" =QQ =P,

Then we want to show that P3= Pg. We are given that Pg= QQ*, so we have

P5=QQQQ"
Consider
[qi] [aq e - qidn]
Q' Q= qz q1 @ g = q’z‘lql 4292 . c Qnxn
qn g1 qgn

Since @ has orthonormal columns, we know that g;g; = J;; for every i, 7 € {1,...,n}. That
gives us

Q*Q - Im
and we have

P}=QQQQ'=Q(Q'Q)Q'=QL,Q"=QQ*=P.

Therefore, we conclude taht Pg is indeed an orthogonal projector.

Suppose we have a matrix A= [a;ay---a,] € C™*", where a;=|[a; 1 aj 2 aj)" with a; ;€C
for every i € {1, ..., m} and j € {1, ..., n}. Then A* =[a; ay ---a,)*€C™™. That means
Py=AA*c C™*™ such that

B n o — n o — n o o—
Do @i Do Gty e Y Gm e Gy

n —_— n _
Py— AA = PSR ERD D TR P

| Z]:la]71a]7m T Z]:la]7ma]7m]

B n o — n n
Do @i Do Gt e Y GGme G5

n D — n —_—
P,= AA* Zj:1aj,1'aj,2 Zj:1aj72'aj,2

n P — n PR
D o1 i1 Gjm e D G G |

For every entry of Py, we will need to carry our n multiplications and n — 1 additions, i.e.
2n — 1 operations in total. Since Py is a m x m matrix, it has m? entries. Thus we will need
to carry out m?(2n — 1) arithmetic operations to compute Py. Now suppose & € C™, then
we need another m multiplications and m — 1 additions to compute each of the m entries of
P4 x. Therefore, the total number of operations to compute Py x will be

m2*(2n —1)+m((2m —1)=m?*(2n+1) —m.

Assume we are using the modified Gram-Schmidt process to carry out the QR decomposition
of A. Consider g;=a; with length m, one of the n columns of A. We first need to compute
its norm g*g;, which will take m multiplications, m — 1 additions, and m square roots, so
3m — 1 operations. Then we normalize g; by dividing each entry by its norm, and that takes m
operations. Then for each j€{i+1,...,n}, we will compute R;; with a dot product g;a; with
m nultiplications and m — 1 additions, and then compute g; with a dot product r;g; with m
multiplications and m — 1 additions, and then subtract the dot product from each entry of g;
with m operations. That is, for each j, we need (2m — 1)+ (3m — 1) =5m — 2 operations, and
there are n —7 — 1 of j’s for each ¢ from 1 to n — 1. Thus for each ¢ from 1 to n — 1, we need
(4m —1)+ (5m —2)(n —i— 1) operations, and for i =n, only 4m — 1 operations are needed.

Therefore, the total number of operations we will need for the modified Gram-Schmidt
process is

n—1

(Am—Dn+> " (5m—2)(n—i—1)=(4m—Dn+ (5m —2)(n —2)(n—1).

=1

Now we know that Q* € C"*™, Q € C™*" and « € C™. So each of the n entries of Q* x
will take m multiplications and m — 1 additions to compute, so n(2m — 1) in total for Q* .
Then for each of the m entries of QQ*x, we will need n multiplications and n — 1 additions,
so m(2n — 1) in total for QQ* . Thus we need n(2m — 1) + m(2n — 1) =4dmn —m —n
operations to compute Q Q* x.

In the end, the number of operations we need to first determine the) R decomposition of
A and then compute Q Q* x would be
(5m —2)n* — 1dmn +9m +4n — 4.

Thus the cost of computing P4« directly would be of order m?n, while the cost of computing
QQ* x after QR decomposition would be of order mn? The QR decomposition method
will be much more efficient in the situations where we have m > n, which is often the case.

Problem 2.2

Continuing Problem 1, determine || Pg)||2, and express || Py||2 in terms of the singular value
decomposition of A. Comment the result, considering, say, length of shadows at various
times of day.

Solution:

Definition 2. The 2-norm of a matrix A € C"™*" is defined to be

[Alle= sup [|Az].

zeC,||z|2=1
Since Pg= P§ and Pg= P}, for any « € C™, we have
| Poz |3 = (Poz)*Pox = x* Py Pox = x* Pix = =* Pgx.
Consider Q: C"— C™. We know that the codomain C"=C(Q) ® N(Q*). That means any

vector & € C™, can be written as = v + w with unique vectors v € C(Q) and w € N(Q*).

Since v is an element in C'(Q), there exists some y € C”, such that v= Qy. Since Po=Q Q"
we get Pov=Q Q*Qy. We have shown earlier that Q*Q =1, so Pov=Q y=".

