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ABSTRACT

The goal of scientific computation is the construction of quantitatively verifiable models of the
natural world. Scientific computation intertwinesmathematics, algorithm formulation, software
and hardware engineering with domain-specific knowledge from the physical, life, or social sci-
ences. It is the fusion of these disciplines that imparts a distinct identity to scientific computing,
and mathematical concepts must be complemented by practical modeling considerations to
achieve successful computational simulation.

Human interpretation of the complexity of the natural world has historically led to parallel
developments in formulation of abstract concepts, construction of models, and use of computa-
tional aids. This is the case on the long time span from prehistoric formulation of the abstract
concept of a number and use of tally sticks, to current efforts based on quantum mechanics
and superconducting qubit electronics. A dichtomy arises between the formulation of math-
ematical concepts asserted purely by reason and practicable predictions of the natural world.
The conflicting approaches are reconciled by modeling and approximation. Domain sciences
such as physics, biology, or sociology construct the relevant models. Comparison of model pre-
dictions to observation can sometimes be carried out through devices as simple as Galileo's
inclined plane. The much higher complexity of models of airplane flight, or cancer progres-
sion, or activity on social media requires different tools, paradigmatically represented by the
modern digital computer. In this more complex setting, scientific computing is instrumental in
extracting verifiable predictions from models.

Central to computational prediction is the idea of approximation: finding a simple mathemat-
ical representation of some complex model of reality. Archimedes approximated the area of a
parabolic segment by that an increasing number of inscribed triangles. Nowadays meteorolog-
ical observations are input to a digital computer to predict future rainfall. The weather model
implemented on the computer contains numerous approximations. Remarkably, both models
rely on the same technique of additive approximation: summation of successive corrections to
obtain increased accuracy.

One of the goals of this textbook is to highlight how computational methods arise as expres-
sions of just a few approximation approaches. Additive corrections underlie many methods
ranging from interpolation to numerical integration, and benefit from a remarkably complete
theoretical framework within linear algebra. Alternatively, successive function composition is a
distinct approximation idea, with a theoretical framework that is not yet complete, and whose
expression leads to the burgeoning field of "machine learning". The process by which a specific
approximation approach leads to different types of algorithms is a unifying theme of the pre-
sentation, and hopefully not only illuminates well-known algorithms, but also serves as a guide
to future research.
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The presentation of topics and ideas is at the graduate level of study, but with a focus on uni-
fying ideas rather than detailed techniques. Much of traditional numerical methods and some
associated analysis is presented and seen to be related to real analysis and linear algebra. The
same theoretical framework can be extended to probability spaces and account for random phe-
nomena. The nonlinear approach to approximation that characterizes artificial neural networks
requires a different conceptual framework which has yet to be crystallized. Though numerical
methods are prevalent in scientific computation, this text also considers alternatives that should
be part of a computational scientist's toolkit such as symbolic, topological, and geometric com-
putation.

Scientific computing is not a theoretical exercise, and successful simulation relies on acquiring
the skill set to implement mathematical concepts and approximation techniques into efficient
code. This text intersperses method presentation and implementation, mostly in the Julia lan-
guage. An associated electronic version of his textbook uses the TeXmacs scientific editing
platform to enable live documents with embedded computational examples, allowing imme-
diate experimentation with the presented algorithms.
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Part I

Number Approximation





LECTURE 1: NUMBER APPROXIMATION

1. Numbers

1.1. Number sets

Most scientific disciplines introduce an idea of the amount of some entity or property of interest. Furthermore,
the amount is usually combined with the concept of a number , an abstraction of the observation that the two sets
A = {Mary, Jane, Tom} and B= {apple, plum, cherry} seem quite different, but we can match one distinct person to
one distinct fruit as in {Mary↔plum, Jane↔apple, Tom↔cherry}. In contrast, we cannot do the same matching
of distinct persons to a distinct color from the set {red, green}, and one of the colors must be shared between two
persons. Formal definition of the concept of a number from the above observations is surprisingly difficult since it
would be self-referential due to the apperance of the numbers “one” and “two”. Leaving this aside, the key concept
is that of quantity of some property of interest that is expressed through a number.

Several types of numbers have been introduced in mathematics to express different types of quantities, and the
following will be used throughout this text:

ℕ. The set of natural numbers,ℕ={0,1, 2, 3, . . . }, infinite and countable,ℕ+= {1,2, 3, . . .};
ℤ. The set of integers, ℤ={0,±1,±2,±3, . . . }, infinite and countable;

ℚ. The set of rational numbers ℚ ={p/q,p ∈ℤ,q ∈ℕ+}, infinite and countable;

ℝ. The set of real numbers, infinite, not countable, can be ordered;

ℂ. The set of complex numbers, ℂ={x + iy ,x ,y ∈ℝ}, infinite, not countable, cannot be ordered.
These sets of numbers form a hierarchy, withℕ⊂ℤ⊂ℚ ⊂ℝ⊂ℂ. The size of a set of numbers is an important aspect
of its utility in describing natural phenomena. The set S = {Mary, Jane, Tom} has three elements, and its size is
defined by the cardinal number , |S|=3. The sets ℕ,ℤ,ℚ ,ℝ,ℂ have an infinite number of elements, but the relation

z ={{{{{{{{{{{{ −n /2 forn even
(n +1)/2 forn odd

defines a one-to-one correspondence between n ∈ℕ and z ∈ℤ, so these sets are of the same size denoted by the
transfinite number ℵ0 (aleph-zero). The rationals can also be placed into a one-to-one correspondence withℕ, hence

|ℕ|= |ℤ|= |ℚ |=ℵ0 .
In contrast there is no one-to-one mapping of the reals to the naturals, and the cardinality of the reals is |ℝ|= 𝔠
(Fraktur-script c). Georg Cantor established set theory and introduced a proof technique known as the diagonal
argument to show that 𝔠=2ℵ0. Intuitively, there are exponentially more reals than naturals.

1.2. Quantification

One of the foundations of the scientific method is quantification, ascribing numbers to phenomena of interest. To
exemplify the utility of different types of number to describe natural phenomena, consider common salt (sodium
chloride, Fig. 1) which has the chemical formula NaCl with the sodium ions (Na+) and chloride ions (Cl−) spatially
organized in a cubic lattice, with an edge length a=5.6402 Å (1 Å = 10−10 m) between atoms of the same type. Setting
the origin of a Cartesian coordinate system Oxyz at a sodium atom, the position of some atom within the lattice is

(x ,y ,z)=(i a2 , j a2 ,k a
2).

Sodium atoms are found positions where i+ j +k is even, while chloride atoms are found at positions where i+ j +k
is odd. The Cartesian coordinates (x ,y , z) describe some arbitrary position in space, which is conceptualized as a
continuum and placed into one-to-one correspondence withℝ3. A particular lattice position can be specified simply
through a label consisting of three integers (i, j ,k)∈ℤ3. The position can be recovered through a scaling operation

(x ,y ,z)= a
2 (i, j ,k),
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and the number a/2∈ℝ that modifies the length scale from 1 to a/2, it is called a scalar .

Figure 1. Leſt: Polycrystalline sodium chloride. Right: Cubic lattice structure of a single sodium chloride crystal

1.3. Computer number sets
A computer has a finite amount of memory, hence cannot represent all numbers, but rather subsets of the above
number sets. Current digital computers internally use numbers represented through binary digits, or bits. Many
computer number types are defined for specific purposes, and are oſten encountered in applications such as image
representation or digital data acquisition. Here are the main types.

Subsets of ℕ. The number types uint8, uint16, uint32, uint64 represent subsets of the natural numbers
(unsigned integers) using 8, 16, 32, 64 bits respectively. An unsigned integer with b bits can store a natural
number in the range from 0 to 2b−1. Two arbitrary natural numbers, written as ∀i, j ∈ℕ can be added and
will give another natural number, k = i + j ∈ℕ. In contrast, addition of computer unsigned integers is only
defined within the specific range 0 to 2b − 1. If k > 2b − 1, the result might be displayed as the maximum
possible value or as kmod2b.

ũ i=UInt8(15); j=UInt8(10); k=i+j

25

ũ i=UInt8(150); j=UInt8(200); k=i+j; [k i+j mod(350,256)]

[ 94 94 94 ] (1)

ũ i=UInt8(150); j=UInt8(200); k=i-j; [k i-j mod(-50,256)]

[ 206 206 206 ] (2)

ũ typeof(i-j)

UInt8
ũ

Subsets of ℤ. The number types int8, int16, int32, int64 represent subsets of the integers. One bit is used
to store the sign of the number, so the subset of ℤ that can be represented is from 1−2b−1 to 2b−1−1.

ũ i=Int8(15); j=Int8(21); k=i+j

36
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ũ i=Int8(100); j=Int8(101); k=i+j; [k i+j mod(201,128)-128]

[ −55 −55 −55 ] (3)

ũ typeof(k)

Int8
ũ [typemin(Int8) typemax(Int8)]

[ −128 127 ] (4)

ũ

Subsets of ℚ,ℝ,ℂ. Computers approximate the real numbers through the set of floating point numbers.
Floating point numbers that use b = 32 bits are known as single precision, while those that use b = 64 are
double precision. A floating point number x ∈ is stored internally as x =±.B1B2. . .Bm× 2

±b1b2. . .be where Bi,
i = 1, . . . ,m are bits within the mantissa of length m, and bj, j = 1, . . . , e are bits within the exponent, along
with signs ± for each. The default number type is usually double precision, more concisely referred to
Float64. Common irrational constants such as e, π are predefined as irrationals and casting to Float64
or Float32 gives floating point approximation. Unicode notation is recognized. Specification of a decimal
point indicates a floating point number; its absence indicates an integer.

ũ pi
π

ũ typeof(pi)

Irrational{:π}

ũ [Float32(pi) Float64(pi) Float64(π)]

[ 3.1415927410125732 3.141592653589793 3.141592653589793 ] (5)

ũ a=2.3; b=2; c=3.; [typeof(a) typeof(b) typeof(c)]

DataType[Float64 Int64 Float64]

ũ

The approximation of the realsℝ by the floats is characterized by: floatmax(), the largest float, floatmin
the smallest positive float, and eps() known asmachine epsilon. Machine epsilon highlights the differences
between floating point and real numbers since it may be informally defined as the smallest number of form
ϵ =2k∈ that satisfies 1+ϵ≠1. If ε∈ℝ of course 1+ε=1 implies ε=0, but floating points exhibit “granularity”,
in the sense that over a unit interval there are small steps that are indistinguishable from zero due to the
finite number of bits available for a float leading to 1+ϵ /2 being indistiguishable from 1, and the apparently
endless loop shown below actually terminates.

ũ eps=1.0;

ũ while (1.0+0.5*eps != 1.0)
global eps;
eps=0.5*eps;

end
ũ eps

2.220446049250313 e −16

The granularity of double precision expressed by machine epsilon is sufficient to represent natural phe-
nomena, and floating point errors can usually be kept under control,
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ũ [floatmin(Float32) floatmax(Float32) eps(Float32)]

[ 1.1754944 e −38 3.4028235 e 38 1.1920929 e −7 ] (6)

ũ [floatmin(Float64) floatmax(Float64) eps(Float64)]

[ 2.2250738585072014 e −308 1.7976931348623157e 308 2.220446049250313e −16 ] (7)

ũ

Keep in mind that perfect accuracy is a mathematical abstraction, not encountered in nature. In fields
such as sociology or psychology 3 digits of accuracy are excellent, in mechanical engineering this might
increase to 6 digits, or in electronic engineering to 8 digits. The most precisely known physical constant is
the Rydberg constant known to 12 digits, hence a mathematical statement such as

x =2.6309283450461248350319486319845

is unlikely to have any real significance, while

x =2.631±0.0005

is much more informative.

Within the reals certain operations are undefined such as 1/0. Special float constants are defined to handle
such situations: Inf is a float meant to represent infinity, and NaN (“not a number”) is meant to represent
an undefinable result of an arithmetic operation.

ũ [1/0 -1.0/0.0 1/Inf -1/Inf Inf/Inf]

[ ∞ −∞ 0.0 −0.0 NaN ] (8)

ũ

Complex numbers z ∈ℂ are specified by two reals, in Cartesian form as z =x + iy , x ,y ∈ℝ or in polar form as
z =ρe iθ , ρ,θ ∈ℝ, ρ 0. The computer type complex is similarly defined from two floats and the additional
constant I is defined to represent −1√ = i = e iπ /2. Functions are available to obtain the real and imaginary
parts within the Cartesian form, or the absolute value and argument of the polar form.

ũ z1=1+1im; z2=1-im; [z1+z2 z1/z2]

[ 2.0+0.0i −0.0+1.0i ] (9)

ũ [real(z1) real(z2) real(z1+z2) real(z1/z2)]

[ 1.0 1.0 2.0 −0.0 ] (10)

ũ [imag(z1) imag(z2) imag(z1+z2) imag(z1/z2)]

[ 1.0 −1.0 0.0 1.0 ] (11)

ũ [abs(z1) abs(z2) abs(z1+z2) abs(z1/z2)]

[ 1.4142135623730951 1.4142135623730951 2.0 1.0 ] (12)

ũ [angle(z1) angle(z2) angle(z1+z2) angle(z1/z2)]

[ 0.7853981633974483 −0.7853981633974483 0.0 1.5707963267948966 ] (13)

ũ
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Figure 2. Hierarchy of number types in the Julia language.

2. Approximation

2.1. Axiom of floating point arithmetic

The reals ℝ form an algebraic structure known as a field (ℝ, +, ⋅). The set of floats together with floating point
addition and multiplication are denoted as ( ,⊕, . ). Operations with floats do not have the same properties as the
reals, but are assumed to have a relative error bounded by machine epsilon

∀x ,y ∈ℝ, ∣fl(x) ∗ fl(y)−x ∗yx ∗y ∣ ϵ, ( ∗ , ∗)∈{(⊕, +), ( . , ⋅)},

where fl(x)∈ is the floating point representation of x ∈ℝ. The above is restated

fl(x) ∗ fl(y)= (x ∗y)(1+ ε), |ε| ϵ,

and accepted as an axiom for use in error analysis involving floating point arithmetic. Computer number sets
are a first example of approximation: replacing some complicated object with a simpler one. It is one of the key
mathematical ideas studied throughout this text.

2.2. Cummulative floating point operations

Care should be exercised about the cummulative effect of many floating point operations. An informative example
is offered by Zeno's paradox of motion, that purports that fleet-footed Achilles could never overcome an initial head
start of D =2 given to the lethargic Tortoise since, as stated by Aristotle:

In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach the
point whence the pursued started, so that the slower must always hold a lead.

The above is oſten formulated by considering that the first half of the initial head start must be overcome, then
another half and so on. The distance traversed aſter N such steps is

DN =1+
1
2 + ⋅ ⋅ ⋅ +

1
2N

= 1− (1/2)N+1

1−(1/2) =2 [1−(1/2)N+1]<2.

Calculus resolves the paradox by rigorous definition of the limit D = limN→∞DN = 2 and definition of velocity as
v(t)= limδt→0(D(t +δt)−D(t))/δt, δt =1/N , D(t)=2[1− (1/2)t /δt].
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Undertake a numerical invesigation and consider two scenarios, with increasing or decreasing step sizes

DN =1+
1
2 + ⋅ ⋅ ⋅ +

1
2N

,CN =
1
2N

+
1

2N−1 + ⋅ ⋅ ⋅ +1.

In (ℝ, +, ⋅) associativity ensures DN =CN .

ũ N=10; D=2.0 .^ (0:-1:-N); C=2.0 .^ (-N:1:0); sum(D)==sum(C)

t ru e

ũ N=20; D=2.0 .^ (0:-1:-N); C=2.0 .^ (-N:1:0); sum(D)==sum(C)

t ru e

ũ

Irrespective of the value for N , DN =CN in floating point arithmetic. Recall however that computers use binary
representations internally, so division by powers of two might have unique features (indeed, it corresponds to a bit
shiſt operation). Try subdividing the head start by a different number, perhaps π to get an “irrational” numerical
investigation of Zeno's paradox of motion. Define now the distance SN traversed by step sizes that are scaled by
1/π starting from one to TN , traversed by step sizes scaled by π starting from π −N

SN =1+
1
π +

1
π 2 + ⋅ ⋅ ⋅ +

1
π N ,TN =

1
π N +

1
π N−1 + ⋅ ⋅ ⋅ +1.

Again, in the reals the above two expressions are equal, SN =TN , but this is no longer verified computationally for
all N , not even within a tolerance of machine epsilon.

ũ fpi=Float64(pi);

ũ N=10; S=fpi .^ (0:-1:-N); T=fpi .^ (-N:1:0); sum(S)==sum(T)

t ru e

ũ N=20; S=fpi .^ (0:-1:-N); T=fpi .^ (-N:1:0); sum(S)==sum(T)

f a l s e

ũ sum(S)-sum(T)<eps(Float64)

f a l s e

ũ

This example gives a first glimpse of the steps that need to be carried out in addition to mathematical analysis to
fully characterize an algorithm. Since SN ≠TN , a natural question is whether one is more accurate than the other.
For some arbitrary ratio a, the exact value is known

EN =
1−(1/a)N+1

1− (1/a) ,

and can be used to evaluate the errors |SN −EN |, |TN −EN |.

ũ function E(N,a)
(1-(1/a)^(N+1))/(1-(1/a))

end;
ũ function εs(N,a)

S=a .^ (0:-1:-N)
abs(sum(S)-E(N,a))

end;
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ũ function εt(N,a)
T=a .^ (-N:1:0)
abs(sum(T)-E(N,a))

end;
ũ

Carrying out the computations leads to results in Fig. 3.

ũ n=30; errs=zeros(Float64,n); errt=zeros(Float64,n);

ũ for i=1:n
errs[i]=εs(N,fpi); errt[i]=εt(N,fpi);

end
ũ clf(); plot(1:n,errs,1:n,errt,marker="o"); title("Summation error"); grid("on"); xlabel("n");

ylabel("εs,εt"); legend(["εs"; "εt"]);
ũ

Figure 3. Summation order errors.

Note that errors are about the size of machine epsilon for SN , but are zero for TN , it seems that the summation
ordering TN =a−N +a−N+1+ ⋅ ⋅ ⋅+1 gives the exact value. A bit of reflection reinforces this interpretation: first adding
small quantities allows for carry over digits to be accounted for.

This example is instructive beyond the immediate adage of “add small quantities first”. It highlights the blend of
empirical and analytical approaches that is prevalent in scientific computing.

3. Successive approximations

3.1. Sequences in ℝ

Single values given by some algorithm are of little value in the practice of scientific computing. The main goal is the
construction of a sequence of approximations {xn}n∈ℕ that enables assessment of the quality of an approximation.
Recall from calculus that {xn}n∈ℕ converges to x if |xn− x | can be made as small as desired for all n beyond some
threshold. In precise mathematical language this is stated through:
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DEFINITION. {xn}n∈ℕ converges to x if ∀ε >0, ∃N(ε) such that |xn−x |< ε for n >N(ε).

Though it might seem natural to require a sequence of approximations to converge to an exact solution x

lim
n→∞

xn=x ,

such a condition is problematic on multiple counts:

1. the exact solution is rarely known;

2. the best approximation might be achieved for some finite range n1 n n2, rather than in the n→∞ limit.

Both situations arise when approximating numbers and serve as useful reference points when considering approx-
imation other types of mathematical objects such as functions. For example, the number π is readily defined in
geometric terms as the ratio of circle circumference to diameter, but can only be approximately expressed by a
rational number, e.g., π ≅22/7. The exact value of π is only obtained as the limit of an infinite number of operations
with rationals. There are many such infinite representations, one of which is the Leibniz series

π
4 =1−

1
3 +

1
5 −

1
7 +

1
9 − . . . . .

No finite term

Ln=∑
k=0

n (−1)k
2k +1

of the above Leibniz series equals π /4, i.e.,

∃n ∈ℕ suchthatLn=π /4.