Since w is an element in N(Q*), we have Q*w = 0 by definition. Thus we get Pow =
QQ w=0.

Therefore, we have
|Poz|f=2"Pozx = (v+ W)*PQ(U +w)
= (v +w")(Pqu+ Pow)
(V" +w")v
v

v+ w'v
We know that C(Q) L N(Q*), so we have w*v =0, and
|Poz|f3=v'v=|v|}.
Since x =v+w and ||z ||;=1,
I=[z|} = (v+w)(v+w)
= (v'+w")(v+w)
= v'v+v'w+wv+ww

= [lv]3+ llw]5.
That means we have ||v[|3<1 with ||v||3=1 when ||[w]|3=0. Thus we conclude that

sup [[Pozlli= sup [v|3=1,
xzeCh ||z|2=1 zeC™,||z|2=1
and

|Pglla= sup HPQa:HQ# sup || Poxl3=1.
x

zeCn |z 2=1 eCn |lzf2=1

Suppose there exist matrices U € C™*™, V € C"*" and ¥ € C™*" with U*U = I, and
V*V =1,, such that

A=UXV*
Then

AA* = (USVHUSV*)*
— USV*'VIU*
— USSU",

and we have

|Paz||3 = (Pax)*Paz=x"PiPyx=x"Pic
= ' UXYX U UXYUx
= ' UXY Y3 U
= U (XX U*z.

In this problem, we found that the projection, or the “shadow”, of a vector on the the
comlumn space of a matrix cannot be longer than itself, but in real life the length of the
shadow can have arbitrary length depending on the angle of the incoming light. I guess in this
case, the projection is more similar to the shadow created by a light source that is directly
above the object, like the shadow of an object on the equator at noon.

Problem 2.3

A matrix A =[a;;] € C™*™ is said to be banded with bandwidth B if a;;=0 for |i — j| > B.
Implement the modified Gram-Schmidt algorithm for A € C™*™ a banded matrix with
bandwidth B using as few arithmetic operations as possible.

(I don’t have a working solution for this problem yet. I will read more and work on it over
the next week.)

If B<0, then A would be a matrix of zeros, so we only consider the case where B > 0. Let
b€ N be the largest natural number such that b < B, i.e. we have b< B<b+1. If |i —j| > B
for any 4, j, then |i — j| > b+ 1.

Suppose A = [a; as---a,] where a;={[a;1a;j2--a;) with a; € C for all j€{1,...,n} and
ke{l,...,m}. Then for each j, we have aj1—..—a;j j_p—1=0a; j+bt+1=""-=0a; »,=0, i.e. there
are at most 2b+ 1 nonzero entries in each a;.

For any a; with j <b+1, we only need to consider j + b entries. For any a; with j >m —b,

we need to consider m + b — j entries. For a; with b +1 < j <m — b, we need to consider
2b+ 1 entries.

Problem 2.4

(Solve Problem 1, Track 1.) Start with the classical example due to Runge (1901)
) B 1 A__Q(i—-l)

M =1{16,32,64,128,256}, N = {4, 8,16, 32},
Ay=[1 ¢t ¢ ... " 1]

_17

Julia (1.6.2) session in GNU TeXmacs

.. function runge_f(t)
f_t = 1./ (26x(t .72) .+1)
return f_t
end

runge_f

. function monomial (n,m)

h=2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = ones(m,1)

for i=1:n-1
A=T[A (¢t .7 1)]
end
return A
end

monomial

.. function monomial_coef (n,m)

h=2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = monomial (n,m)
y = runge_f. (t)
x = Ay
return x
end

monomial_coef
.M =512; H=2.0/(M-1); T = [(i*H-1) for i=0: (M-1)]; Y = runge_£f(T);

. m_values = 2 .~ collect(4:8); m_size = length(m_values); err =
Array{Float64} (undef, m_size);

.. for i=1:4

n = 2°(i+1)

m=96

h=2.0/(m-1)

t = [(i*h-1) for i=0:(m-1)]
A = ones(m,1)

for i=1:n-1
A=T[A(t .7 1]
end
display(Plots.plot(A, legend=false))
end

r Warning: Assignment to 'n” in soft scope is ambiguous because a
global variable by the same name exists: 'n’~ will be treated as a new
local. Disambiguate by using “local n” to suppress this warning or
"global n° to assign to the existing global variable.

L @ none:2

Base.Meta.ParseError("extra token after end of expression")

. n=4; B=monomial (n,M); Approx=zeros(M,m_size);

. for i=1:m_size
m=m_values[i];
x=monomial_coef (n,m);
Approx[:,i]=B*x;

end

. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
". display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*err[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to_be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
1.1570229053972054

. n=8; B=monomial(n,M); Approx=zeros(M,m_size);

. for i=1:m_size
m=m_values[i];
x=monomial_coef (n,m);
Approx[:,i]=B*x;
end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
", display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*xerr[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.40277320620291507

. print ("The rate of convergence is","\n",s)

The rate of convergence is
1.5031719274633308

. n=16; B=monomial(n,M); Approx=zeros(M,m_size);

. for i=1:m_size
m=m_values[i];
x=monomial_coef (n,m) ;
Approx[:,i]=B*x;
end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

10

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
". display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*xerr[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.22324262284808913

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
0.41982876451361223

. n=32; B=monomial(n,M); Approx=zeros(M,m_size);

. for i=1:m_size
m=m_values[i];
x=monomial_coef (n,m);
Approx[:,i]=B*x;
end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"));

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
". display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*err[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to_be","\n",q)

The order of convergence is estimated to be
-1.2579998394391712

11

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
5.536127644117644

Problem 2.5

(Solve Problem 4, Track 1.) Instead of the monomial family of the Runge example, use the
piecewise linear B-spline basis
A(t)=[Ni(t) No(t) ... Na(t)],
(0, t<ti_1
t—1i—1
(1) — h
Nilt) = 9 liv1—t
h
0 tiv1 <t

i1 <t <ty 9

i <t <tit

\

keeping other parameters as in Problem 1.
(The plots I got seem quite strange but I'm not sure why that would be the case.)

.. function bspline(n,m,M)

hom=2.0/(m-1)

h'M=2.0/(M-1)

t [(i*h_m-1) for i=0:(m+1)]

B = zeros(M,n)

for i=1:n
j_min = Int(max(ceil((i-1)*h_m/h_M),1))
j_med = Int(ceil(ix*h_m/h_M)-1)
j_max = Int(min(ceil((i+1)*h_m/h_M)-1,M))
for j=j_min:Int(min(j_med,M))

B[j,i] = (j*h_M-1-t[i])/h_m

end
if j_med+1 < M
for j=(j_med+1):j_max
B[j,i] = (t[i+2]-j*h_M+1)/h_m
end
end
end
return B
end

bspline

12

Julia (1.6.2) session in GNU TeXmacs

. # an alternative way to define the bspline basis
function bspline_alt(n,m,M)
p = max(n,m)

hom=2.0/(m-1)
h.M=2.0/(M-1)
t = [(i*h_m-1) for i=0:(p+1)]
T = [(i*h_M-1) for i=0:(M+1)]
B = zeros(M,n)
for k=1:n
for i=1:M
for j=1:m
if T[i+1] >= t[k] && T[i+1] < t[k+1]
Bli,k]=(T[i+1]-t[k])/h_m
elseif T[i+1] >= t[k+1] && T[i+1] < t[k+2]
B[i,k]=(t[k+2]-T[i+1])/h_m
end
end
end
end
return B

end

bspline_alt

.. function bspline_coef (n,m)

h =2.0/(m-1)

t = [(i*h-1) for i=0:(m-1)]
A = bspline_alt(n,m,m)

y = runge_f. (t)

x = Ay

return x

end

bspline_coef

.. for i=1:4
local n = 2°(i+1)
m=96
h

2.0/(m-1)
t = [(i*h-1) for i=0:(m-1)]
A = bspline_alt(n,m,m)
display(Plots.plot(A, legend=false))
end

UndefVarError(:Plots)

13

.. B = bspline(16,16,512); Plots.plot(B)
Plot{Plots.GRBackend() n=16}

.M =0512; H=2.0/(M-1); T = [(i*H-1) for i=0:(M-1)]; Y = runge_£(T);

. m_values = 2 .~ collect(4:8); m_size = length(m_values); err =
Array{Float64} (undef, m_size);

. n = 4; Approx = zeros(M,m_size);

. for i=1:m_size
m = m_values[i]
x = bspline_coef (n,m)
local B = bspline(n,m,M)
Approx[:,i] = Bxx

end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
". display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*xerr[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

. print ("The rate of convergence is","\n",s)

The rate of convergence is
1.1570229053972054

. n = 8; Approx = zeros(M,m_size);

14

. for i=1:m_size
m = m_values[i]
x = bspline_coef (n,m)
local B = bspline(n,m,M)
Approx[:,i] = Bxx
end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
". display(Plots.plot(log. (m_values),err, label="error"))
. num=err[3:m_size] .- err[2:(m_size-1)];

den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp (sum(err[2:m_size] -q*err[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

. print ("The rate of convergence is","\n",s)

The rate of convergence is
1.1570229053972054

. n = 16; Approx = zeros(M,m_size);

. for i=1:m_size
m = m_values[i]
X = bspline_coef(n,m)
local B = bspline(n,m,M)
Approx[:,i] = Bxx
end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);

", display(Plots.plot(log. (m_values),err, label="error"))

15

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*xerr[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
1.1570229053972054

. n = 32; Approx = zeros(M,m_size);

. for i=1:m_size
m = m_values[i]
X = bspline_coef(n,m)
local B = bspline(n,m,M)
Approx[:,i] = Bxx

end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
". display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[l:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*err[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to_ be","\n",q)

The order of convergence is estimated to be
0.2464832341748203

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
1.1570229053972054

Problem 2.6

In Problem 1, Track 1, replace the monomial basis with the Legendre polynomials, whose

16

samples are determined by) R decomposition Q R= A. The resulting least squares problem
is now

min [y - Q.