Rather, the Leibniz series should be understood as an algorithm, i.e., a sequence of elementary operations that leads
to succesively more accurate approximations of π /4

lim
n→∞

Ln=π /4.

Complex analysis provides a convergence proof starting from properties of the arctan function

d
dz arctan(z)=

1
1+ z2

⇒ π
4 =arctan(1)−arctan(0)=∫

0

1 dz
1+ z2

.

For |z |<1 the sequence Sn=∑k=0
n (−z2)k of partial sums of a geometric series converges uniformly

∑
k=0

∞

(−z2)k= lim
n→∞

1−(−z2)n
1− (−z2) = 1

1+ z2
,

and can be integrated term by term to give

π
4 =∫

0

1∑
k=0

∞

(−z2)k dz =∑
k=0

∞ ∫
0

1(−z2)k dz =∑
k=0

∞ (−1)k
2k +1 .
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This elegant result does not address however the points raised above: if π were not known, how could the conver-
gence of the sequence {Ln}n∈ℕ be assessed? A simple numerical experiment indicates that the familiar value of π
is only recovered for large n, with 10000 terms insufficient to ensure five significant digits.

ũ function L(n)
L=1.0; s=-1.0
for k=1:n

L += s/(2*k+1); s = -s
end
return 4*L

end
L
ũ [L(100) L(1000) L(10000) Float64(π)]

[ 3.1514934010709914 3.1425916543395442 3.1416926435905346 3.141592653589793 ] (14)

ũ

3.2. Cauchy sequences

Instead of evaluating distance to an unknown limit, as in |Ln−π |< ε, one could evaluate if terms get closer to one
another as in |Ln−Lm|< ε, a condition that can readily be checked in an algorithm.

DEFINITION. {xn}n∈ℕ is a Cauchy sequence if ∀ε >0, ∃N(ε) such that |xn−xm|< ε for all m,n >N(ε).

Note that the distance between any two terms aſter the threshold N(ε)must be smaller than an arbitrary tolerance
ε. For example the sequence an= n√ is not a Cauchy sequence even though the distance between successive terms
can be made arbitrarily small

an+1−an= n+1√ − n√ =
( n +1√ − n√ )( n +1√ + n√ )

n +1√ + n√ = 1
n+1√ + n√ < 1

2 n√ .

Verification of decreasing successive distance is therefore a necessary but not sufficient condition to assess whether
a sequence is a Cauchy sequence. Furthermore, the distance between successive iterates is not necessarily an
indication of the distance to the limit. Reprising the Leibniz example, successive terms can be further apart than
the distance to the limit, though terms separated by 2 are closer than the distance to the limit (a consequence of
the alternating Leibniz series signs)

ũ n=1000; [log10(abs(L(n)-L(n-1))) log10(abs(L(n)-π))]

[ −2.6991870973082537 −3.000434185835426 ] (15)

ũ [log10(abs(L(n)-L(n-2))) log10(abs(L(n)-π))]

[ −5.698969895788488 −3.000434185835426 ] (16)

ũ
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Another question is whether a Cauchy sequence is itself convergent. For sequences of reals this is true, but the
Leibniz sequence furnishes a counterexample since it contains rationals and converges to an irrational. Such aspects
that arise in number approximation sequences become even more important when considering approximation
sequences composed of vectors or functions.

3.3. Sequences in

Consideration of floating point arithmetic indicates adaptation of the mathematical concept of convergence is
required in scientific computation. Recall that machine epsilon ϵ is that largest number such that 1+ ϵ =1 is true,
and characterizes the granularity of the floating point system. A reasonable adaptation of the notion of conver-
gence might be:

DEFINITION. {xn}n∈ℕ , xn∈ converges to x ∈ if ∀ε> ϵ, ∃N(ε) such that |xn−x |< ε for n >N(ε).

What emerges is the need to consider a degree of uncertainty in an approximating sequence. If the uncertainty can
be bounded to the intrinsic granularity of the number system, a good approximation is obtained.

Summary. The problem of approximating numbers uncovers generic aspects of scientific computing:

• different models of some phenomenon are possible and it is necessary to establish correspondence between
models and of a model to theory;

• scientific computation seeks to establish viable approximation techniques for the mathematical objects that
arise in models;

• correspondence of a model to theory is established through properties of approximation sequences, not
single results of a particular approximation technique;

• physical limitations of computer memory require revisiting of mathematical concepts to characterize approx-
imation sequence behavior, and impart a stochastic aspect to approximation techniques;

• computational experiments are a key aspect, giving an empirical aspect to scientific computing that is not
found in deductive or analytical mathematics.

LECTURE 2: APPROXIMATION TECHNIQUES

1. Rate and order of convergence

The objective of scientific computation is to solve some problem f (x)=0 by constructing a sequence of approxima-
tions {xn}n∈ℕ. The condition suggested by mathematical analysis would be x = limn→∞xn, with f (x)=0. As already
in the Leibniz series approximation of π , acceptable accuracy might only be obtained for large n. Since f could be
an arbitrarily complex mathematical object, such slowly convering approximating sequences are of little practical
interest. Scientific computing seeks approximations of the solution with rapidly decreasing error. This change of
viewpoint with respect to analysis is embodied in the concepts of rate and order of convergence.
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DEFINITION 1. {xn}n∈ℕ converges to x with rate r ∈(0, 1) and order p if

lim
n→∞

|xn+1−x |
|xn−x |p = r . (17)

As previously discussed, the above definition is of limited utility since:

a) The solution x is unknown;

b) The limit n→∞ is impractical to attain.

Sequences converge faster for higher order p, but lower rate r . A more useful approach is to determine estimates
of the rate and order of convergence over some range of iterations that are sufficiently accurate. Rewriting (1) as

lim
n→∞

(|xn+1−x |− r |xn−x |p)=0,

suggests introducing the distance between successive iterates dn= |xn−xn−1|, and considering the condition

|dn+1− sdnq| small for largen .

DEFINITION 2. {xn}n∈ℕ approximates x with rate s and order q if there exist s,q ∈ℝ and n1,n2∈ℕ such that

|dn+1− sdnq|< ϵ, forn1 n n2 (18)

with dn= |xn−xn−1|, n ∈ℕ, ϵ denotes machine epsilon.

As an example, consider the derivative g = f ʹ of f (x)= ex −1 at x0 =0, as given by the calculus definition

g(x0)= f ʹ(x0)= lim
h→0

f (x0+h)− f (x0)
h ,

and construct a sequence of approximations

gn=
fn− f (0)

hn
, fn= f (hn),hn=2−n.

Start with a numerical experiment, and compute the sequence dn= |gn−gn−1|.

n 1 2 . . . N
hn=2−n 1/2 1/4 . . . 1/2N
fn f1 f2 . . . fN
gn=( fn− f (0))/hn g1 =( f1− f (0))/2 g2 =( f2− f (0))/4 . . . gN =( fN − f (0))/2N
dn−1 = |gn−gn−1| − d1 = |g2−g1| . . . dN−1= |gN −gN−1|

Table 1. Table presentation of calculations to construct approximation of derivative sequence for f (x )=tanx , at x0=0.
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ũ N=24; n=1:N; h=2.0.^(-n); f(x) = exp(x)-1; x0=0; f0=f(x0);

ũ g = (f.(h).-f0) ./ h; d=abs.(g[2:N]-g[1:N-1]);

ũ n1=2; n2=8; [h[n1:n2] g[n1:n2] d[n1:n2]]

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[

[

[ 0.25 1.1361016667509656 0.070914042216355
0.125 1.0651876245346106 0.033276281848861444
0.0625 1.0319113426857491 0.0161223027144608
0.03125 1.0157890399712883 0.007935690423401809
0.015625 1.0078533495478865 0.0039369071225365815
0.0078125 1.00391644242535 0.001960771808398931
0.00390625 1.001955670616951 0.0009784720235188615 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]

]

]
(19)

ũ

Investigation of the numerical results indicates increasing accuracy in the estimate of g(x)= (ex −1)ʹ=ex , g(0)=1
with decreasing step size h. The distance between successive approximation sequence terms dn = |gn − gn−1| also
decreases. It is more intuitive to analyze convergence behavior through a plot rather than a numerical table.

ũ clf(); plot(h[2:N],d,"-o"); xlabel("h"); ylabel("d");

ũ cd(homedir()*"//courses//MATH661//images"); savefig("L02Fig01a.eps");

ũ

The intent of the rate and order of approximation definitions is to state that the distance between successive terms
behaves as

dn+1≅ sdn
q,

in the hope that this is a Cauchy sequence, and successively closer terms actually indicate convergence. The con-
vergence parameters (s,q) can be isolated by taking logarithms, cn= logdn leading to a linear dependence

cn+1≅qcn+ log s .

Subtraction of successive terms gives cn− cn−1≅q(cn−1− cn−2), leading to an average slope estimate

q ≅ 1
N −3∑

n=3

N−1
cn− cn−1
cn−1− cn−2

ũ c=log.(2,d); lh=log.(2,h[2:N]); clf(); plot(lh,c,"-o"); plot([-10,-20],[-10,-20],"k");
plot([-10,-20],[-10,-30],"g");

ũ xlabel("log(h)"); ylabel("log(d)"); savefig("L02Fig01b.eps");

ũ num=c[3:N-1]-c[2:N-2]; den=c[2:N-2]-c[1:N-3];

ũ q = sum(num ./ den)/(N-3)

0.9920966582673338

ũ
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The above computations indicate q ≅ 1, known as linear convergence. Figure 4b shows the common practice of
depicting guide lines of slope 1 (black) and slope 2 (green) to visually ascertain the rate of convergence. Once the
order of approximation q is determined, the rate of aproximation is estimated from

log s ≅ 1
N −2∑

n=2

N−1

(cn−qcn−1).

ũ s=exp(sum(c[2:N-1]-q*c[1:N-2])/(N-2))

0.3252477724180383

ũ

The above results suggest successive approximants become closer spaced according to

dn≅0.124dn−1

Figure 4. (a, leſt). Convergence plot; (b,right) Convergence plot in logarithmic coordinates.

Repeat the above experiment at x0= ln 2, where g(ln2)=2, and using a different approximation of the derivative

gn=
f (ln2+hn)− f (ln2−hn)

2hn
.

For this experiment, in addition to the rate and order of approximation (s,q), also determine the rate and order of
convergence (r ,p) using

bn= |gn−g(π /4)|,bn+1≅ rbnp,an= logbn,an+1=pan+ log r .

ũ N=32; n=1:N; h=2.0.^(-n); f(x) = exp(x)-1; x0=log(2); f0=f(x0); g0=exp(x0);

ũ g = (f.(x0 .+ h).-f.(x0 .- h)) ./ (2*h); d=abs.(g[2:N]-g[1:N-1]);

ũ c=log.(2,d); lh=log.(2,h[2:N]); b=abs.(g[2:N].-g0); a=log.(2,b);

ũ plot(lh,c,"-o"); plot(lh,a,"-x"); plot([-10,-20],[-10,-20],"k");
plot([-10,-20],[-10,-30],"g");

ũ xlabel("log(h)"); ylabel("c, a"); grid("on");
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ũ savefig("L02Fig02.eps");

ũ

Figure 5. Typical convergence behavior for approximants of a derivative. Blue line shows first-order or linear convergence of approxi-
mation f ʹ(x0)≅(f (x0+h)− f (x0))/h for f (x )=ex −1 at x0=0. The convergence curve is monotone, with decreasing error for all sample
points due to fortuitous f (x0)=0. Green and orange lines indicate that the orders of convergence and approximation are quadratic for
f ʹ(x0)≅ (f (x0 +h)− f (x0−h))/(2h) for f (x )= ex −1 at x0= log 2. Now, f (x0)≠0, and small differences in the numerator are no longer
resolved by the floating point system leading to an increase in the error for log(h)<−20. The numerical experiment indicates that order
of approximation can be used interchangeably with order of convergence, i.e., closer spacing of successive approximations is oſten an
indication of convergence.

2. Convergence acceleration

Given some approximation sequence {xn}n∈ℕ, xn→x , with x solution of problem f (x)=0, it is of interest to con-
struct a more rapidly convergent sequence {yn}n∈ℕ, yn→x . Knowledge of the order of convergence p can be used
to achieve this purpose by writing

xn−x ≅ r(xn−1−x)p,xn−1−x ≅ r(xn−2−x)p, (20)

and taking the ratio to obtain

xn−x
xn−1−x

=(xn−1−xxn−2−x
)p
. (21)

For p ∈ℕ, the above is a polynomial equation of degree p that can be solved to obtain x . Since (20) is an approxi-
mation, solving (21) gives an approximation of the exact limit.

2.1. Aitken acceleration

One of the widely used acceleration techniques was published by Aitken (1926, but had been in use since Medieval
times) for p=1 in which case (21) gives

xnxn−2−(xn+xn−2)x =xn−12 −2xn−1x⇒ x = xnxn−2−xn−12

xn−2xn−1+xn−2
.
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The above suggests that starting from {xn}n∈ℕ, the sequence {an}n∈ℕ with

an=
xnxn−2−xn−12

xn−2xn−1 +xn−2
=xn−

(xn−xn−1)2
xn−2xn−1 +xn−2

,

might converge faster towards the limit. Investigate by revisiting the numerical experiment on approximation of
the derivative g = f ʹ of f (x)= ex −1 at x0 =0, using

gn=
fn− f (0)

hn
, fn= f (hn),hn=2−n.

ũ N=24; n=1:N; h=2.0.^(-n); f(x) = exp(x)-1; x0=0; f0=f(x0);

ũ g = (f.(h).-f0) ./ h; a = copy(g);

ũ a[3:N] = g[3:N] - (g[3:N]-g[2:N-1]).^2 ./ (g[3:N]-2*g[2:N-1]+g[1:N-2]);

ũ lh=log.(2,h); d=log.(2,abs.(g.-1)); b=log.(2,abs.(a.-1));

ũ clf(); plot(lh,d,"-o"); plot(lh,b,"-x"); plot([-10,-20],[-10,-20],"k");
plot([-10,-20],[-10,-30],"g"); xlabel("log(h)"); ylabel("g, a"); grid("on");
savefig("L02Fig03.eps");

ũ

Figure 6. Aitken acceleration of linearly convergent sequence (blue dots) yields a close-to-quadratic convergent sequence (orange x).

3. Approximation correction types

Several approaches may be used in construction of an approximating sequence {xn}n∈ℕ. The approaches exempli-
fied below for xn∈ℝ, can be generalized when xn is some other type of mathematical object.

3.1. Additive corrections

Returning to the Leibniz series

π
4 =1−

1
3 +

1
5 −

1
7 +

1
9 − . . . .,
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the sequence of approximations is {Ln}n∈ℕ with general term

Ln=∑
k=0

n (−1)k
2k +1 .

Note that successive terms are obtained by an additive correction

Ln=Ln−1+
(−1)n
2n +1,Ln→

π
4 .

Another example, again giving an approximation of π is the Srinivasa Ramanujan series

Rn=
2 2√
9801 ∑

k=0

n (4k)! (1103+26390k)
(k !)4 3964k , lim

n→∞
Rn=

1
π ,

that can be used to obtain many digits of accuracy with just a few terms.

An example of the generalization of this approach is the Taylor series of a function. For example, the familiar sine
power series

sinx =x − x
3

3! +
x 5

5! − . . . ,

is analogous, but with rationals now replaced by monomials, and the limit is now a function sin:ℝ→ [−1, 1]. The
general term is

Tn(x)=∑
k=0

n (−1)k x 2k+1

(2k +1)! ,

and the same type of additive correction appears, this time for functions,

Tn(x)=Tn−1(x)+ (−1)n x 2n+1

(2n+1)! ,Tn(x)→sinx .

3.2. Multiplicative corrections

Approximating sequences need not be constructed by adding a correction. Consider the approximation of π /2
given by Wallis's product (1656)

Sn=(21 ⋅ 23) ⋅(43 ⋅ 45) ⋅(65 ⋅ 67) . . . ,Sn=∏
k=1

n
4k2

4k2−1
,Sn→

π
2 ,

for which

Sn=Sn−1 ⋅(((((( 4n2

4n2−1)))))).
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Another famous example is the Viète formula from 1593

2
π =

2√
2 ⋅

2+ 2√√
2 ⋅

2+ 2+ 2√√√
2 ⋅ . . . ,Vn=∏

k=1

n N
j=1

k
22√

2

in which the correction is multiplicative with numerators given by nested radicals. Similar to the ∑ symbol for
addition, and the ∏ symbol for multiplication, the N symbol is used to denote nested radicals

N
j=1

k
ajb√ = a1+ a2 + a3 + ⋅ ⋅ ⋅ + akbk√b3√b2√b1√ .

In the case of the Viète formula, aj =2, bj =2 for all j .

3.3. Continued fractions

Yet another alternative is that of continued fractions, with one possible approximation of π given by

π +3=6+ 12

6+ 32

6+
52

6+ ⋅⋅ ⋅

(22)

A notation is introduced for continued fractions using the K symbol

Fn=b0+ K
k=1

n ak
bk

=b0+
a1

b1+
a2

b2+
a3

b3+ ⋅⋅ ⋅

.

Using this notation, the sequences arising in the continued fraction representation of π are {an}n∈ℕ, {bn}n∈ℕ chosen
as ak= (2k −1)2 for k ∈ℕ+, and bk=6 for k ∈ℕ.

π = lim
n→∞((((((6+ K

k=1

n (2k −1)2
6 )))))) .

3.4. Composite corrections

The above correction techniques used arithmetic operations. The repeated radical coefficients in the Viète formula
suggest consideration of repeated composition of arbitrary functions t0, t1, . . . , tn to construct the approximant

Tn= t0 ∘ t1 ∘ . . . ∘ tn=⨀
k=0

n

tk .

This is now a general framework, in which all of the preceeding correction approaches can be expressed. For
example, the continued fraction formula (22) is recovered through the functions

t0(z)=6+z, t1(z)= 1
6+ z , . . . , tk(z)=

(2k −1)2
6+ z ,
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and evaluation of the composite function at z =0

Fn=Tn(0).

This general framework is of significant current interest since such composition of nonlinear functions is the basis
of deep neural network approximations.

Summary.

• The cornerstone of scientific computing is construction of approximating sequences.

• The problem of number approximation leads to definition of concepts and techniques that can be extended
to more complex mathematical objects.

• A primary objective is the construction of efficient approximating sequences, with efficiency characterized
through concepts such as order and speed of convergence.

• Though oſten enforced analytically, limiting behavior of the sequence is of secondary interest. As seen in
the approximation of a derivative, the approximating sequence might diverge, yet give satisfactory answers
for some range of indices.

• Though by far the most widely studied and used approach to approximation, additive corrections are not
the only possibility.

• Alternative correction techniques include: multiplication, continued fractions, or repeated function compo-
sition.

• Repeated composition of functions is used in constructing deep neural network approximants.

LECTURE 3: PROBLEMS AND ALGORITHMS

1. Mathematical problems

1.1. Formalism for defining a mathematical problem

In general, mathematical problems can be thought of as mappings from some set of inputs X to some set of outputs
Y . The mapping is oſten carried out through a function f , i.e., a procedure that associates a single y ∈Y to some
input x ∈X

f :X→Y ,y = f (x),x→f y

Examples:
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∘ Compute the square of a real:

X =ℝ,Y =ℝ,y = f (x)=x 2 .

∘ Find x solution of ax +b = c for given a,b,c ∈ℝ, a≠0. The inputs to this problem are a,b,c and the output is the
solution (c −b)/a

X =ℝ\{0}×ℝ×ℝ,Y =ℝ, f (a,b,c)=(c −b)/a.

∘ Compute the innner product of two vectors u ,v ∈ℝn:

X =ℝn×ℝn,Y =ℝ,y = f (u ,v )=∑
i=1

n

ui vi

with ui, vi the components of u , v . Note that the input set is the Cartesian product of sets of vectors and the
output set is the reals. Such functions defined from sets of vectors (more accurately vector spaces) to reals
(more accurately scalars) are called functionals.

∘ Compute the definite integral

(u,v)=∫
a

b
u(x) v(x)dx ,

with f ,g arbitrary continuous functions, denoted by f ,g ∈C(0)([a,b]):

X =C(0)([a,b])×C(0)([a,b]),Y =ℝ.

Again, this an example of a functional.

∘ Compute the derivative of a function g ∈C(1)(ℝ), withC(k)(ℝ) the space of functions defined onℝ differentiable
k times: X =C(1)(ℝ), Y =C(0)(ℝ), f =d/dx . Note that in this case X ,Y are sets of functions, in which case f is
referred to as an operator .

∘ Find the roots of a polynomial pn(x)=anx n+ .. . +a1x +a0. The input is the polynomial specified by the vector of
coefficients a ∈ℝn+1. The output is another vector x ∈ℝn whose components are roots, pn(xi)=0

X =ℝn+1,Y =ℝn.

The function f :X→Y cannot be written explicitly (corollary of Abel-Ruffini theorem), but there are approxi-
mations f̃ of the root-finding function that can be implemented such f̃ ≅ f .

Note that the specification of a mathematical problem requires definition of the triplet (X ,Y , f ).

Once a problem is specified, the natural question is to ascertain whether a solution is possible. Generally, simple
affirmation of the existence of a solution is the objective of some field of mathematics (e.g., analysis, functional
analysis). From the point of view of science, an essential question is not only existence but also:

1. how does the output y = f (x) change if x changes?
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2. what are the constructive methods to approximate y?

1.2. Vector space

The above general definition of a mathematical problem must be refined in order to assess magnitude of changes
in inputs or outputs. A first step is to introduce some structure in the input and output sets X ,Y . Using these sets,
vector spaces 𝒱 =(V ,S,+, ⋅) are constructed, consisting of a set of vectors V , a set of scalars S, an addition operation
+, and a scaling operation ⋅ . The vector space is oſten referred to simply by its set of vectors V , when the set of
scalars, addition operation, and scaling operation are self-evident in context.

Formally,a vector space 𝒱 is defined by a set V whose
elements satisfy certain scaling and addition proper-
ties, denoted all together by the 4-tuple 𝒱 = (V , S , +,
⋅). The first element of the 4-tuple is a set whose ele-
ments are called vectors. The second element is a set of
scalars, and the third is the vector addition operation.
The last is the scaling operation, seen as multiplication
of a vector by a scalar. The vector addition and scaling
operations must satisfy rules suggested by positions or
forces in three-dimensional space, which are listed in
Table 1.1. In particular, a vector space requires defi-
nition of two distinguished elements: the zero vector
0∈V , and the identity scalar element 1∈S.

Addition rules for ∀a ,b , c ∈V
a +b ∈V Closure
a + (b + c)= (a +b)+ c Associativity
a +b =b +a Commutativity
0+ a =a Zero vector
a + (−a)=0 Additive inverse
Scaling rules for ∀a ,b ∈V , ∀x ,y ∈S
xa ∈V Closure
x(a +b)=xa +xb Distributivity
(x +y)a =xa +ya Distributivity
x(ya)=(xy)a Composition
1a = a Scalar identity

Table 2. Vector space 𝒱 =(V ,S ,+, ⋅) properties for arbitrary a ,b ,c ∈V

1.3. Norm

A first step is quantification of the changes in input or output, assumed to have the structure of a vector space,𝒳 = (X ,ℝ, +, ⋅),𝒴 = (Y ,ℝ, +, ⋅).

DEFINITION 3. A norm on vector space 𝒳 is a function ‖ ‖:X→ℝ+, that for any x ,y , z ∈X, α ∈ℝ satisfies the properties:

1. ‖x‖=0 if and only if x=0.

2. ‖ax‖= |a| ‖x‖

3. ‖x +y ‖ ‖x‖+ ‖y ‖

1.4. Condition number

The ratio of changes in output to changes in input is the absolute condition number of a problem.

DEFINITION 4. The problem f :X→Y has absolute condition number

κ̂ = lim
ε→0

sup
‖δx ‖ ε

‖ f (x +δx)− f (x)‖
‖δx‖
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To avoid influence of choice of reference unit, the relative condition number is also introduced.

DEFINITION 5. The problem f :X→Y has relative condition number

κ̂ = lim
ε→0

sup
‖δx ‖ ε

‖ f (x +δx)− f (x)‖
‖ f (x)‖ ⋅

‖x‖
‖δx‖ .

2. Solution algorithm

2.1. Accuracy

In scientific computation, the mathematical problem f :X→Y is approximated by an algorithm f̃ : X̃→ Ỹ , in which
is assumed to be computable, and X̃ , Ỹ are vector spaces that approximate X ,Y . As a first step in characterizing
how well the algorithm f̃ approximates the problem f , consider that X̃ =X and Ỹ =Y , i.e., there is no error in
representation of the domain and codomain.

DEFINITION 6. The absolute error of algorithm f̃ :X→Y that approximates the problem f :X→Y is

e = ‖ f̃ (x)− f (x)‖ .

DEFINITION 7. The relative error of algorithm f̃ :X→Y that approximates the problem f :X→Y is

ε= ‖ f̃ (x)− f (x)‖
‖ f (x)‖ .

DEFINITION 8. An algorithm f̃ :X→Y is accurate if there exists finite M∈ℝ+ such that

ε= ‖ f̃ (x)− f (x)‖
‖ f (x)‖ Mϵmach

The above condition is also denoted as ε=𝒪(ϵmach)

2.2. Stability

Algorithms should not catastrophically increase input errors. This is quantified in the concept of stability.

DEFINITION 9. An algorithm f̃ :X→Y is forward stable if

‖x̃ −x‖/‖x‖=𝒪(ϵmach)⇒ ‖ f̃ (x)− f (x̃)‖/‖ f (x̃)‖=𝒪(ϵmach)

The above states that the relative error in the output should be on the order of machine epsilon if the relative in
the input is of order machine epsilon. Note that the constants in the order statements M,N are usually different
from one another, ‖x̃ −x‖/‖x‖ Mϵmach, ‖ f̃ (x)− f (x̃)‖/‖ f (x̃)‖ Nϵmach.
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DEFINITION 10. An algorithm f̃ :X→Y is backward stable if from existence of some x̃ such that f̃ (x)= f (x̃), it results
that

‖x̃ −x‖/‖x‖=𝒪(ϵmach).

Backward stability asserts that the result of the algorithm on exact input data is the same as the solution to the
mathematical problem for nearby data (with distance on order of machine epsilon).

Summary.

• Mathematical problems are stated as functions from a set of inputs X to a set of outputs Y , f :X→Y

• The difficulty of a mathematical problem is assessed by measuring the effect of changes in input

• To quantify changes in inputs and outputs, the framework of a normed vector space is introduced

• The ratio of norm of output change to norm of input change is the absolute condition number of a problem

κ̂ = lim
ε→0

sup
‖δx ‖ ε

‖ f (x +δx)− f (x)‖
‖δx‖

• Algorithms are constructive approximations of mathemtical problems f̃ :X→Y . The accuracy of an algo-
rithm is assessed by comparison of the algorithm output to that of the mathematical problem through
absolute error e and relative error ε

e = ‖ f̃ (x)− f (x)‖, ε= ‖ f̃ (x)− f (x)‖
‖ f (x)‖

• The tendency of an algorithm to amplify pertubations of input is assessed by the concept of stability

• Algorithms that do not amplify relative changes in input of the size of machine precision are forward stable.

• Algorithms that compute the exact result of a mathematical problem for changes in put of the size of
machine precision are backward stable.
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Linear Approximation









CHAPTER 1
LINEAR ALGEBRA

LECTURE 4: LINEAR COMBINATIONS

1. Finite-dimensional vector spaces

1.1. Overview

The definition from Table 1 of a vector space reflects
everyday experience with vectors in Euclidean geom-
etry, and it is common to refer to such vectors by
descriptions in a Cartesian coordinate system. For
example, a position vector r within the plane can be
referred through the pair of coordinates (x , y). This
intuitive understanding can be made precise through
the definition of a vector space ℛ2 = (ℝ2,ℝ, +, ⋅), called
the real 2-space. Vectors withinℛ2 are elements ofℝ2=
ℝ×ℝ= {(x ,y)| x ,y ∈ℝ}, meaning that a vector is spec-
ified through two real numbers, r↔(x ,y). Addition of
two vectors, q↔(s, t), r↔(x ,y) is defined by addition
of coordinates q + r =(s +x , t +v). Scaling r↔(x ,y) by
scalar a is defined by ar↔(ax ,ay). Similarly, consid-
eration of position vectors in three-dimensional space
leads to the definition of the ℛ3 = (ℝ3,ℝ, +, ⋅), or more

generally a real m-space ℛm=(ℝm,ℝ, +, ⋅), m∈ℕ, m >0.

Addition rules for ∀a ,b , c ∈V
a +b ∈V Closure
a + (b + c)= (a +b)+ c Associativity
a +b =b +a Commutativity
0+ a =a Zero vector
a + (−a)=0 Additive inverse
Scaling rules for ∀a ,b ∈V , ∀x ,y ∈S
xa ∈V Closure
x(a +b)=xa +xb Distributivity
(x +y)a =xa +ya Distributivity
x(ya)=(xy)a Composition
1a = a Scalar identity

Table 1.1. Vector space 𝒱 = (V , S , +, ⋅) properties for arbitrary a , b ,
c ∈V

Note however that there is no mention of coordinates in the definition of a vector space as can be seen from the
list of properties in Table 1. The intent of such a definition is to highlight that besides position vectors, many
other mathematical objects follow the same rules. As an example, consider the set of all continuous functions
C(ℝ)= { f | f :ℝ→ℝ }, with function addition defined by the sum at each argument t, ( f +g)(t)= f (t)+g(t), and
scaling by a∈ℝ defined as (af )(t)=af (t). Read this as: “given two continuous functions f and g , the function f +g
is defined by stating that its value for argument x is the sum of the two real numbers f (t) and g(t)”. Similarly:
“given a continuous function f , the function af is defined by stating that its value for argument t is the product of
the real numbers a and f (t)”. Under such definitions 𝒞 0= (C(ℝ),ℝ, +, ⋅) is a vector space, but quite different from
ℛm. Nonetheless, the fact that both 𝒞 0 andℛm are vector spaces can be used to obtain insight into the behavior of
continuous functions from Euclidean vectors, and vice versa. This correspondence principle between discrete and
continuous formulations is a recurring theme in scientific computation.

1.2. Real vector spaceℛℛℛℛℛℛℛℛℛm

Column vectors. Since the real spacesℛm=(ℝm,ℝ, +, ⋅) play such an important role in themselves and as a guide
to other vector spaces, familiarity with vector operations inℛm is necessary to fully appreciate the utility of linear
algebra to a wide range of applications. Following the usage in geometry and physics, the m real numbers that
specify a vector u ∈ℝm are called the components of u . The one-to-one correspondence between a vector and its
components u ↔(u1, . . . ,um), is by convention taken to define an equality relationship,

u =[[[[[[[[[[[[[[[[[[
u1
⋅⋅⋅
um ]]]]]]]]]]]]]]]]]], (1.1)
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with the components arranged vertically and enclosed in square brackets. Given two vectors u ,v ∈ℝm, and a scalar
a∈ℝ, vector addition and scaling are defined in ℛm by real number addition and multiplication of components

∘ u +v =[[[[[[[[[[[[[[[[[[
u1
⋅⋅⋅
um ]]]]]]]]]]]]]]]]]]+[[[[[[[[[[[[[[[[[[

v1
⋅⋅⋅
vm ]]]]]]]]]]]]]]]]]]=[[[[[[[[[[[[[[[[[[

u1+ v1
⋅⋅⋅
um+ vm ]]]]]]]]]]]]]]]]]],au =a[[[[[[[[[[[[[[[[[[

u1
⋅⋅⋅
um ]]]]]]]]]]]]]]]]]]=[[[[[[[[[[[[[[[[[[

au1
⋅⋅⋅
aum ]]]]]]]]]]]]]]]]]]. (1.2)

The vector space ℛm is defined using the real numbers as the set of scalars, and constructing vectors by grouping
togetherm scalars, but this approach can be extended to any set of scalars S, leading to the definition of the vector
spaces 𝒮n= (Sn,S, +, ⋅). These will oſten be referred to as n-vector space of scalars, signifying that the set of vectors
is V =Sn.

To aid in visual recognition of vectors, the following notation conventions are introduced:

• vectors are denoted by lower-case bold Latin letters: u ,v ;

• scalars are denoted by normal face Latin or Greek letters: a,b,α ,β ;

• the components of a vector are denoted by the corresponding normal face with subscripts as in equation
(1.1);

• related sets of vectors are denoted by indexed bold Latin letters: u1,u2, . . . ,un.

Row vectors. Instead of the vertical placement or components into one column, the components of could have
been placed horizontally in one row [ u1 . . . um ], that contains the same data, differently organized. By conven-
tion vertical placement of vector components is the preferred organization, and u shall denote a column vector
henceforth. A transpose operation denoted by a T superscript is introduced to relate the two representations

∘ uT = [ u1 . . . um ],

and uT is the notation used to denote a row vector .

∘ In Julia, horizontal placement of successive components in a row is denoted by a space.

Compatible vectors. Addition of real vectors u ,v ∈ℝm defines another vector w =u +v ∈ℝm. The components of
w are the sums of the corresponding components of u and v , wi =ui +vi, for i =1, 2, . . . ,m. Addition of vectors with
different number of components is not defined, and attempting to add such vectors produces an error. Such vectors
with different number of components are called incompatible, while vectors with the same number of components
are said to be compatible. Scaling of u by a defines a vector z =au , whose components are zi =aui, for i=1,2,. . . ,m.

1.3. Working with vectors

Ranges. The vectors used in applications usually have a large number of components, m≫1, and it is important
to become proficient in their manipulation. Previous examples defined vectors by explicit listing of their m com-
ponents. This is impractical for large m, and support is provided for automated generation for oſten-encountered
situations. First, observe that Table 1 mentions one distinguished vector, the zero element that is a member of any
vector space 0∈V . The zero vector of a real vector space ℛm is a column vector with m components, all of which
are zero, and a mathematical convention for specifying this vector is 0T = [ 0 0 . . . 0 ]∈ℝm. This notation specifies
that transpose of the zero vector is the row vector with m zero components, also written through explicit indexing
of each component as 0i =0, for i =1, . . . ,m. Keep in mind that the zero vector 0 and the zero scalar 0 are different
mathematical objects.

The ellipsis symbol in the mathematical notation is transcribed in Julia by the notion of a range, with 1:m denoting
all the integers starting from 1 to m, organized as a row vector. The notation is extended to allow for strides
different from one, and the mathematical ellipsis i =m,m − 1, . . . , 1 is denoted as m:-1:1. In general r:s:t denotes
the set of numbers {r , r + s, . . . , r +ns} with r +ns t, and r , s, t real numbers and n a natural number, r , s, t ∈ℝ, n ∈ℕ.
If there is no natural number n such that r +ns t, an empty vector with no components is returned.
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2. Linear combinations

2.1. Linear combination as a matrix-vector product

The expression x =x1e1+x2e2+ ⋅ ⋅⋅+xmem expresses the idea of scaling vectors within a set and subsequent addition
to form a new vector x . The matrix I = [ e1 e2 . . . em ] groups these vectors together in a single entity, and the
scaling factors are the components of the vector x . To bring all these concepts together it is natural to consider the
notation

∘ x = Ix ,

as a generalization of the scalar expression x =1 ⋅x . It is clear what the operation Ix should signify: it should capture
the vector scaling and subsequent vector addition x1e1+x2e2 + ⋅ ⋅ ⋅ +xm em. A specific meaning is now ascribed to Ix
by identifying two definitions to one another.

Linear combination. Repeateadly stating “vector scaling and subsequent vector addition” is unwieldy, so a spe-
cial term is introduced for some given set of vectors {a1, . . . ,an}.

DEFINITION. (LINEAR COMBINATION) . The linear combination of vectors a1,a2, . . . ,an∈V with scalars x1,x2, . . . ,xn∈S in
vector space (V ,S, +, ⋅) is the vector b =x1a1 +x2a2+ . . .xnan .

Matrix-vector product. Similar to the grouping of unit vectors e1,...,em into the identity matrix I , a more concise
way of referring to arbitrary vectors a1, . . . , an from the same vector space is the matrix A = [ a1 a2 . . . an ]. Com-
bining these observations leads to the definition of a matrix-vector product.

DEFINITION. (MATRIX-VECTOR PRODUCT) . In the vector space (V , S, +, ⋅), the product of matrix A = [ a1 a2 . . . an ]
composed of columns a1,a2, . . . , an∈V with the vector x ∈Sn whose components are scalars x1,x2, . . . ,xn∈S is the linear
combination b =x1a1+x2a2+ . . .xnan=Ax ∈V .

2.2. Linear algebra problem examples

Linear combinations in E2. Consider a simple example that leads to a common linear algebra problem: decom-
position of forces in the plane along two directions. Suppose a force is given in terms of components along the
Cartesian x ,y -axes, b =bxex +byey , as expressed by the matrix-vector multiplication b = Ib . Note that the same force
could be obtained by linear combination of other vectors, for instance the normal and tangential components of the
force applied on an inclined plane with angle θ , b =xtet +xnen, as in Figure 1.1. This defines an alternate reference
system for the problem. The unit vectors along these directions are

• t =[[[[[[ cosθsinθ ]]]]]],n =[[[[[[ −sinθcosθ ]]]]]],
ũ θ=π/6.; c=cos(θ); s=sin(θ); t=[c; s]; n=[-s; c];

ũ

and can be combined into a matrix A = [ t n ]. The value of the components (xt ,xn) are the scaling factors and can
be combined into a vector x = [ xt xn ]T . The same force must result irrespective of whether its components are
given along the Cartesian axes or the inclined plane directions leading to the equality

• Ib =b =Ax . (1.9)
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ũ b=[0.2; 0.4]; I*b

[[[[[[ 0.20.4 ]]]]]] (1.10)

ũ

Interpret equation (1.9) to state that the vector b could be obtained either as a linear combination of I , b = Ib , or as
a linear combination of the columns of A, b =Ax . Of course the simpler description seems to be Ib for which the
components are already known. But this is only due to an arbitrary choice made by a human observer to define the
force in terms of horizontal and vertical components. The problem itself suggests that the tangential and normal
components are more relevant; for instance a friction force would be evaluated as a scaling of the normal force.

∘ The components of b in this more natural reference
system are not known, but can be determined by solving
the vector equality Ax = Ib =b , known as a linear system
of equations, implemented in many programming envi-
ronments (Julia, Matlab, Octave) through the backslash
operator x=A\b.

Figure 1.1. Alternative decompositions of force on inclined plane.

Linear combinations in ℛℛℛℛℛℛℛℛℛm and 𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 0[0, 2π). Linear combinations in a real space can suggest properties or
approximations of more complex objects such as continuous functions. Let 𝒞 0[0, 2π) = (C[0, 2π),ℝ, +, ⋅) denote
the vector space of continuous functions that are periodic on the interval [0, 2π), C[0,π) = { f | f :ℝ→ℝ, f (t) =
f (t + 2π)}. Recall that vector addition is defined by ( f + g)(t) = f (t) + g(t), and scaling by (af )(t) = af (t), for
f , g ∈C[0, 2π), a ∈ℝ. Familiar functions within this vector space are sin(kt), cos(kt) with k ∈ℕ, and these can
be recognized to intrinsically represent periodicity on [0,2π), a role analogous to the normal and tangential direc-
tions in the inclined plane example. Define now another periodic function b(t +2π)=b(t) by repeating the values
b(t)= t(π − t)(2π − t) from the interval [0, 2π) on all intervals [2pπ , 2(p + 1)π ], for p ∈ℤ. The function b is not
given in terms of the “naturally” periodic functions sin(kt), cos(kt), but could it thus be expressed? This can
be stated as seeking a linear combination b(t)=∑k=1

∞ xk sin(kt), as studied in Fourier analysis. The coefficients
xk could be determined from an analytical formula involving calculus operations xk =

1
π∫02π b(t) sin(kt) dt, but

we'll seek an approximation using a linear combination of n terms

b(t)≅∑
k=1

n

xk sin(kt),A(t)= [ sin(t) sin(2t) . . . sin(nt) ],A:ℝ→ℝn.