.. function legendre(n,m)
h =2.0/(m-1)
t = [(i*h-1) for i=0:m-1]

A = monomial (n,m)
Q,R = qr(A)
S = diagm(1.0 ./ Q[m,:])
P = Q%S
return P[:,1:n]
end
legendre

.. function legendre_coef (n,m)

h=2.0/(m-1)

t = [(i*h-1) for i=0:(m-1)]
A = legendre(n,m)

y = runge_f. (t)

x = Ay

return X

end

legendre_coef

.M =0512; H=2.0/(M-1); T = [(i*H-1) for i=0:(M-1)]; Y = runge_£(T);

. m_values = 2 .~ collect(4:8); m_size = length(m_values); err =
Array{Float64} (undef, m_size);

. for i=1:3
local n = 2~ (i+1)
m=96
h 2.0/(m-1)
t [(i*h-1) for i=0:(m-1)]
P = legendre(n,m)
display(Plots.plot(P, legend=false))

end

. n = 4; B = legendre(n,M); Approx = zeros(M,m_size);

17

. for i=1:m_size
m = m_values/[i]
x = legendre_coef (n,m)
Approx[:,i] = Bxx

end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);

", display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1l:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*err[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be

0.2408324715806308

. print ("The rate of convergence is","\n",s)

The rate of convergence is
3.058988236991122

. n = 8; B = legendre(n,M); Approx = zeros(M,m_size);

. for i=1:m_size
m = m_values[i]
x = legendre_coef(n,m)
Approx[:,i] = Bxx
end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);

18

". display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[l:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*err[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to_ be","\n",q)

The order of convergence is estimated to be
0.38479479155555435

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
1.521563387971189

.n = 16; B = legendre(n,M); Approx = zeros(M,m_size);

. for i=1:m_size
m = m_values[i]
x = legendre_coef (n,m)
Approx[:,i] = Bxx
end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
", display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err([2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*err[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
1.0650633160226346

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
0.6086171218702784

19

. n = 32; B = legendre(n,M); Approx = zeros(M,m_size-1);

. for i=1:m_size-1
m = m_values[i+1];
x = legendre_coef(n,m);
Approx[:,i] = Bxx;

end
. Plots.plot(T,Approx); display(plot!(T,Y,label="Expected"))

. for i=1:m_size
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .70.5);
", display(Plots.plot(log. (m_values),err, label="error"))

. num=err[3:m_size] .- err[2:(m_size-1)];
den=err[2:m_size-1]-err[1:m_size-2]; g=sum(num ./ den)/(m_size-2);
s=exp(sum(err[2:m_size] -q*xerr[1:m_size-1])/(m_size-1));

. print ("The order of convergence is estimated to be","\n",q)

The order of convergence is estimated to be
0.2408324715806308

. print ("The rate of convergence is","\n",s)

The rate of convergence is
3.058988236991122

‘. err = zeros(m_size-1);

. for i=1:m_size-1
err_abs = abs. (Y-Approx[:,i])
err[i] = dot(err_abs,err_abs)
end

. err = log.(err .~ 0.5);
. a = [4; 4.5; 5];

. Plots.plot(log. (m_values[1:m_size-1]),err, label="error");
display(plot!(a, (ax(-1.5) .+ 6), label="slope=-1.5"));

. num=err[3:m_size-1] .- err([2:(m_size-2)];
den=err [2:m_size-2]-err[l:m_size-3]; g=sum(num ./ den)/(m_size-3);
s=exp(sum(err[2:m_size-1]-g*err[1:m_size-2])/(m_size-2));

20

.. print ("The jorder of convergence is estimated jto_be","\n",q)

The order of convergence is estimated to be
1.396601993488745

.. print ("The rate of convergence_ is","\n",s)

The rate of convergence is
0.46366810375093176

21

	Track 1
	Problem 1.1
	Problem 1.2
	Problem 1.3
	Problem 1.4

	Track 2
	Problem 2.1
	Problem 2.2
	Problem 2.3
	Problem 2.4
	Problem 2.5
	Problem 2.6