Organize this as a matrix vector product b(t)≅A(t)x , with

A(t)= [ sin (t) sin (2t) . . . sin(nt) ],x = [ x1 x2 . . . xn ]T ∈ℝn.

The idea is to sample the column vectors of A(t) at the components of the vector t = [ t1 t2 . . . tm ]T ∈ℝm, tj =
(j − 1)h, j = 1, 2, . . . ,m, h = π /m. Let b = b(t), and A =A(t), denote the so-sampled b,A functions leading to the
definition of a vector b ∈ℝm and a matrix A ∈ℝm×n. There are n coefficients available to scale the column vectors of
A, and b has m components. For m >n it is generally not possible to find x such that Ax would exactly equal b , but
as seen later the condition to be as close as possible to b leads to a well defined solution procedure. This is known
as a least squares problem and is automatically applied in the x=A\b instruction when the matrix A is not square.
As seen in the following numerical experiment and Figure 1.2, the approximation is excellent and the information
conveyed by m =1000 samples of b(t) is now much more efficiently stored in the form chosen for the columns of
A and the n=5 scaling coefficients that are the components of x .
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∘

Figure 1.2. Comparison of least squares approximation (red line) with samples (black dots) of exact function b(t)= t(π − t)(2π − t)

Summary.

• A widely used framework for constructing additive approximations is the vector space algebraic space struc-
ture in which scaling and addition operations are defined

• In a vector space linear combinations are used to construct more complicated objects from simpler ones

b =Ax =x1 a1+ ⋅ ⋅ ⋅ +xnan

LECTURE 5: LINEAR FUNCTIONALS AND MAPPINGS

1. Functions
1.1. Relations
A general procedure to relate input values from set X to output values from set Y is to first construct the set of all
possible instances of x ∈X and y ∈Y , which is the Cartesian product of X with Y , denoted as X ×Y = {(x ,y)| x ∈X ,
y ∈Y }. Usually only some associations of inputs to outputs are of interest leading to the following definition.

DEFINITION. (RELATION) . A relation R between two sets X ,Y is a subset of the Cartesian product X ×Y, R⊂−X ×Y.

Associating an output to an input is also useful, leading to the definition of an inverse relation as R−1 ⊂−Y × X ,
R−1 = {(y , x) | (x ,y) ∈R}. Note that an inverse exists for any relation, and the inverse of an inverse is the original
relation, (R−1)−1=R.
Homogeneous relations. Many types of relations are defined in mathematics and encountered in linear algebra.
A commonly encountered type of relationship is from a set onto itself, known as a homogeneous relation. For
homogeneous relations H⊂−A×A, it is common to replace the set membership notation (a,b)∈H to state that a∈A

is in relationship H with b∈A, with a binary operator notation a∼∼∼
H
b. Familiar examples include the equality and less

than relationships between reals, E ,L⊂−ℝ×ℝ, in which (a,b)∈E is replaced by a=b, and (a,b)∈L is replaced by a<b.
The equality relationship is its own inverse, and the inverse of the less than relationship is the greater than relation
G ⊂−ℝ×ℝ, G =L−1, a<b⇒b >a. Homogeneous relations H ⊂−A ×A are classified according to the following criteria.

Reflection. Relation H is reflexive if (a,a)∈H for any a∈A. The equality relation E ⊂−ℝ×ℝ is reflexive, ∀a∈A,
a=a, the less than relation L⊂−ℝ×ℝ is not, 1∈R, 1≮1.

Symmetry. Relation H is symmetric if (a, b) ∈H implies that (b, a) ∈H, (a, b) ∈H⇒ (b, a) ∈H. The equality
relation E ⊂−ℝ×ℝ is symmetric, a=b⇒b =a, the less than relation L⊂−ℝ×ℝ is not, a<b⇏b <a.
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Anti-symmetry. Relation H is anti-symmetric if (a, b) ∈H for a ≠ b, then (b, a) ∉H. The less than relation
L⊂−ℝ×ℝ is antisymmetric, a<b⇒b ≮a.

Transitivity. Relation H is transitive if (a,b)∈H and (b, c)∈H implies (a, c)∈H. for any a∈A. The equality
relation E ⊂−ℝ×ℝ is transitive, a=b ∧b = c⇒a= c , as is the less than relation L⊂−ℝ×ℝ, a<b ∧b < c⇒a< c .

Certain combinations of properties oſten arise. A homogeneous relation that is reflexive, symmetric, and transitive
is said to be an equivalence relation. Equivalence relations include equality among the reals, or congruence among
triangles. A homogeneous relation that is reflexive, anti-symmetric and transitive is a partial order relation, such as
the less than or equal relation between reals. Finally, a homogeneous relation that is anti-symmetric and transitive
is an order relation, such as the less than relation between reals.

1.2. Functions
Functions between sets X and Y are a specific type of relationship that oſten arise in science. For a given input
x ∈X , theories that predict a single possible output y ∈Y are of particular scientific interest.

DEFINITION. (FUNCTION) . A function from set X to set Y is a relation F ⊂−X ×Y, that associates to x ∈X a single y ∈Y.

The above intuitive definition can be transcribed in precise mathematical terms as F ⊂−X ×Y is a function if (x ,y)∈F
and (x ,z)∈F implies y = z. Since it's a particular kind of relation, a function is a triplet of sets (X ,Y ,F), but with a
special, common notation to denote the triplet by f :X→Y , with F = {(x , f (x))|x ∈X , f (x)∈Y } and the property
that (x ,y)∈F⇒y = f (x). The set X is the domain and the set Y is the codomain of the function f . The value from
the domain x ∈X is the argument of the function associated with the function value y = f (x). The function value y
is said to be returned by evaluation y = f (x).

As seen previously, a Euclidean space Em= (ℝm,ℝ, +, ⋅) can be used to suggest properties of more complex spaces
such as the vector space of continuous functions 𝒞 0(ℝ). A construct that will be oſten used is to interpret a vector
within Em as a function, since v ∈ℝm with components v =[ v1 v2 . . . vm ]T also defines a function v :{1,2,...,m}→ℝ,
with values v(i)=vi. As the number of components grows the function v can provide better approximations of some
continuous function f ∈𝒞 0(ℝ) through the function values vi =v(i)= f (xi) at distinct sample points x1,x2, . . . ,xm.

The above function examples are all defined on a domain of scalars or naturals and returned scalar values. Within
linear algebra the particular interest is on functions defined on sets of vectors from some vector space 𝒱 = (V ,S,
+, ⋅) that return either scalars f :V → S, or vectors from some other vector space 𝒲 = (W ,S, +, ⋅), g :V →W . The
codomain of a vector-valued function might be the same set of vectors as its domain, h :V →V . The fundamental
operation within linear algebra is the linear combination au + bv with a, b ∈ S, u , v ∈V . A key aspect is to char-
acterize how a function behaves when given a linear combination as its argument, for instance f (au + bv ) or
g (au +bv ).
1.3. Linear functionals
Consider first the case of a function defined on a set of vectors that returns a scalar value. These can be interpreted
as labels attached to a vector, and are very oſten encountered in applications from natural phenomena or data
analysis.

DEFINITION. (FUNCTIONAL) . A functional on vector space 𝒱 = (V ,S, +, ⋅) is a function from the set of vectors V to the
set of scalars S of the vector space 𝒱.
DEFINITION. (LINEAR FUNCTIONAL) . The functional f :V →S on vector space 𝒱 =(V ,S, +, ⋅) is a linear functional if for
any two vectors u ,v ∈V and any two scalars a,b

f (au +bv )=af (u)+bf (v ). (1.14)

Many different functionals may be defined on a vector space 𝒱 =(V ,S,+, ⋅), and an insightful alternative description
is provided by considering the set of all linear functionals, that will be denoted as V ∗={ f | f :V→S}. These can be
organized into another vector space 𝒱 ∗= (V ∗,S, +, ⋅) with vector addition of linear functionals f ,g ∈V ∗ and scaling
by a∈S defined by

( f +g)(u)= f (u)+g(u), (af )(u)=af (u), u ∈V . (1.15)
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DEFINITION. (DUAL VECTOR SPACE) . For some vector space 𝒱, the vector space of linear functionals 𝒱 ∗ is called the dual
vector space.

As is oſten the case, the above abstract definition can better be understood by reference to the familiar case of
Euclidean space. Consider ℛ2 = (ℝ2,ℝ, +, ⋅), the set of vectors in the plane with x ∈ℝ2 the position vector from the
origin (0,0) to point X in the plane with coordinates (x1,x2). One functional from the dual spaceℛ2

∗ is f2(x)=x2, i.e.,
taking the second coordinate of the position vector. The linearity property is readily verified. For x , y ∈ℛ2, a,b ∈ℝ,

f2(ax +by)=ax2+by2=af2(x)+bf2(y).

Given some constant value h∈ℝ, the curves within the plane defined by f2(x)=h are called the contour lines or level
sets of f2. Several contour lines and position vectors are shown in Figure 1.3. The utility of functionals and dual
spaces can be shown by considering a simple example from physics. Assume that x2 is the height above ground
level and a vector x is the displacement of a body of mass m in a gravitational field. The mechanical work done to
liſt the body from ground level to height h isW =mgh with g the gravitational acceleration. The mechanical work
is the same for all displacements x that satisfy the equation f2(x)=h. The work expressed in units mg∆h can be
interpreted as the number of contour lines f2(x) = n∆h intersected by the displacement vector x . This concept
of duality between vectors and scalar-valued functionals arises throughout mathematics, the physical and social
sciences and in data science. The term “duality” itself comes from geometry. A point X in ℝ2 with coordinates
(x1,x2) can be defined either as the end-point of the position vector x , or as the intersection of the contour lines of
two functionals f1(x)=x1 and f2(x)=x2. Either geometric description works equally well in specifying the position
of X , so it might seem redundant to have two such procedures. It turns out though that many quantities of interest
in applications can be defined through use of both descriptions, as shown in the computation of mechanical work
in a gravitational field.
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Figure 1.3. Vectors in E2 and contour lines of the functional f (x)=x2

1.4. Linear mappings

Consider now functions f :V →W from vector space 𝒱 = (V , S, +, ⋅) to another vector space 𝒲 = (W , T , +, ⋅). As
before, the action of such functions on linear combinations is of special interest.

DEFINITION. (LINEAR MAPPING) . A function f :V→W, from vector space 𝒱 =(V ,S,+, ⋅) to vector space 𝒲 =(W ,S,⊕, . )
is called a linear mapping if for any two vectors u ,v ∈V and any two scalars a,b ∈S

f (au +bv )=af (u)+bf (v ). (1.16)

The image of a linear combination au +bv through a linear mapping is another linear combination af (u)+bf (v),
and linear mappings are said to preserve the structure of a vector space, and called homomorphisms in mathe-
matics. The codomain of a linear mapping might be the same as the domain in which case the mapping is said to
be an endomorphism.
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Matrix-vector multiplication has been introduced as a concise way to specify a linear combination

f (x)=Ax =x1a1 + ⋅ ⋅ ⋅ +xnan,

with a1, . . . ,an the columns of the matrix, A = [ a1 a2 . . . an ]. This is a linear mapping between the real spacesℛm,
ℛn, f :ℝm→ℝn, and indeed any linear mapping between real spaces can be given as a matrix-vector product.

2. Measurements
Vectors within the real space ℛm can be completely specified by m real numbers, even though m is large in many
realistic applications. A vector within 𝒞 0(ℝ), i.e., a continuous function defined on the reals, cannot be so specified
since it would require an infinite, non-countable listing of function values. In either case, the task of describing the
elements of a vector space 𝒱 = (V ,S, +, ⋅) by simpler means arises. Within data science this leads to classification
problems in accordance with some relevant criteria.

2.1. Equivalence classes

Many classification criteria are scalars, defined as a scalar-valued function f :𝒱→S on a vector space, 𝒱 =(V ,S,+, ⋅).
The most common criteria are inspired by experience with Euclidean space. In a Euclidean-Cartesian model (ℝ2,ℝ,
+, ⋅) of the geometry of a plane Π, a point O ∈Π is arbitrarily chosen to correspond to the zero vector 0= [ 0 0 ]T ,
along with two preferred vectors e1, e2 grouped together into the identity matrix I . The position of a point X ∈Π
with respect to O is given by the linear combination

x = Ix +0= [ e1 e2 ][[[[[[ x1x2 ]]]]]]=x1 e1+x2 e2 .
Several possible classifications of points in the plane are depicted in Figure 1.4: lines, squares, circles. Intuitively,
each choice separates the plane into subsets, and a given point in the plane belongs to just one in the chosen family
of subsets. A more precise characterization is given by the concept of a partition of a set.

DEFINITION. (PARTITION) . A partition of a set is a grouping of its elements into non-empty subsets such that every
element is included in exactly one subset.

In precise mathematical terms, a partition of set S is P ={Si |Si ⊂P ,Si ≠∅, i∈ I} such that ∀x ∈S, ∃! j ∈ I for which x ∈Sj.
Since there is only one set (∃! signifies “exists and is unique”) to which some given x ∈S belongs, the subsets Si of
the partition P are disjoint, i≠ j⇒Si ∩Sj =∅. The subsets Si are labeled by i within some index set I . The index set
might be a subset of the naturals, I ⊂ℕ in which case the partition is countable, possibly finite. The partitions of
the plane suggested by Figure 1.4 are however indexed by a real-valued label, i ∈ℝ with I ⊂ℝ.

A technique which is oſten used to generate a partition of a vector space 𝒱 = (V ,S, +, ⋅) is to define an equivalence
relation between vectors, H ⊂−V ×V . For some element u ∈V , the equivalence class of u is defined as all vectors v
that are equivalent to u , {v | (u ,v )∈H }. The set of equivalence classes of is called the quotient set and denoted as
V /H, and the quotient set is a partition of V . Figure 1.4 depicts four different partitions of the plane. These can
be interpreted geometrically, such as parallel lines or distance from the origin. With wider implications for linear
algebra, the partitions can also be given in terms of classification criteria specified by functions.
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Figure 1.4. Equivalence classes within the plane
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2.2. Norms
The partition of ℝ2 by circles from Figure 1.4 is familiar; the equivalence classes are sets of points whose position
vector has the same size, {x = [ x1 x2 ]T | ( x12 + x22)1/2 = r}, or is at the same distance from the origin. Note that
familiarity with Euclidean geometry should not obscure the fact that some other concept of distance might be
induced by the data. A simple example is statement of walking distance in terms of city blocks, in which the
distance from a starting point to an address x1=3 blocks east and x2=4 blocks north is x1+x2=7 city blocks, not the
Euclidean distance (x12 +x22)1/2= 5 since one cannot walk through the buildings occupying a city block.

The above observations lead to the mathematical concept of a norm as a tool to evaluate vector magnitude. Recall
that a vector space is specified by two sets and two operations, 𝒱 = (V , S, +, ⋅), and the behavior of a norm with
respect to each of these components must be defined. The desired behavior includes the following properties and
formal definition.

Unique value. The magnitude of a vector v ∈V should be a unique scalar, requiring the definition of a func-
tion. The scalar could have irrational values and should allow ordering of vectors by size, so the function
should be from V to ℝ, f :V→ℝ. On the real line the point at coordinate x is at distance |x | from the origin,
and to mimic this usage the norm of v ∈V is denoted as ‖v ‖, leading to the definition of a function ‖ ‖:
V →ℝ+, ℝ+ ={a|a∈ℝ,a 0}.

Null vector case. Provision must be made for the only distinguished element of V , the null vector 0. It is
natural to associate the null vector with the null scalar element, ‖0‖=0. A crucial additional property is also
imposed namely that the null vector is the only vector whose norm is zero, ‖v ‖=0⇒v =0. From knowledge
of a single scalar value, an entire vector can be determined. This property arises at key junctures in linear
algebra, notably in providing a link to another branch of mathematics known as analysis, and is needed to
establish the fundamental theorem of linear algbera or the singular value decomposition encountered later.

Scaling. Transfer of the scaling operation v =au property leads to imposing ‖v ‖= |a| ‖u‖. This property ensures
commensurability of vectors, meaning that the magnitude of vector v can be expressed as a multiple of
some standard vector magnitude ‖u ‖.

Vector addition. Position vectors from the origin to coordinates x , y > 0 on the real line can be added and
|x +y |= |x |+ |y |. If however the position vectors point in different directions, x >0, y <0, then |x +y |< |x |+ |y |.
For a general vector space the analogous property is known as the triangle inequality , ‖u +v ‖ ‖u ‖+ ‖v ‖ for
u ,v ∈V .

DEFINITION. (NORM) . A norm on the vector space 𝒱 =(V ,S,+, ⋅) is a function ‖ ‖:V→ℝ+ that for u ,v ∈V, a∈S satisfies:

1. ‖v ‖=0⇒v =0;
2. ‖au ‖= |a| ‖u ‖;
3. ‖u +v ‖ ‖u‖+ ‖v ‖.

Note that the norm is a functional, but the triangle inequality implies that it is not generally a linear functional.
Returning to Figure 1.4, consider the functions fi:ℝ2→ℝ+ defined for x = [ x1 x2 ]T through values

f1(x)= |x1|, f2(x)= |x2|, f3(x)= |x1|+ |x2|, f4(x)=(|x1|2 + |x2|2)1/2.
Sets of constant value of the above functions are also equivalence classes induced by the equivalence relations Ei

for i=1,2, 3, 4.

1. f1(x)= c⇒ |x1|= c , E1 ={(x , y)| f1(x)= f1(y)⇔ |x1|= |y1| }⊂−ℝ2×ℝ2;

2. f2(x)= c⇒ |x2|= c , E2 ={(x , y)| f2(x)= f2(y)⇔ |x2|= |y2| }⊂−ℝ2×ℝ2;

3. f3(x)= c⇒ |x1|+ |x2|= c , E3 ={(x , y)| f3(x)= f3(y)⇔ |x1|+ |x2|= |y1|+ |y2| }⊂−ℝ2×ℝ2;

4. f4(x)= c⇒(|x1|2 + |x2|2)1/2= c , E4 ={(x , y)| f4(x)= f4(y)⇔(|x1|2 + |x2|2)1/2 =(|y1|2+ |y2|2)1/2 }⊂−ℝ2×ℝ2.

These equivalence classes correspond to the vertical lines, horizontal lines, squares, and circles of Figure 1.4. Not all
of the functions fi are norms since f1(x) is zero for the non-null vector x = [ 0 1 ]T , and f2(x)is zero for the non-
null vector x =[ 1 0 ]T . The functions f3 and f4 are indeed norms, and specific cases of the following general norm.
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DEFINITION. (p-NORM IN ℛm) . The p-norm on the real vector space ℛm = (ℝm,ℝ, +, ⋅) for p 1 is the function ‖ ‖p:
V→ℝ+ with values ‖x ‖p=(|x1|p+ |x2|p+ ⋅ ⋅ ⋅ + |xm|p)1/p, or

‖x ‖p=((((((((((∑
i=1

m

|xi|p))))))))))
1/p

for x ∈ℝm. (1.17)

Denote by xi the largest component in absolute value of x ∈ℝm. As p increases, |xi|p becomes dominant with respect
to all other terms in the sum suggesting the definition of an inf-norm by

‖x ‖∞=max
1 i m

|xi| .

This also works for vectors with equal components, since the fact that the number of components is finite while
p→∞ can be used as exemplified for x = [ a a . . . a ]T , by ‖x ‖p= (m |a|p)1/p=m1/p |a|, with m1/p→1.

Note that the Euclidean norm corresponds to p=2, and is oſten called the 2-norm. The analogy between vectors and
functions can be exploited to also define a p-norm for 𝒞 0[a,b]= (C([a,b]),ℝ, +, ⋅) , the vector space of continuous
functions defined on [a,b].

DEFINITION. (p-NORM IN 𝒞 0[a,b]) . The p-norm on the vector space of continuous functions 𝒞 0[a, b] for p 1 is the
function ‖ ‖p:V →ℝ+ with values

‖ f ‖p=(∫
a

b| f (x)|pdx)1/p, for f ∈C[a,b]. (1.18)

The integration operation ∫ab can be intuitively interpreted as the value of the sum ∑i=1
m from equation (1.17) for

very large m and very closely spaced evaluation points of the function f (xi), for instance |xi+1−xi|= (b −a)/m. An
inf-norm can also be define for continuous functions by

‖ f ‖∞= sup
x ∈[a,b]

| f (x)|,

where sup, the supremum operation can be intuitively understood as the generalization of the max operation over
the countable set {1,2, . . . ,m} to the uncountable set [a,b].
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Figure 1.5. Regions within ℝ2 for which ‖x ‖p 1, for p=1, 2, 3,∞.

∘ Vector norms arise very oſten in applications since they can be used to classify data, and are implemented in
most soſtware systems as a norm(x,p) to evaluate the p-norm of a vector x , with p =2 as the default.

2.3. Inner product

Norms are functionals that define what is meant by the size of a vector, but are not linear. Even in the simplest
case of the real line, the linearity relation |x +y |= |x |+ |y | is not verified for x >0, y < 0. Nor do norms characterize
the familiar geometric concept of orientation of a vector. A particularly important orientation from Euclidean
geometry is orthogonality between two vectors. Another function is required, but before a formal definition some
intuitive understanding is sought by considering vectors and functionals in the plane, as depicted in Figure 1.6.
Consider a position vector x = [ x1 x2 ]T ∈ℝ2 and the previously-encountered linear functionals

f1, f2:ℝ2→ℝ, f1(x)=x1, f2(x)=x2.
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The x1 component of the vector x can be thought of as the number of level sets of f1 times it crosses; similarly for
the x2 component. A convenient labeling of level sets is by their normal vectors. The level sets of f1 have normal
e1T = [ 1 0 ], and those of f2 have normal vector e2T = [ 0 1 ]. Both of these can be thought of as matrices with two
columns, each containing a single component. The products of these matrices with the vector x gives the value of
the functionals f1, f2

e1T x = [ 1 0 ][[[[[[ x1x2 ]]]]]]=1 ⋅x1+0 ⋅x2 =x1= f1(x),

e2T x = [ 0 1 ][[[[[[ x1x2 ]]]]]]=0 ⋅x1 +1 ⋅x2=x1 = f2(x).
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Figure 1.6. Euclidean space E2 and its dual E2∗.

In general, any linear functional f defined on the real space ℛm can be labeled by a vector

aT = [ a1 a2 . . . am ],

and evaluated through the matrix-vector product f (x)= aT x . This suggests the definition of another function s:
ℝm×ℝm→ℝ,

s(a ,x)= aT x .

The function s is called an inner product, has two vector arguments from which a matrix-vector product is formed
and returns a scalar value, hence is also called a scalar product. The definition from an Euclidean space can be
extended to general vector spaces. For now, consider the field of scalars to be the reals S =ℝ.

DEFINITION. (INNER PRODUCT) . An inner product in the vector space 𝒱 = (V ,ℝ, +, ⋅) is a function s:V ×V →ℝ with
properties

Symmetry. For any a ,x ∈V, s(a ,x)= s(x ,a).
Linearity in second argument. For any a ,x , y ∈V, α ,β ∈ℝ, s(a ,αx +βy)=αs(a ,x)+βs(a , y).
Positive definiteness. For any x ∈V \{0}, s(x ,x)>0.

The inner product s(a ,x) returns the number of level sets of the functional labeled by a crossed by the vector x , and
this interpretation underlies many applications in the sciences as in the gravitational field example above. Inner
products also provide a procedure to evaluate geometrical quantities and relationships.

Vector norm. In ℛm the number of level sets of the functional labeled by x crossed by x itself is identical to
the square of the 2-norm

s(x ,x)=xTx = ‖x ‖22 .
In general, the square root of s(x , x) satisfies the properties of a norm, and is called the norm induced by
an inner product

‖x ‖= s(x ,x)1/2.
A real space together with the scalar product s(x , y) = xTy and induced norm ‖x ‖ = s(x , x)1/2 defines an
Euclidean vector space ℰm.
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Orientation. In ℰ2 the point specified by polar coordinates (r , θ) has the Cartesian coordinates x1 = r cos θ ,
x2= r sinθ , and position vector x = [ x1 x2 ]T . The inner product

e1T x = [ 1 0 ] [ x1x2 ]=1 ⋅x1+0 ⋅x2 = r cosθ ,

is seen to contain information on the relative orientation of x with respect to e1. In general, the angle θ
between two vectors x , y with any vector space with a scalar product can be defined by

cosθ = s(x , y)
[s(x ,x) s(y , y)]1/2 =

s(x , y)
‖x ‖ ‖y ‖ ,

which becomes

cosθ =
xTy

‖x ‖ ‖y ‖ ,
in a Euclidean space, x , y ∈ℝm.

Orthogonality. In ℰ2 two vectors are orthogonal if the angle between them is such that cos θ = 0, and this
can be extended to an arbitrary vector space 𝒱 =(V ,ℝ, +, ⋅) with a scalar product by stating that x , y ∈V are
orthogonal if s(x , y)=0. In ℰm vectors x , y ∈ℝm are orthogonal if xT y =0.

3. Linear mapping composition
3.1. Matrix-matrix product
From two functions f :A→B and g :B→C , a composite function, h=g ∘ f , h:A→C is defined by

h(x)=g( f (x)).
Consider linear mappings between Euclidean spaces f :ℝn→ℝm, g :ℝm→ℝp. Recall that linear mappings between
Euclidean spaces are expressed as matrix vector multiplication

f (x)=Ax , g(y)=By ,A ∈ℝm×n,B ∈ℝp×m.

The composite function h = g ∘ f is h :ℝn→ℝp, defined by

h(x)= g(f (x))= g(Ax)=BAx .

Note that the intemediate vector u =Ax is subsequently multiplied by the matrix B . The composite function h is
itself a linear mapping

h(ax +by)=BA(ax +by)=B (aAx +bAy)=B(au +bv )=aBu +bBv =aBAx +bBAy =ah(x)+bh(y),
so it also can be expressed a matrix-vector multiplication

h(x)=Cx =BAx . (1.23)

Using the above, C is defined as the product of matrix B with matrix A

C =BA.

The columns of C can be determined from those of A by considering the action of h on the the column vectors of
the identity matrix I = [ e1 e2 . . . en ]∈ℝn×n. First, note that

Aej = [ a1 a2 . . . an ]

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[
[
[ 10
⋅⋅⋅
⋅⋅⋅
0 ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]
]
]
=a1, . . . , Aej = [ a1 a2 . . . an ]

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[
[
[ 0⋅⋅⋅
1
⋅⋅⋅
0 ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]
]
]
=aj,Aen= [ a1 a2 . . . an ]

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[
[
[ 0⋅⋅⋅
⋅⋅⋅
0
1 ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]
]
]
= an. (1.24)

The above can be repeated for the matrix C = [ c1 c2 . . . cn ] giving
h(e1)=Ce1= c1, . . . ,h(ej)=Cej = cj, . . . ,h(en)=Cen= cn. (1.25)

Combining the above equations leads to cj =Baj, or

C = [ c1 c2 . . . cn ]=B [ a1 a2 . . . an ].
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∘ From the above the matrix-matrix product C =BA is seen to simply be a grouping of all the products of B with
the column vectors of A,

C = [ c1 c2 . . . cn ]= [B a1 Ba2 . . . Ban ] .

Summary.

• Linear functionals f :𝒱 →S attach a scalar label to a vector, and preserve linear combinations

f (au +bv )=af (u)+bf (v )

• Linear functionals arise when establish vector magnitude and orientation

• Linear mappings g :𝒰 →𝒱 establish correspondences between vector spaces and preserve linear combina-
tions

g(au +bv )=ag (u)+bg(v )

• Composition of linear mappings is represented through matrix multiplication

LECTURE 6: FUNDAMENTAL MATRIX SPACES

1. Vector Subspaces

A central interest in scientific computation is to seek simple descriptions of complex objects. A typical situation is
specifying an instance of some object of interest through an m-tuple v ∈ℝm with large m. Assuming that addition
and scaling of such objects can cogently be defined, a vector space is obtained, say over the field of reals with an
Euclidean distance, Em. Examples include for instance recordings of medical data (electroencephalograms, elec-
trocardiograms), sound recordings, or images, for which m can easily reach into the millions. A natural question
to ask is whether all the m real numbers are actually needed to describe the observed objects, or perhaps there is
some intrinsic description that requires a much smaller number of descriptive parameters, that still preserves the
useful idea of linear combination. The mathematical transcription of this idea is a vector subspace.

DEFINITION. (VECTOR SUBSPACE) . 𝒰 =(U ,S,+, ⋅), U ≠∅, is a vector subspace of vector space 𝒱 =(V ,S,+, ⋅) over the same
field of scalars S, denoted by 𝒰 ≤𝒱, if U ⊂−V and ∀a,b ∈S, ∀u ,v ∈U, the linear combination au +bv ∈U.

The above states a vector subspace must be closed under linear combination, and have the same vector addition
and scaling operations as the enclosing vector space. The simplest vector subspace of a vector space is the null
subspace that only contains the null element, U = {0}. In fact any subspace must contain the null element 0, or
otherwise closure would not be verified for the particular linear combination u + (−u)=0. If U ⊂V , then 𝒰 is said
to be a proper subspace of 𝒱 , denoted by 𝒰 <𝒱 .
∘ Setting n −m components equal to zero in the real space ℛm defines a proper subspace whose elements can

be placed into a one-to-one correspondence with the vectors within ℛn. For example, setting component m of
x ∈ℝm equal to zero gives x =[ x1 x2 . . . xm−1 0 ]T that while not a member ofℝm−1, it is in a one-to-one relation
with x ʹ = [ x1 x2 . . . xm−1 ]T ∈ ℝm−1. Dropping the last component of y ∈ℝm, y = [ y1 y2 . . . ym−1 ym ]T gives
vector y ʹ= [ y1 y2 . . . ym−1 ]∈ℝm−1, but this is no longer a one-to-one correspondence since for some given y ʹ,
the last component ym could take any value.
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Vector subspaces arise in decomposition or partitioning of a vector space. The converse, composition of vector
spaces 𝒰 =(U ,S, +, ⋅), 𝒱 =(V ,S,+, ⋅) is defined in terms of linear combination. A vector x ∈ℝ3 can be obtained as the
linear combination

x =[[[[[[[[[[[[[[[[[[
x1
x2
x3 ]]]]]]]]]]]]]]
]]]]=[[[[[[[[[[[[[[[[[[

x1
0
0 ]]]]]]]]]]]]]]]]]]+[[[[[[[[[[[[[[[[[[

0
x2
x3 ]]]]]]]]]]]]]]
]]]],

but also as

x =[[[[[[[[[[[[[[[[[[
x1
x2
x3 ]]]]]]]]]]]]]]
]]]]=[[[[[[[[[[[[[[[[[[

x1
x2−a
0 ]]]]]]]]]]]]]]]]]]+[[[[[[[[[[[[[[[[[[

0
a
x3 ]]]]]]]]]]]]]]
]]]],

for some arbitrary a ∈ℝ. In the first case, x is obtained as a unique linear combination of a vector from the set
U = {[ x1 0 0 ]T | x1∈ℝ} with a vector from V = {[ 0 x2 x3 ]T | x2, x3 ∈ℝ}. In the second case, there is an infinity of
linear combinations of a vector from V with another from W = {[ x1 x2 0 ]T | x1, x2 ∈ ℝ} to the vector x . This is
captured by a pair of definitions to describe vector space composition.

DEFINITION. Given two vector subspaces 𝒰 =(U ,S,+, ⋅), 𝒱 =(V ,S, +, ⋅) of the space 𝒲 =(W ,S,+, ⋅), the sum is the vector
space 𝒰 +𝒱 = (U +V ,S, +, ⋅), where the sum of the two sets of vectors U ,V is U +V = {u +v | u ∈U ,v ∈V}.

DEFINITION. Given two vector subspaces 𝒰 =(U ,S, +, ⋅), 𝒱 =(V ,S, +, ⋅) of the space 𝒲 =(W ,S, +, ⋅), the direct sum is the
vector space 𝒰 ⊕𝒱 =(U ⊕V ,S,+, ⋅), where the direct sum of the two sets of vectors U ,V is U ⊕V ={u +v | ∃!u ∈U ,∃!v ∈V}.
(unique decomposition)

∘ Since the same scalar field, vector addition, and scaling is used , it is more convenient to refer to vector space
sums simply by the sum of the vector sets U +V , or U ⊕V , instead of specifying the full tuplet for each space.
This shall be adopted henceforth to simplify the notation.

In the previous example, the essential difference between the two ways to express x ∈ℝ3 is that U ∩V = {0}, but
V ∩W = {[ 0 a 0 ]T |a∈ℝ}≠ {0}, and in general if the zero vector is the only common element of two vector spaces
then the sum of the vector spaces becomes a direct sum. In practice, the most important procedure to construct
direct sums or check when an intersection of two vector subspaces reduces to the zero vector is through an inner
product.

DEFINITION. Two vector subspaces U ,V of the real vector space ℝm are orthogonal, denoted as U⊥V if uTv =0 for any
u ∈U ,v ∈V.

DEFINITION. Two vector subspaces U,V of U +V are orthogonal complements, denoted U =V ⊥, V =U⊥ if they are orthog-
onal subspaces, U⊥V, and U ∩V = {0}, i.e., the null vector is the only common element of both subspaces.

The above concept of orthogonality can be extended to other vector subspaces, such as spaces of functions. It can
also be extended to other choices of an inner product, in which case the term conjugate vector spaces is sometimes
used. The concepts of sum and direct sum of vector spaces used linear combinations of the form u +v . This notion
can be extended to arbitrary linear combinations.

DEFINITION. In vector space 𝒱 = (V ,S, +, ⋅), the span of vectors a1,a2, . . . ,an∈V , is the set of vectors reachable by linear
combination

span{a1,a2, . . . ,an}={b ∈V | ∃x1, . . . ,xn∈S suchthat b =x1 a1 + . . . +xnan}.
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Note that for real vector spaces a member of the span of the vectors {a1,a2,. . . ,an} is the vector b obtained from the
matrix vector multiplication

b =Ax = [ a1 a2 . . . an ][[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ x1x2

⋅⋅⋅
xn ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]
.

From the above, the span is a subset of the co-domain of the linear mapping f (x)=Ax .

2. Vector subspaces of a linear mapping

The wide-ranging utility of linear algebra results from a complete characterization of the behavior of a linear
mapping between vector spaces f :U→V , f (au +bv )=af (u)+bf (v ). For some given linear mapping the questions
that arise are:

1. Can any vector within V be obtained by evaluation of f ?

2. Is there a single way that a vector within V can be obtained by evaluation of f ?

Linear mappings between real vector spaces f :ℝn→ℝm, have been seen to be completely specified by a matrix
A ∈ℝm×n. It is common to frame the above questions about the behavior of the linear mapping f (x)=Ax through
sets associated with the matrix A. To frame an answer to the first question, a set of reachable vectors is first defined.

DEFINITION. The column space (or range) of matrix A ∈ℝm×n is the set of vectors reachable by linear combination of the
matrix column vectors

C(A)= range(A)={b ∈ℝm|∃x ∈ℝn such thatb =Ax}.

By definition, the column space is included in the co-domain of the function f (x)=Ax , C(A)⊂−ℝm, and is readily
seen to be a vector subspace of ℝm. The question that arises is whether the column space is the entire co-domain
C(A)=ℝm that would signify that any vector can be reached by linear combination. If this is not the case then the
column space would be a proper subset, C(A)⊂ℝm, and the question is to determine what part of the co-domain
cannot be reached by linear combination of columns of A . Consider the orthogonal complement of C(A) defined
as the set vectors orthogonal to all of the column vectors of A, expressed through inner products as

a1T y =0,a2T y =0, . . . ,anT y =0.

This can be expressed more concisely through the transpose operation

A = [ a1 a2 . . . an ],ATy =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ a1T

a2T

⋅⋅⋅
anT ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]
]
]
y =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ a1T y
a2Ty
⋅⋅⋅

anTy ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]
]
]
,

and leads to the definition of a set of vectors for which ATy =0
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DEFINITION. The leſt null space (or cokernel) of a matrix A ∈ℝm×n is the set

N(AT)=null(AT)={y ∈ℝm|AT y =0}.

Note that the leſt null space is also a vector subspace of the co-domain of f (x) = Ax , N(AT) ⊂−ℝm. The above
definitions suggest that both the matrix and its transpose play a role in characterizing the behavior of the linear
mapping f =Ax , so analagous sets are define for the transpose AT .

DEFINITION. The row space (or corange) of a matrix A ∈ℝm×n is the set

R(A)=C(AT)=range(AT)={c ∈ℝn|∃y ∈ℝm c =AT y}⊂−ℝn

DEFINITION. The null space of a matrix A ∈ℝm×n is the set

N(A)=null(A)={x ∈ℝn|Ax =0}⊂−ℝn

Examples. Consider a linear mapping f :ℝn→ℝm, defined by y = f (x)=Ax = [ y1 . . . yn ]T , with A ∈ℝm×n.

1. For n =1, m =3,

A =[[[[[[[[[[[[[[[[[[
1
0
0 ]]]]]]]]]]]]]]]
]]],AT = [ 1 0 0 ],

the column space C(A) is the y1-axis, and the leſt null space N(AT) is the y2y3-plane.

2. For n =2, m =3,

A =[[[[[[[[[[[[[[[[[[
1 −1
0 0
0 0 ]]]]]]]]]]]]]]]]]]= [ a1 a2 ], AT =[[[[[[ 1 0 0

−1 0 0 ]]]]]],

the columns of A are colinear, a2 =−a1, and the column space C(A) is the y1-axis, and the leſt null space
N(AT) is the y2y3-plane, as before.

3. For n =2, m =3,

A =[[[[[[[[[[[[[[[[[[
1 0
0 1
0 0 ]]]]]]]]]]]]]]]

]]], AT =[[[[[[ 1 0 0
0 1 0 ]]]]]],

the column space C(A) is the y1y2-plane, and the leſt null space N(AT) is the y3-axis.

4. For n =2, m =3,

A =[[[[[[[[[[[[[[[[[[
1 1
1 −1
0 0 ]]]]]]]]]]]]]]]]]], AT =[[[[[[ 1 1 0

1 −1 0 ]]]]]],
the same C(A), N(AT) are obtained.
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5. For n =3, m =3,

A =[[[[[[[[[[[[[[[[[[
1 1 3
1 −1 −1
1 1 3 ]]]]]]]]]]]]]]]]]]= [ a1 a2 a3 ],

AT =[[[[[[[[[[[[[[[[[[
1 1 1
1 −1 1
3 −1 3 ]]]]]]]]]]]]]]]

]]]=[[[[[[[[[[[[[[[[[[
[[[[
[
[ a1T

a2T

a3T ]]]]]]]]]]]]]]
]]]]]]]]]
]
,ATy =[[[[[[[[[[[[[[[[[[

[[[[
[
[ a1T y
a2T y
a3T y ]]]]]]]]]]]]]]

]]]]]]]]]
]

since a3 =a1+2a2, the orthogonality condition AT y =0 is satisfied by vectors of form y = [ a 0 −a ], a∈ℝ.

The above low dimensional examples are useful to gain initial insight into the significance of the spacesC(A),N(AT).
Further appreciation can be gained by applying the same concepts to processing of images. A gray-scale image
of size px by py pixels can be represented as a vector with m =px py components, b ∈ [0, 1]m⊂ℝm. Even for a small
image with px =py =128 = 27 pixels along each direction, the vector b would have m = 214 components. An image
can be specified as a linear combination of the columns of the identity matrix

b = Ib = [ e1 e2 . . . em ]
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[
[
[ b1
b2
⋅⋅⋅
bm ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]
]
]
,

with bi the gray-level intensity in pixel i. Similar to the inclined plane example from §1, an alternative description
as a linear combination of another set of vectors a1, . . . ,am might be more relevant. One choice of greater utility for
image processing mimics the behavior of the set {1, cos t, cos2t, . . . , sin t, sin2t, . . .} that extends the second example
in §1, would be for m=4

A = [ a1 a2 a3 a4 ]=[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[
[
[ 1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]
.

3. Linear dependence
For the simple scalar mapping f :ℝ→ℝ, f (x)=ax , the condition f (x)=0 implies either that a=0 or x =0. Note that
a=0 can be understood as defining a zero mapping f (x)=0. Linear mappings between vector spaces, f :U→V , can
exhibit different behavior, and the condtion f (x)=Ax =0, might be satisfied for both x ≠0, and A ≠0. Analogous to
the scalar case, A =0 can be understood as defining a zero mapping, f (x)=0.

In vector space 𝒱 = (V ,S, +, ⋅), vectors u , v ∈V related by a scaling operation, v = au , a∈S, are said to be colinear,
and are considered to contain redundant data. This can be restated as v ∈ span{u}, from which it results that
span{u}=span{u ,v }. Colinearity can be expressed only in terms of vector scaling, but other types of redundancy
arise when also considering vector addition as expressed by the span of a vector set. Assuming that v ∉ span{u},
then the strict inclusion relation span{u}⊂span{u ,v } holds. This strict inclusion expressed in terms of set concepts
can be transcribed into an algebraic condition.

DEFINITION. The vectors a1,a2,.. . ,an∈V ,are linearly dependent if there exist n scalars, x1,.. . ,xn∈S, at least one of which
is different from zero such that

x1 a1 + . . . +xnan=0.
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Introducing a matrix representation of the vectors

A = [ a1 a2 . . . an ];x =[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ x1x2

⋅⋅⋅
xn ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]

allows restating linear dependence as the existence of a non-zero vector, ∃x ≠0, such that Ax =0. Linear dependence
can also be written as Ax =0⇏ x =0, or that one cannot deduce from the fact that the linear mapping f (x)=Ax
attains a zero value that the argument itself is zero. The converse of this statement would be that the only way to
ensure Ax =0 is for x =0, or Ax =0⇒x =0, leading to the concept of linear independence.

DEFINITION. The vectors a1,a2, . . . ,an∈V ,are linearly independent if the only n scalars, x1, . . . ,xn∈S, that satisfy

x1a1 + . . . +xnan=0, (1.33)
are x1=0, x2 =0,...,xn=0.

4. Basis and dimension

Vector spaces are closed under linear combination, and the span of a vector set ℬ = {a1, a2, . . . } defines a vector
subspace. If the entire set of vectors can be obtained by a spanning set, V =spanℬ, extending ℬ by an additional
element 𝒞 =ℬ∪{b} would be redundant since spanℬ=span𝒞 . This is recognized by the concept of a basis, and also
allows leads to a characterization of the size of a vector space by the cardinality of a basis set.

DEFINITION. A set of vectors u1, . . . ,un∈V is a basis for vector space 𝒱 =(V ,S, +, ⋅) if

1. u1, . . . ,un are linearly independent;

2. span{u1, . . . ,un}=V.

DEFINITION. The number of vectors u1, . . . ,un∈V within a basis is the dimension of the vector space 𝒱 =(V ,S, +, ⋅).

5. Dimension of matrix spaces

The domain and co-domain of the linear mapping f :U→V , f (x)=Ax , are decomposed by the spaces associated
with the matrix A. When U =ℝn, V =ℝm, the following vector subspaces associated with the matrix A ∈ℝm×n have
been defined:

• C(A) the column space of A

• C(AT) the row space of A

• N(A) the null space of A

• N(AT) the leſt null space of A, or null space of AT

DEFINITION. The rank of a matrix A ∈ℝm×n is the dimension of its column space and is equal to the dimension of its row
space.

DEFINITION. The nullity of a matrix A ∈ℝm×n is the dimension of its null space.

60 LINEAR ALGEBRA



FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

1. Partition of linear mapping domain and codomain
A partition of a set S has been introduced as a collection of subsets P ={Si|Si ⊂P ,Si ≠∅} such that any given element
x ∈S belongs to only one set in the partition. This is modified when applied to subspaces of a vector space, and a
partition of a set of vectors is understood as a collection of subsets such that any vector except 0 belongs to only
one member of the partition.

Linear mappings between vector spaces f :U→V can be represented by matrices A with columns that are images
of the columns of a basis {u1,u2, . . . } of U

A = [ f (u1) f (u2) . . . ].
Consider the case of real finite-dimensional domain and co-domain, f :ℝn→ℝm, in which case A ∈ℝm×n,

A = [ f (e1) f (e2) . . . f (en) ]= [ a1 a2 . . . an ].

∘ Example 1.1. Rotation by θ in ℝ2 is obtained from

f (e1)=[[[[[[ cosθsinθ ]]]]]], f (e2)=[[[[[[ −sinθcosθ ]]]]]]
leading to

A =[[[[[[ cosθ −sinθ
sinθ cosθ ]]]]]].

The column space of A is a vector subspace of the codomain, C(A)≤ℝm, but according to the definition of dimen-
sion if n <m there remain non-zero vectors within the codomain that are outside the range of A,

n <m⇒∃v ∈ℝm,v ≠0,v ∉C(A).
All of the non-zero vectors in N(AT), namely the set of vectors orthogonal to all columns in A fall into this category.
The above considerations can be stated as

C(A)≤ℝm, N(AT)≤ℝm, C(A)⊥N(AT) C(A)+N(AT)≤ℝm .

The question that arises is whether there remain any non-zero vectors in the codomain that are not part of C(A)
or N(AT). The fundamental theorem of linear algebra states that there no such vectors, that C(A) is the orthogonal
complement of N(AT), and their direct sum covers the entire codomain C(A)⊕N(AT)=ℝm.

LEMMA 1.2. Let 𝒰 ,𝒱, be subspaces of vector space 𝒲. Then 𝒲 =𝒰 ⊕𝒱 if and only if

i. 𝒲 =𝒰 +𝒱, and
ii. 𝒰 ∩𝒱 ={0}.

Proof. 𝒲 =𝒰 ⊕𝒱 ⇒𝒲 =𝒰 +𝒱 by definition of direct sum, sum of vector subspaces. To prove that 𝒲 =𝒰 ⊕𝒱 ⇒𝒰 ∩𝒱 =
{0}, consider w ∈𝒰 ∩𝒱. Since w ∈𝒰 and w ∈𝒱 write

w =w +0 (w ∈𝒰 ,0∈𝒱), w =0+w (0∈𝒰 ,w ∈𝒱),
and since expression w =u +v is unique, it results that w =0. Now assume (i),(ii) and establish an unique decomposition.
Assume there might be two decompositions of w ∈𝒲, w =u1 + v1, w =u2 +v2, with u1,u2∈𝒰, v1,v2∈𝒱 . Obtain u1 +v1 =
u2 + v2, or x = u1− u2 = v2− v1. Since x ∈𝒰 and x ∈𝒱 it results that x = 0, and u1 = u2, v1 = v2, i.e., the decomposition is
unique. □

In the vector space U +V the subspaces U ,V are said to be orthogonal complements if U⊥V , and U ∩V ={0}. When
U ≤ℝm, the orthogonal complement of U is denoted as U⊥, U ⊕U⊥ =ℝm.

THEOREM. Given the linear mapping associated with matrix A ∈ℝm×n we have:

1. C(A)⊕N(AT)=ℝm, the direct sum of the column space and leſt null space is the codomain of the mapping

2. C(AT)⊕N(A)=ℝn, the direct sum of the row space and null space is the domain of the mapping
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3. C(A)⊥N(AT) and C(A) ∩N(AT) = {0}, the column space is orthogonal to the leſt null space, and they are
orthogonal complements of one another,

C(A)=N(AT)⊥, N(AT)=C(A)⊥ .

4. C(AT)⊥N(A) and C(AT)∩N(A)= {0}, the row space is orthogonal to the null space, and they are orthogonal
complements of one another,

C(AT)=N(A)⊥, N(A)=C(AT)⊥ .

Figure 1.7. Graphical represenation of the Fundamental Theorem of Linear Algebra, Gil Strang, Amer. Math. Monthly 100, 848-855,
1993.

Consideration of equality between sets arises in proving the above theorem. A standard technique to show set
equality A=B, is by double inclusion, A⊂−B∧B⊂−A⇒A=B. This is shown for the statements giving the decomposi-
tion of the codomain ℝm. A similar approach can be used to decomposition of ℝn.

i. C(A)⊥N(AT) (column space is orthogonal to leſt null space).

Proof. Consider arbitrary u ∈C(A), v ∈N(AT). By definition of C(A), ∃x ∈ ℝn such that u = Ax , and by
definition of N(AT), ATv =0. Compute uTv =(Ax)Tv =xTATv =xT(ATv )=xT 0=0, hence u⊥v for arbitrary u ,
v , and C(A)⊥N(AT). □

ii. C(A)∩N(AT)={0} (0 is the only vector both in C(A) and N(AT)).

Proof. (By contradiction, reductio ad absurdum). Assume there might be b ∈C(A) and b ∈N(AT) and b ≠0.
Since b ∈C(A), ∃x ∈ℝn such that b =Ax . Since b ∈N(AT), ATb =AT(Ax)=0. Note that x ≠0 since x =0⇒b =0,
contradicting assumptions. Multiply equality ATAx =0 on leſt by xT ,

xTATAx =0⇒(Ax)T(Ax)=bTb = ‖b‖2 =0,

thereby obtaining b =0, using norm property 3. Contradiction.
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□

iii. C(A)⊕N(AT)=ℝm

Proof. (iii) and (iv) have established that C(A),N(AT) are orthogonal complements

C(A)=N(AT)⊥,N(AT)=C(A)⊥.

By Lemma 2 it results that C(A)⊕N(AT)=ℝm. □

The remainder of the FTLA is established by considering B =AT , e.g., since it has been established in (v) that C(B)⊕
N(AT)=ℝn, replacing B =AT yields C(AT)⊕N(A)=ℝm, etc.

Summary.

• Vector subspaces are subsets of a vector space closed under linear combination

• The simplest vector subspace is {0}

• Linear mappings are represented by matrices

• Associated with matrix A ∈ℝm×n that represents mapping f :ℝn→ℝm are four fundamental subspaces:

1. C(A) ℝm the column space of A containing vectors b reachable by Ax , b =Ax

2. N(AT) ℝm the leſt null space of A containing vectors y orthogonal to columns A, ATy =0

3. C(AT) ℝn the row space of A

4. N(A) ℝn the null space of A

LECTURE 7: THE SINGULAR VALUE DECOMPOSITION

1. Mappings as data

1.1. Vector spaces of mappings and matrix representations

A vector space ℒ can be formed from all linear mappings from the vector space 𝒰 = (U , S, +, ⋅) to another vector
space 𝒱 = (V ,S, +, ⋅)

ℒ= {L,S, +, ⋅}, L= {f | f :U→V , f (au +bv )=af (u)+bf (v )},
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with addition and scaling of linear mappings defined by (f + g)(u)= f (u) + g(u) and (af )(u)= af (u). Let B =
{u1, u2, . . . } denote a basis for the domain U of linear mappings within ℒ, such that the linear mapping f ∈ℒ is
represented by the matrix

A = [ f (u1) f (u2) . . . ].

When the domain and codomain are the real vector spaces U =ℝn, V =ℝm, the above is a standard matrix of real
numbers, A ∈ℝm×n. For linear mappings between infinite dimensional vector spaces, the matrix is understood in a
generalized sense to contain an infinite number of columns that are elements of the codomain V . For example, the
indefinite integral is a linear mapping between the vector space of functions that allow differentiation to any order,

∫:𝒞∞→𝒞∞ v(t)=∫ u(t)dt

and for the monomial basis B= {1, t, t 2, . . .}, is represented by the generalized matrix

A =[ t 1
2 t

2 1
3 t

3 . . . ].
Truncation of the MacLaurin series u(t)=∑j=1

∞ uj t j, with uj =u(j)(0)/ j !∈ℝ to n terms, and sampling of u ∈𝒞∞ at
points t1, . . . , tm, forms a standard matrix of real numbers

A =[ t 1
2 t

2 1
3 t

3 . . . ]∈ℝm×n, t j =[[[[[[[[[[[[[[[[[[
[[[[
[
[ t1

j

⋅⋅⋅
tm
j ]]]]]]]]]]]]]]]]]]
]]]]
]
]
.

Values of function u∈𝒞∞ at t1, . . . , tm are approximated by

u =Bx = [ u(t1) . . . u(tm) ]T ,

with x denoting the coordinates of u in basis B . The above argument states that the coordinates y of v , the
primitive of u are given by

y =Ax ,

as can be indeed verified through term-by-term integration of the MacLaurin series.

As to be expected, matrices can also be organized as vector spaceℳ, which is essentially the representation of the
associated vector space of linear mappings,

ℳ= (M,S, +, ⋅) M= {A∣A = [ f (u1) f (u2) . . . ]} .

The addition C =A +B and scaling S =aR of matrices is given in terms of the matrix components by

cij =aij +bij, sij =arij .
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1.2. Measurement of mappings

From the above it is apparent that linear mappings and matrices can also be considered as data, and a first step in
analysis of such data is definition of functionals that would attach a single scalar label to each linear mapping of
matrix. Of particular interest is the definition of a norm functional that characterizes in an appropriate sense the
size of a linear mapping.

Consider first the case of finite matrices with real components A ∈ℝm×n that represent linear mappings between
real vector spaces f :ℝm→ℝn. The columns a1, . . . ,an of A ∈ℝm×n could be placed into a single column vector c with
mn components

c =[[[[[[[[[[[[[[[[[[
a1
⋅⋅⋅
an ]]]]]]]]]]]]]]
]]]].

Subsequently the norm of the matrix A could be defined as the norm of the vector c . An example of this approach
is the Frobenius norm

‖A‖F = ‖c‖2=((((((((((((((∑
i=1

m ∑
j=1

n

|aij|2))))))))))))))
1/2

.

A drawback of the above approach is that the structure of the matrix and its close relationship to a linear mapping
is lost. A more useful characterization of the size of a mapping is to consider the amplification behavior of linear
mapping. The motivation is readily understood starting from linear mappings between the reals f :ℝ→ℝ, that are
of the form f (x)=ax . When given an argument of unit magnitude |x |=1, the mapping returns a real number with
magnitude |a|. For mappings f :ℝ2→ℝ2 within the plane, arguments that satisfy ‖x ‖2=1 are on the unit circle with
components x = [ cosθ sinθ ] have images through f given analytically by

f (x)=Ax = [ a1 a2 ][[[[[[ cosθsinθ ]]]]]]=cosθa1+ sinθa2,
and correspond to ellipses.

∘

Figure 1.8. Mapping of unit circle by f (x)=Ax , A =[[[[[[ 2 −1
3 1 ]]]]]].
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From the above the mapping associated A amplifies some directions more than others. This suggests a definition
of the size of a matrix or a mapping by the maximal amplification unit norm vectors within the domain.

DEFINITION. For vector spaces U ,V with norms ‖ ‖U :U→ℝ+, ‖ ‖V :V→ℝ+, the induced norm of f :U→V is

‖f ‖= sup
‖x ‖U=1

‖f (x)‖V .

DEFINITION. For vector spaces ℝn,ℝm with norms ‖ ‖(n):U→ℝ+, ‖ ‖(m):V→ℝ+, the induced norm of matrix A ∈ℝm×n is

‖A‖= sup
‖x ‖(n)=1

‖Ax ‖(m).

In the above, any vector norm can be used within the domain and codomain.

2. The Singular Value Decomposition (SVD)

The fundamental theorem of linear algebra partitions the domain and codomain of a linear mapping f :U→V . For
real vectors spaces U =ℝn, V =ℝm the partition properties are stated in terms of spaces of the associated matrix A as

C(A)⊕N(AT)=ℝm C(A)⊥N(AT) C(AT)⊕N(A)=ℝn C(AT)⊥N(A) .

The dimension of the column and row spaces r =dimC(A)=dimC(AT) is the rank of the matrix, n− r is the nullity
of A, and m− r is the nullity of AT . A infinite number of bases could be defined for the domain and codomain. It is
of great theoretical and practical interest to define bases with properties that facilitate insight or computation.

2.1. Orthogonal matrices

The above partitions of the domain and codomain are orthogonal, and suggest searching for orthogonal bases
within these subspaces. Introduce a matrix representation for the bases

U = [ u1 u2 . . . um ]∈ℝm×m,V = [ v1 v2 . . . vn ]∈ℝn×n,

with C(U )=ℝm and C(V )=ℝn. Orthogonality between columns ui, uj for i≠ j is expressed as uiTuj =0. For i= j , the
inner product is positive uiTui >0, and since scaling of the columns of U preserves the spanning property C(U )=ℝm,
it is convenient to impose uiTui =1. Such behavior is concisely expressed as a matrix product

U TU = Im,

with Im the identity matrix in ℝm. Expanded in terms of the column vectors of U the first equality is

[ u1 u2 . . . um ]T[ u1 u2 . . . um ]=
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ u1T

u2T

⋅⋅⋅
umT ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]
]
]
[ u1 u2 . . . um ]=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ u1Tu1 u1Tu2 . . . u1Tum
u2Tu1 u2Tu2 . . . u2Tum
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

umTu1 umTu2 . . . umTum ]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]
]
= Im.
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It is useful to determine if a matrix X exists such that UX = Im, or

UX =U [ x1 x2 . . . xm ]= [ e1 e2 . . . em ].

The columns of X are the coordinates of the column vectors of Im in the basis U , and can readily be determined

Uxj = ej⇒U TUxj =U T ej⇒ Imxj =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ u1T

u2T

⋅⋅⋅
umT ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]
]
]
ej⇒xj =(U T)j,

where (U T)j is the j th column of U T , hence X =U T , leading to

U TU = I =UU T .

Note that the second equality

[ u1 u2 . . . um ][ u1 u2 . . . um ]T = [ u1 u2 . . . um ]
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[
[ u1T

u2T

⋅⋅⋅
umT ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]
]
]
=u1u1T +u2u2T + ⋅ ⋅ ⋅ +umumT = I

acts as normalization condition on the matrices Uj =ujujT .

DEFINITION. A square matrix U is said to be orthogonal if U TU =UU T = I.

2.2. Intrinsic basis of a linear mapping

Given a linear mapping f :U→V , expressed as y = f (x)=Ax , the simplest description of the action of A would
be a simple scaling, as exemplified by g(x)= ax that has as its associated matrix aI . Recall that specification of
a vector is typically done in terms of the identity matrix b = Ib , but may be more insightfully given in some other
basis Ax = Ib . This suggests that especially useful bases for the domain and codomain would reduce the action of a
linear mapping to scaling along orthogonal directions, and evaluate y =Ax by first re-expressing y in another basis
U , Us = Iy and re-expressing x in another basis V , Vr = Ix . The condition that the linear operator reduces to simple
scaling in these new bases is expressed as si =σi ri for i=1, . . . ,min(m,n), with σi the scaling coefficients along each
direction which can be expressed as a matrix vector product s =Σr , where Σ∈ℝm×n is of the same dimensions as A
and given by

Σ=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ 0 ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . 0 0 . . . 0 ]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
.

Imposing the condition that U ,V are orthogonal leads to

Us = y ⇒ s =U T y ,Vr =x ⇒ r =V Tx ,
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which can be replaced into s =Σr to obtain

U T y =ΣV Tx ⇒ y =U ΣV Tx .

From the above the orthogonal bases U ,V and scaling coefficients Σ that are sought must satisfy A =U ΣV T .

THEOREM. Every matrix A ∈ℝm×n has a singular value decomposition (SVD)

A =U ΣV T ,

with properties:

1. U ∈ℝm×m is an orthogonal matrix, U TU = Im;

2. V ∈ℝm×m is an orthogonal matrix, V TV = In;

3. Σ∈ℝm×n is diagonal, Σ=diag(σ1, . . . ,σp), p=min(m,n), and σ1 σ2 ⋅ ⋅ ⋅ σp 0.

Proof. The proof of the SVD makes use of properties of the norm, concepts from analysis and complete induction.
Adopting the 2-norm set σ1= ‖A‖2,

σ1= sup
‖x ‖2=1

‖Ax ‖2 .

The domain ‖x ‖2 = 1 is compact (closed and bounded), and the extreme value theorem implies that f (x)=Ax attains
its maxima and minima, hence there must exist some vectors u1, v1 of unit norm such that σ1 u1 =Av1⇒σ1 = u1TAv1 .
Introduce orthogonal bases U1, V1 for ℝm,ℝn whose first column vectors are u1,v1, and compute

U1
TAV1 =[[[[[[[[[[[[[[[[[[

[[
[
[ u1T

⋅⋅⋅
umT ]]]]]]]]]]]]]]

]]]]]]]
][ Av1 . . . Avn ]=[[[[[[[[ σ1 wT

0 B ]]]]]]]]=C .

In the above wT is a row vector with n−1 components u1TAvj, j =2,...,n, and uiTAv1must be zero for u1 to be the direction
along which the maximum norm ‖Av1‖ is obtained. Introduce vectors

y =[[[[[[ σ1
w ]]]]]], z =Cy =[[[[[[[[ σ1

2+wTw
Bw ]]]]]]]],

and ‖Cy ‖2 = ‖z ‖2 σ1
2 +wTw + ‖Bw ‖1 σ1

2 +wTw = ‖y‖22 = σ1
2+wTw√ ‖y ‖2. From ‖U1

TAV1‖= ‖A‖=σ1 = ‖C‖ σ1
2 +wTw it

results that w =0. By induction, assume that B has a singular value decomposition, B =U2Σ2V2T, such that

U1
TAV1 =[[[[[[[[[[ σ1 0T

0 U2Σ2V2T ]]]]]]]]]]=[[[[[[[[ 1 0T
0 U2 ]]]]]]]][[[[[[[[ σ1 0T

0 Σ2 ]]]]]]]][[[[[[[[[[ 1 0T
0 V2T ]]]]]]]]]],

and the orthogonal matrices arising in the singular value decomposition of A are

U =U1[[[[[[[[ 1 0T
0 U2 ]]]]]]]],V T =[[[[[[[[[[ 1 0T

0 V2T ]]]]]]]]]]V1T .
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□

The scaling coefficients σj are called the singular values of A . The columns of U are called the leſt singular vectors,
and those of V are called the right singular vectors.

The fact that the scaling coefficients are norms of A and submatrices of A, σ1 = ‖A‖, is crucial importance in appli-
cations. Carrying out computation of the matrix products

A = [ u1 u2 . . . ur ur+1 . . . um ]

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ 0 ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . 0 0 . . . 0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]

]

]

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[

[

[ v1T

v2T

⋅⋅⋅
vrT

vr+1T

⋅⋅⋅
vnT ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]

]

]
= [ u1 u2 . . . ur ur+1 . . . um ]

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[

[

[ σ1v1T

σ2v2T

⋅⋅⋅
σrvrT

⋅⋅⋅
0 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]

]

]

leads to a representation of A as a sum

A =∑
i=1

r

σiuiv iT , r min (m,n).

A =σ1u1v1T +σ2u2v2T + ⋅ ⋅ ⋅ +σrurvrT

Each product uiviT is a matrix of rank one, and is called a rank-one update. Truncation of the above sum to p terms
leads to an approximation of A

A ≅Ap=∑
i=1

p

σiuiviT .

In very many cases the singular values exhibit rapid, exponential decay, σ1≫σ2≫ ⋅⋅ ⋅, such that the approximation
above is an accurate representation of the matrix A.
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Figure 1.9. Successive SVD approximations of Andy Warhol's painting, Marilyn Diptych (~1960), with k =10, 20, 40 rank-one updates.

2.3. SVD solution of linear algebra problems

The SVD can be used to solve common problems within linear algebra.
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Change of coordinates. To change from vector coordinates b in the canonical basis I ∈ℝm×m to coordinates x in
some other basis A ∈ℝm×m, a solution to the equation Ib =Ax can be found by the following steps.

1. Compute the SVD, U ΣV T =A;

2. Find the coordinates of b in the orthogonal basis U , c =U Tb ;

3. Scale the coordinates of c by the inverse of the singular values yi = ci /σi, i = 1, . . . ,m, such that Σ y = c is
satisfied;

4. Find the coordinates of y in basis V T , x =Vy .

Best 2-norm approximation. In the above A was assumed to be a basis, hence r =rank(A)=m. If columns of A do
not form a basis, r <m, then b ∈ℝm might not be reachable by linear combinations within C(A). The closest vector
to b in the norm is however found by the same steps, with the simple modification that in Step 3, the scaling is
carried out only for non-zero singular values, yi = ci /σi, i =1, . . . , r .

The pseudo-inverse. From the above, finding either the solution of Ax = Ib or the best approximation possible if
A is not of full rank, can be written as a sequence of matrix multiplications using the SVD

(U ΣV T)x =b⇒U (ΣV Tx)=b⇒(ΣV T x)=U Tb⇒V T x =Σ+U Tb⇒x =VΣ+U Tb ,

where the matrix Σ+ ∈ℝn×m (notice the inversion of dimensions) is defined as a matrix with elements σi
−1 on the

diagonal, and is called the pseudo-inverse of Σ. Similarly the matrix

A+=VΣ+U T

that allows stating the solution of Ax =b simply as x =A+b is called the pseudo-inverse of A . Note that in practice
A+ is not explicitly formed. Rather the notation A+ is simply a concise reference to carrying out steps 1-4 above.

LECTURE 8: LEAST SQUARES PROBLEMS

A typical scenario in many sciences is acquisition of m numbers to describe some object that is understood to
actually require only n≪m parameters. For example, m voltage measurements ui of an alternating current could
readily be reduced to three parameters, the amplitude, phase and frequency u(t)=asin(ωt+φ). Very oſten a simple
first-degree polynomial approximation y =ax +b is sought for a large data set D ={(xi,yi), i =1, . . . ,m}. All of these
are instances of data compression, a problem that can be solved in a linear algebra framework.

1. Projection
Consider a partition of a vector space U into orthogonal subspaces U =V ⊕W , V =W⊥,W =V ⊥. Within the typical
scenario described above U =ℝm, V ⊂ℝm,W ⊂ℝm, dimV =n, dimW =m−n. If V = [ v1 . . . vn ]∈ℝm×n is a basis for V
andW =[ w1 . . . wm−n ]∈ℝm×(m−n) is a basis forW, then U =[ v1 . . . vn w1 . . . wm−n ] is a basis for U . Even though
the matrices V ,W are not necessarily square, they are said to be orthonormal, in the sense that all columns are of
unit norm and orthogonal to one another. Computation of the matrix product V TV leads to the formation of the
identity matrix within ℝn

V TV =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ v1T

v2T

⋅⋅⋅
vnT ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]
]
]
[ v1 v2 . . . vn ]=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ v1Tv1 v1T v2 . . . v1T vn
v2Tv1 v2T v2 . . . v2T vn
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

vnTv1 vnTv2 . . . vnTvn ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]
]
]
= In.
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Similarly, W TW = Im−n. Whereas for the square orthogonal matrix U multiplication both on the leſt and the right
by its transpose leads to the formation of the identity matrix

U TU =UU T = Im,

the same operations applied to rectangular orthonormal matrices lead to different results

V TV = In,VV T = [ v1 v2 . . . vn ]
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ v1T

v2T

⋅⋅⋅
vnT ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]
]
]
=∑

i=1

n

viviT , rank(v iviT)=1

A simple example is provided by taking V = Im,n, the first n columns of the identity matrix in which case

VV T =∑
i=1

n

eieiT =[[[[[[ In 0
0 0 ]]]]]]∈ℝm×m.

∘ Applying P =VV T to some vector b ∈ℝm leads to a vector r =Pb whose first n components are those of b , and the
remaining m−n are zero. The subtraction b − r leads to a new vector s =(I −P )b that has the first components
equal to zero, and the remaining m −n the same as those of b . Such operations are referred to as projections,
and for V = Im,n correspond to projection onto the span{e1, . . . ,en}.

U =ℝ2
W ={{{{{{{{{{{{[[[[[[ 0y ]]]]]]|y ∈ℝ}}}}}}}}}}}}

V ={{{{{{{{{{{{[[[[[[ x0 ]]]]]]| x ∈ℝ}}}}}}}}}}}}

b

r =Pb

s =(I −P )b

Figure 1.10. Projection in ℝ2. The vectors r , s ∈ℝ2 have two components, but could be expressed through scaling of e1,e2.

Returning to the general case, the orthogonal matrices U ∈ℝm×m, V ∈ℝm×n, W ∈ℝm×(m−n) are associated with linear
mappings b = f (x) =Ux , r = g(b) = Pb , s = h(b) = (I − P ) b . The mapping f gives the components in the I basis
of a vector whose components in the U basis are x . The mappings g , h project a vector onto span{v1, . . . , vn},
span{w1, . . . ,wm−n}, respectively. When V ,W are orthogonal matrices the projections are also orthogonal r⊥ s .
Projection can also be carried out onto nonorthogonal spanning sets, but the process is fraught with possible error,
especially when the angle between basis vectors is small, and will be avoided henceforth.

Notice that projection of a vector already in the spanning set simply returns the same vector, which leads to a
general definition.
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DEFINITION. The mapping is called a projection if f ∘ f = f, or if for any u ∈U, f (f (u)) = f (u). With P the matrix
associated f, a projection matrix satisfies P 2 =P.

P =VV T

P 2=PP =VV TVV T =V (V TV )V T =VIV T =VV T =P

2. Gram-Schmidt

Orthonormal vector sets {q1, . . . , qn} are of the greatest practical utility, leading to the question of whether some
such a set can be obtained from an arbitrary set of vectors {a1, . . . , an}. This is possible for independent vectors,
through what is known as the Gram-Schmidt algorithm

1. Start with an arbitrary direction a1

2. Divide by its norm to obtain a unit-norm vector q1= a1/‖a1‖

3. Choose another direction a2

4. Subtract off its component along previous direction(s) a2−(q1
Ta2)q1

5. Divide by norm q2= (a2−(q1Ta2)q1)/‖a2−(q1
Ta2)q1‖

6. Repeat the above

a1

a2

q1

q2

a2−(q1Ta2)q1

P1a2 =(q1 q1
T)a2 = q1(q1

Ta2)=(q1
Ta2) q1

The above geometrical description can be expressed in terms of matrix operations as

A = ( a1 a2 . . . an )= ( q1 q2 . . . qn )

((((((((((((((((((
((((((((((((((((((
((((((
(
( r11 r12 r13 . . . r1n

0 r22 r23 . . . r2n
0 0 r33 . . . r3n
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . . . . rmn ))))))))))))))

))))))))))))))))))
))))))))))
)
)
=QR ,
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equivalent to the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
a1= r11q1
a2= r12q1 + r22q2
⋅⋅⋅
an= r1nq1 + r2nq2+ . . . + rnnqn

.

The system is easily solved by forward substitution resulting in what is known as the (modified) Gram-Schmidt
algorithm, transcribed below both in pseudo-code and in Julia.

Algorithm (Gram-Schmidt)

Given n vectors a1, . . . ,an
Initialize q1= a1,..,qn= an, R = In
for i =1 to n
rii =(qi

Tq i)1/2
if rii <ϵ break;
q i = qi /rii
for j = i+1 to n
rij = q i

T aj; qj = qj − rijq i

end
end
return Q ,R

ũ function mgs(A)
m,n=size(A); Q=copy(A); R=zeros(n,n)
for i=1:n

R[i,i]=sqrt(Q[:,i]'*Q[:,i])
if (R[i,i]<eps())

break
end
Q[:,i]=Q[:,i]/R[i,i]
for j=i+1:n

R[i,j]=Q[:,i]'*A[:,j]
Q[:,j]=Q[:,j]-R[i,j]*Q[:,i]

end
end
return Q,R

end;
ũ

∘ Note that the normalization condition ‖qii‖=1 is satisifed by two values ±rii, so results from the above imple-
mentation might give orthogonal vectors q1,..., qn of different orientations than those returned by the Octave qr
function. The implementation provided by computational packages such as Octave contain many refinements
of the basic algorithm and it's usually preferable to use these in application

By analogy to arithmetic and polynomial algebra, the Gram-Schmidt algorithm furnishes a factorization

QR =A

with Q ∈ℝm×n with orthonormal columns and R ∈ℝn×n an upper triangular matrix, known as the QR-factorization.
Since the column vectors within Q were obtained through linear combinations of the column vectors of A we have

C(A)=C(Q )≠C(R)

3. QR solution of linear algebra problems

The QR-factorization can be used to solve basic problems within linear algebra.

3.1. Transformation of coordinates

Recall that when given a vector b ∈ℝm, an implicit basis is assumed, the canonical basis given by the column vectors
of the identity matrix I ∈ℝm×m. The coordinates x in another basis A ∈ℝm×m can be found by solving the equation

Ib =b =Ax ,
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by an intermediate change of coordinates to the orthogonal basis Q . Since the basis Q is orthogonal the relation
Q TQ = I holds, and changes of coordinates from I to Q , Qc =b , are easily computed c =Q Tb . Since matrix multi-
plication is associative

b =Ax = (QR)x =Q (Rx),

the relations Rx =Q Tb = c are obtained, stating that x also contains the coordinates of c in the basis R . The three
steps are:

1. Compute the QR-factorization, QR =A ;

2. Find the coordinates of b in the orthogonal basis Q , c =Q Tb ;

3. Find the coordinates of x in basis R , Rx = c .

Since R is upper-triangular,

((((((((((((((((((
((((((((((((((((((
((((((
(
( r11 r12 r13 . . . r1m

0 r22 r23 . . . r2m
0 0 r33 . . . r3m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . . . . rmm ))))))))))))))

))))))))))))))))))
))))))))))
)
)
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[
[
[ x1

x2
⋅⋅⋅

xm−1
xm ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]
]
]
=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[
[
[ c1

c2
⋅⋅⋅

cm−1
cm ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]
]
]

the coordinates of c in the R basis are easily found by back substitution.

Algorithm (Back substitution)

Given R upper-triangular, vectors c
for i =m down to 1
if rii <ϵ break;
xi = ci /rii
for j = i-1 down to 1
cj = cj − rji xi

end
end
return x

ũ function bcks(R,c)
m,n=size(R); x=zeros(m,1)
for i=m:-1:1

x[i]=c[i]/R[i,i]
for j=i-1:-1:1

c[j]=c[j]-R[j,i]*x[i]
end

end
return x

end;
ũ

∘ The above operations are carried out in the background by the backslash operation A\b to solve A*x=b, inspired
by the scalar mnemonic ax =b⇒ x = (1/a)b.

3.2. General orthogonal bases

The above approch for the real vector space ℛm can be used to determine orthogonal bases for any other vector
space by appropriate modification of the scalar product. For example, within the space of smooth functions 𝒞∞[−1,
1] that can differentiated an arbitrary number of times, the Taylor series

f (x)= f (0) ⋅1+ f ʹ(0) ⋅x + 1
2 f ʹʹ(0) ⋅x 2 + ⋅ ⋅ ⋅ + 1

n! f
(n)(0) ⋅xn+ ⋅ ⋅ ⋅+

is seen to be a linear combination of the monomial basis M = [ 1 x x 2 . . . ] with scaling coefficients { f (0), f ʹ(0),
1
2 f ʹʹ(0), . . .}. The scalar product

( f ,g)=∫
−1

1
f (x)g(x)dx
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can be seen as the extension to the [−1,1] continuum of a the vector dot product. Orthogonalization of the mono-
mial basis with the above scalar product leads to the definition of another family of polynomials, known as the
Legendre polynomials

Q0(x)=(1
2)1/2 ⋅1,Q1(x)=(3

2)1/2 ⋅x ,Q2(x)=( 5
8)1/2 ⋅(3x 2−1),Q4(x)=( 7

8)1/2 ⋅(5x 3−3x), . . . .

∘ The Legendre polynomials are usually given with a different scaling such that Pk(1)= 1, rather than the unit
norm condition ‖Qk‖= (Qk,Qk)1/2 = 1. The above results can be recovered by sampling of the interval [−1, 1] at
points xi = (i −1)h−1, h=2/(m −1), i =1, . . . ,m, by approximation of the integral by a Riemann sum

∫
−1

1
f (x)Lj(x)dx ≅h∑

i=1

m

f (xi)Lj(xi)=hf TLj.

Figure 1.11. Comparison of monomial basis (leſt) to Legendre polynomial basis (right). The “resolution” of P3(x ) can be interpreted
as the number of crossings of the y =0 ordinate axis, and is greater than that of the corresponding monomial x 3.

3.3. Least squares

The approach to compressing data D = {(xi,yi)| i = 1, . . . ,m} suggested by calculus concepts is to form the sum of
squared differences between y(xi) and yi, for example for y(x)=a0+a1x when carrying out linear regression,

S(a0,a1)=∑
i=1

m

(y(xi)−yi)2=∑
i=1

m

(a0+a1xi −yi)2

and seek (a0,a1) that minimize S(a0,a1). The function S(a0,a1) 0 can be thought of as the height of a surface above
the a0a1 plane, and the gradient ∇S is defined as a vector in the direction of steepest slope. When at some point
on the surface if the gradient is different from the zero vector ∇S ≠0, travel in the direction of the gradient would
increase the height, and travel in the opposite direction would decrease the height. The minimal value of S would
be attained when no local travel could decrease the function value, which is known as stationarity condition, stated
as ∇S =0. Applying this to determining the coefficients (a0,a1) of a linear regression leads to the equations

∂S
∂a0

=0⇒2∑
i=1

m

(a0+a1xi −yi)=0⇔ma0+((((((((((∑
i=1

m

xi))))))))))a1=∑
i=1

m

yi,

∂S
∂a1

=0⇒2∑
i=1

m

(a0 +a1xi −yi)xi =0⇔((((((((((∑
i=1

m

xi))))))))))a0+((((((((((∑
i=1

m

xi2))))))))))a1=∑
i=1

m

xi yi.
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The above calculations can become tedious, and do not illuminate the geometrical essence of the calculation, which
can be brought out by reformulation in terms of a matrix-vector product that highlights the particular linear com-
bination that is sought in a liner regression. Form a vector of errors with components ei =y(xi)−yi, which for linear
regression is y(x)= a0 + a1x . Recognize that y(xi) is a linear combination of 1 and xi with coefficients a0,a1, or in
vector form

e =(((((((((((((((((((
( 1 x1
⋅⋅⋅ ⋅⋅⋅
1 xm )))))))))))))))

))))
)(((((( a0

a1 ))))))− y =( 1 x )a − y =Aa − y

The norm of the error vector ‖e‖ is smallest when Aa is as close as possible to y . Since Aa is within the column
space of C(A), Aa ∈C(A), the required condition is for e to be orthogonal to the column space

e⊥C(A)⇒ATe =(((((((((( 1T

xT ))))))))))e =(((((((((( 1Te
xTe ))))))))))=(((((( 0

0 ))))))=0
ATe =0⇔AT(Aa − y)=0⇔(ATA)a =ATy =b .

The above is known as the normal system, with N =ATA is the normal matrix. The system Na =b can be interpreted
as seeking the coordinates in the N =ATA basis of the vector b =ATy . An example can be constructed by randomly
perturbing a known function y(x)= a0 + a1 x to simulate measurement noise and compare to the approximate ã
obtained by solving the normal system.

1. Generate some data on a line and perturb it by some random quantities

ũ m=100; x=LinRange(0,1,m); a=[2; 3];

ũ a0=a[1]; a1=a[2]; yex=a0 .+ a1*x; y=(yex+rand(m,1) .- 0.5);

ũ

2. Form the matrices A, N =ATA, vector b =ATy

ũ A=ones(m,2); A[:,2]=x; N=A'*A; b=A'*y;

ũ

3. Solve the system Na =b , and form the linear combination ỹ =Aa closest to y

ũ atilde=N\b; [a atilde]

[[[[[[ 2.0 1.9215699010834906
3.0 3.03714411616737 ]]]]]] (1.40)

ũ

The normal matrix basis N =ATA can however be an ill-advised choice. Consider A ∈ℝ2×2 given by

A = [ a1 a2 ]=[[[[[[ 1 cosθ
0 sinθ ]]]]]],
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where the first column vector is taken from the identity matrix a1=e1, and second is the one obtained by rotating it
with angle θ . If θ =π /2, the normal matrix is orthogonal, ATA= I , but for small θ , A and N =ATA are approximated as

A ≅[[[[[[ 1 1
0 θ ]]]]]],N = [ n1 n2 ]=[[[[[[[[ 1 1

0 θ 2 ]]]]]]]].
When θ is small a1, a2 are almost colinear, and n1,n2 even more so. This can lead to amplification of small errors,
but can be avoided by recognizing that the best approximation in the 2-norm is identical to the Euclidean concept
of orthogonal projection. The orthogonal projector onto C(A) is readily found by QR-factorization, and the steps
to solve least squares become

1. Compute QR =A

2. The projection of y onto the column space of A is z =QQ Ty , and has coordinates c =Q Ty in the orthogonal
basis Q .

3. The same z can also obtained by linear combination of the columns of A, z =Aa =QQ T y , and replacing A
with its QR-factorization gives QRa =Qc , that leads to the system Ra = c , solved by back-substitution.

ũ Q,R=mgs(A); c=Q'*y;

ũ aQR=R\c; [a atilde aQR]

[[[[[[ 2.0 1.9215699010834906 1.9065620791027633
3.0 3.03714411616737 3.0503545613518166 ]]]]]] (1.41)

ũ

The above procedure carried over to approximation by higher degree polynomials.

ũ m=100; n=6; x=LinRange(0,1,m); a=rand(-10:10,n,1); A=ones(m,1);

ũ for j=1:n-1
global A
A = [A x.^j];

end
ũ yex=A*a; y=yex .+ 0.001*(rand(m,1) .- 0.5); N=A'*A;

ũ b=A'*y;

ũ atilde=N\b; Q,R=mgs(A); c=Q'*y;

ũ aQR=R\c; [a atilde aQR]

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[

[

[ 10.0 10.000017230385858 10.000017230388655
−1.0 −0.9992383469668031 −0.9992383470406295
5.0 4.989621421635248 4.989621422094993
−1.0 −0.9668390169144284 −0.9668390180268995
−3.0 −3.0392026170942916 −3.0392026159405616
−7.0 −6.984207346901643 −6.984207347332273 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]

]

]
(1.42)

ũ
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b

e
C(A)

Ax

Givendatab , formA,findx , such that ‖e‖= ‖Ax −b‖ isminimized

e =b −Ax

4. Projection of mappings

4.1. Reduced matrices

The least-squares problem

min
x∈ℝn

‖y −Ax ‖ (1.43)

focuses on a simpler representation of a data vector y ∈ℝm as a linear combination of column vectors of A ∈ℝm×n.
Consider some phenomenonmodeled as a function between vector spaces f :X→Y , such that for input parameters
x ∈X , the state of the system is y = f (x). For most models f is differentiable, a transcription of the condition that
the system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice
of units and origin, a linearized model

y =Ax , A ∈ℝm×n,

is obtained if y ∈C(A), expressed as (1) if y ∉C(A).

A simpler description is oſten sought, typically based on recognition that the inputs and outputs of the model
can themselves be obtained as linear combinations x =Bu , y =C v , involving a smaller set of parameters u ∈ℝq,
v ∈ℝp, p <m, q <n. The column spaces of the matrices B ∈ℝn×q, C ∈ℝm×p are vector subspaces of the original set
of inputs and outputs, C(B ) ≤ℝn, C(C) ≤ℝm. The sets of column vectors of B ,C each form a reduced basis for
the system inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been
orthonormalized through the Gram-Schmidt procedure such that BTB = Iq, and CTC = Ip. Expressing the model
inputs and outputs in terms of the reduced basis leads to

Cv =ABu⇒v =CTABu⇒v =Ru .

The matrix R =CTAB ∈ℝp×q is called the reduced system matrix and is associated with a mapping g :U→V , that is a
restriction to the U ,V vector subspaces of the mapping f . When f is an endomorphism, f :X→X , m =n, the same
reduced basis is used for both inputs and outputs, x =Bu , y =Bv , and the reduced system is

v =Ru ,R =BTAB .

Since B is assumed to be orthogonal, the projector onto C(B) is PB =BBT . Applying the projector on the inital
model

PBy =PBAx

leads to BBT y =BBTAx , and since v =BT y the relation Bv =BBTABu is obtained, and conveniently grouped as

Bv =B (BTAB)u⇒Bv =B (Ru),
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again leading to the reduced model v =Bu . The above calculation highlights that the reduced model is a projection
of the full model y =Ax on C(B ).

4.2. Dynamical system model reduction

An oſten encountered situation is the reduction of large-dimensional dynamical system

Mẍ +Dẋ +Kx = f ,M ,D ,K ∈ℝm×m,x , f :ℝ+→ℝm, (1.44)

ẋ =
dx
dt , ẍ =

dẋ
dt ,

a generalization to multiple degrees of freedom of the damped oscillator equation

mẍ +d ẋ +kx = f .

In (1.44), x(t) are the time-depenent coordinates of the system, f (t) the forces acting on the system, and M ,D ,K
are the mass, drag, stiffness matrices, respectively.

When m≫1, a reduced description is sought by linear combination of n≪m basis vectors

x ≅ x̃ =By ⇒MBÿ +DBẏ +KBy = f

Choose B ∈ℝm×n to have orthonormal columns, and project (1.44) onto C(B) by multiplication with the projector
P =BBT

BBTMBÿ +BBTDB ẏ +BBTKBy =BBTf ⇒

B(BTMBÿ +BTDBẏ +BTKBy −BTf )=0⇔Bz =0.

Since N(B)={0}, deduce z =0, hence

BTMBÿ +BTDBẏ +BTKBy =BTf .

Introduce notations

M̃ =BTMB , D̃ =BTDB , K̃ =BTKB

for the reduced mass, drag, stiffness matrices, with M̃ , D̃ ,K̃ ∈ℝn×n of smaller size. The reduced coordinates and
forces are

f̃ =BTf , y , f̃ ∈ℝn.

The resulting reduced dynamical system is

M̃ ÿ + D̃ ẏ + K̃ y = f̃ .
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5. Reduced bases

One elemenet is missing from the description of model reduction above: how is B determined? Domain-specific
knowledge can often dictate an appropriate basis (e.g., Fourier basis fo periodic phenomena). An alternative
approach is to extract an appropriate basis from observations of a phenomenon, known as data-driven modeling .

5.1. Correlation matrices

Correlation coefficient. Consider two functions x1,x2:ℝ→ℝ, that represent data streams in time of inputs x1(t)
and outputs x2(t) of some system. A basic question arising in modeling and data science is whether the inputs
and outputs are themselves in a functional relationship. This usually is a consequence of incomplete knowledge
of the system, such that while x1, x2 might be assumed to be the most relevant input, output quantities, this is
not yet fully established. A typical approach is to then carry out repeated measurements leading to a data set
D = {(x1(ti), x2(ti))| i = 1, . . . ,N}, thus defining a relation. Let x1, x2 ∈ℝN denote vectors containing the input and
output values. The mean values µ1,µ2 of the input and output are estimated by the statistics

µ1≅ x̄1=
1
N∑

i=1

N

x1(ti)=E [x1],µ2≅ x̄2 = 1
N∑

i=1

N

x2(ti)=E [x2],

where E is the expectation seen to be a linear mapping, E :ℝN →ℝ whose associated matrix is

E = 1
N[ 1 1 . . . 1 ],

and the means are also obtained by matrix vector multiplication (linear combination),

x̄1=Ex1, x̄2 =Ex2.

Deviation from the mean is measured by the standard deviation defined for x1,x2 by

σ1= E[(x1−µ1)2]√ , σ2 = E[(x2−µ2)2]√ .

Note that the standard deviations are no longer linear mappings of the data.

Assume that the origin is chosen such that x̄1= x̄2=0. One tool to estalish whether the relation D is also a function
is to compute the correlation coefficient

ρ(x1,x2)= E[x1x2]
σ1σ2

= E[x1x2]
E[x12]E[x22]√ ,

that can be expressed in terms of a scalar product and 2-norm as

ρ(x1,x2)= x1Tx2
‖x1‖ ‖x2‖ .

Squaring each side of the norm property ‖x1 +x2‖ ‖x1‖+ ‖x2‖, leads to

(x1+x2)T(x1 +x2) x1T x1+x2T x2 +2 ‖x1‖ ‖x2‖⇒x1T x2 ‖x1‖ ‖x2‖,

80 LINEAR ALGEBRA



known as the Cauchy-Schwarz inequality, which implies −1 ρ(x1,x2) 1. Depending on the value of ρ, the vari-
ables x1(t),x2(t) are said to be:

1. uncorrelated , if ρ=0;

2. correlated , if ρ=1;

3. anti-correlated , if ρ=−1.

The numerator of the correlation coefficient is known as the covariance of x1,x2

cov(x1,x2)=E[x1x2].

The correlation coefficient can be interpreted as a normalization of the covariance, and the relation

cov(x1,x2)=x1T x2=ρ(x1,x2) ‖x1‖ ‖x2‖,

is the two-variable version of a more general relationship encountered when the system inputs and outputs become
vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters x ∈ℝn, y ∈ℝm thought
to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful
description is furnished by u ∈ℝq, v ∈ℝp with fewer components p <m, q < n. Applying the same ideas as in the
correlation coefficient, a sequence of N measurements is made leading to data sets

X = [ x1 x2 . . . xn ]∈ℝN×n,Y = [ y1 y2 . . . yn ]∈ℝN×m.

Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero

E[x ]=0,E[y]=0.

Covariance matrices can be constructed by

CX =X TX =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ x1T

x2T

⋅⋅⋅
xnT ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]
]
]
[ x1 x2 . . . xn ]=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[
[ x1T x1 x1T x2 . . . x1T xn
x2T x1 x2T x2 . . . x2T xn
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

xnT x1 xnT x2 . . . xnT xn ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]
]
]
∈ℝn×n.

Consider now the SVDs of CX =N ΛN T , X =U ΣS T , and from

CX =X TX =(U ΣS T)TU ΣS T =S ΣTU TU ΣS T =S ΣT ΣS T =N ΛN T ,

identify N =S , and Λ =ΣT Σ.

Recall that the SVD returns an order set of singular values σ1 σ2 ⋅ ⋅ ⋅ , and associated singular vectors. In many
applications the singular values decrease quickly, oſten exponentially fast. Taking the first q singular modes then
gives a basis set suitable for mode reduction

x =Sq u = [ s1 s2 . . . sq ]u .
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6. Stochastic systems - Karhunen-Loève theorem

The data reduction inherent in SVD representations is a generic feature of natural phenomena. A paradigm for
physical systems is the evolution of correlated behavior against a backdrop of thermal enery, typically represented
as a form of noise.

One mathematical technique to model such systems is the definition of a stochastic process {Xt}a t b, where for
each fixed t, Xt is a random variable, i.e., a measurable function X :Ω→E from a set of possible outcomes Ω to a
measurable space E . The set Ω is the sample space of a probability triple (Ω,ℱ,P), where for ∀S ⊂−E

P(X ∈S)=P({ω ∈Ω}|X(ω)∈S|).

A measurable space is a set coupled with procedure to determine measurable subsets, known as a σ-algebra.

THEOREM. Let Xt be a zero-mean ( [Xt]=0), square-integrable stochastic process defined over probability space (Ω,
ℱ,P) indexed by t ∈ℝ, a t b. Then Xt admits a representation

Xt =∑
k=1

∞

Zkek(t),

with

Zk =∫
a

b
Xt ek(t)dt, [Zk]=0, [Zi,Zj]=δijσj.

LECTURE 9: LINEAR SYSTEMS

1. Gaussian elimination and row echelon reduction

Suppose now that A x =b admits a unique solution. How to find it? We are especially interested in constructing
a general procedure, that will work no matter what the size of A might be. This means we seek an algorithm that
precisely specifies the steps that lead to the solution, and that we can program a computing device to carry out
automatically. One such algorithm is Gaussian elimination.
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Consider the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
x1 +2 x2−x3 = 2
2x1−x2 +x3 = 2
3x1−x2−x3 = 1

The idea is to combine equations such that we have one fewer unknown in each equation. Ask: with what number
should the first equation be multiplied in order to eliminate x1 from sum of equation 1 and equation 2? This number
is called a Gaussian multiplier, and is in this case −2. Repeat the question for eliminating x1 from third equation,
with multiplier −3.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
x1+2x2−x3 = 2
2 x1−x2+x3 = 2
3x1−x2−x3 = 1

⇒{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
x1+2x2−x3 = 2
−5x2 +3x3 = −2
−7x2+2x3 = −5

Now, ask: with what number should the second equation be multiplied to eliminate x2 from sum of second and
third equations. The multiplier is in this case −7/5.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
x1+2x2−x3 = 2
−5x2 +3x3 = −2
−7x2+2x3 = −5

⇒{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
x1+2x2−x3 = 2
−5x2 +3x3 = −2

−115 x3 = −115

Starting from the last equation we can now find x3 =1, replace in the second to obtain −5x2 =−5, hence x2 =1, and
finally replace in the first equation to obtain x1=1.

The above operations only involve coefficients. A more compact notation is therefore to work with what is known
as the "bordered matrix"

(((((((((((((((((((
( 1 2 −1 2
2 −1 1 2
3 −1 −1 1 ))))))))))))))))

)))
)∼(((((((((((((((((((

( 1 2 −1 2
0 −5 3 −2
0 −7 2 −5 ))))))))))))))))

)))
)∼((((((((((((((((((

((((((((
(
( 1 2 −1 2
0 −5 3 −2

0 0 −115 −115 ))))))))))))))))))
))))))))
)
)

Once the above triangular form has been obtain, the solution is found by back substitution, in which we seek to
form the identity matrix in the first 3 columns, and the solution is obtained in the last column.

((((((((((((((((((
((((((((
(
( 1 2 −1 2
0 −5 3 −2

0 0 −115 −115 ))))))))))))))))))
))))))))
)
)
∼(((((((((((((((((((
( 1 2 −1 2
0 −5 3 −2
0 0 1 1 )))))))))))))))))))

)∼(((((((((((((((((((
( 1 0 0 1
0 1 0 1
0 0 1 1 ))))))))))))))))

)))
)

2. LU -factorization

• We have introduced Gaussian elimination as a procedure to solve the linear system A x =b ("find coordi-
nates of vector b in terms of column vectors of matrix A"), x ,b ∈ℝm,A ∈ℝm×m

• We now reinterpret Gaussian elimination as a sequence of matrix multiplications applied to A to obtain a
simpler, upper triangular form.
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2.1. Example for m =3

Consider the system A x =b

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
x1 +2 x2−x3 = 2
2x1−x2 +x3 = 2
3x1−x2−x3 = 1

with

A =(((((((((((((((((((
( 1 2 −1
2 −1 1
3 −1 −1 ))))))))))))))))

)))
),b =(((((((((((((((((((

( 2
2
1 ))))))))))))))))
)))
)

We ask if there is a matrix L1 that could be multiplied with A to produce a result L1A with zeros under the main
diagonal in the first column. First, gain insight by considering multiplication by the identity matrix, which leaves
A unchanged

(((((((((((((((((((
( 1 0 0
0 1 0
0 0 1 ))))))))))))))))

)))
)
(((((((((((((((((((
( 1 2 −1
2 −1 1
3 −1 −1 ))))))))))))))))

)))
)=(((((((((((((((((((

( 1 2 −1
2 −1 1
3 −1 −1 ))))))))))))))))

)))
)

In the first stage of Gaussian multiplication, the first line remains unchanged, so we deduce that L1 should have
the same first line as the identity matrix

L1 =(((((((((((((((((((
( 1 0 0
? ? ?
? ? ? ))))))))))))))))

)))
)

(((((((((((((((((((
( 1 0 0
? ? ?
? ? ? ))))))))))))))))

)))
)
(((((((((((((((((((
( 1 2 −1
2 −1 1
3 −1 −1 ))))))))))))))))

)))
)=(((((((((((((((((((

( 1 2 −1
0 −5 3
0 −7 2 )))))))))))))))))))

)

Next, recall the way Gaussian multipliers were determined: find number to multiply first line so that added to
second, third lines a zero is obtained. This leads to the form

L1 =(((((((((((((((((((
( 1 0 0
? 1 0
? 0 1 ))))))))))))))))

)))
)

Finally, identify the missing entries with the Gaussian multipliers to determine

L1 =(((((((((((((((((((
( 1 0 0
−2 1 0
−3 0 1 ))))))))))))))))

)))
)

Verify by carrying out the matrix multiplication

L1A =(((((((((((((((((((
( 1 0 0
−2 1 0
−3 0 1 ))))))))))))))))

)))
)
(((((((((((((((((((
( 1 2 −1
2 −1 1
3 −1 −1 ))))))))))))))))

)))
)=(((((((((((((((((((

( 1 2 −1
0 −5 3
0 −7 2 )))))))))))))))))))

)
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Repeat the above reasoning to come up with a second matrix L2 that forms a zero under the main diagonal in the
second column

L2 =(((((((((((((((((((
( 1 0 0
0 1 0
0 −7/5 1 ))))))))))))))))

)))
)

L2L1A=(((((((((((((((((((
( 1 0 0
0 1 0
0 −7/5 1 ))))))))))))))))

)))
)
(((((((((((((((((((
( 1 2 −1
0 −5 3
0 −7 2 )))))))))))))))))))

)=(((((((((((((((((((
( 1 2 −1
0 −5 3
0 0 −11/5 ))))))))))))))))

)))
)=U

We have obtained a matrix with zero entries under the main diagonal (an upper triangular matrix) by a sequence
of matrix multiplications.

2.2. General m case

From the above, we assume that we can form a sequence of multiplier matrices such that the result is an upper
triangular matrix U

Lm−1...L2L1A=U

• Recall the basic operation in row echelon reduction: constructing a linear combination of rows to form zeros
beneath the main diagonal, e.g.

A =

((((((((((((((((((
((((((((((((((((((
((((((
(
( a11 a12 . . . a1m
a21 a22 . . . a2m
a31 a32 . . . a3m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . amm ))))))))))))))
))))))))))))))))))
))))))))))
)
)
∼

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((

(

( a11 a12 . . . a1m
0 a22−

a21
a11
a12 . . . a2m−

a21
a11
a1m

0 a32−
a31
a11
a12 . . . a3m−

a31
a11
a1m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 am2−

am1

a11
a12 . . . amm−

am1

a11
a1m )))))))))))))))))

))))))))))))))))))
))))))))))))))))))
)))))))

)

)

• This can be stated as a matrix multiplication operation, with li1=ai1/a11

((((((((((((((((((
((((((((((((((((((
((((((
(
( 1 0 0 . . . 0
−l21 1 0 . . . 0
−l31 0 1 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

−lm1 0 0 . . . 1 ))))))))))))))))
))))))))))))))))))
))))))))
)
)
((((((((((((((((((
((((((((((((((((((
((((((
(
( a11 a12 . . . a1m
a21 a22 . . . a2m
a31 a32 . . . a3m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . amm ))))))))))))))
))))))))))))))))))
))))))))))
)
)
=

((((((((((((((((((
((((((((((((((((((
((((((
(
( a11 a12 . . . a1m

0 a22− l21a12 . . . a2m− l21a1m
0 a32− l31a12 . . . a3m− l31a1m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 am2− lm1a12 . . . amm− lm1a1m ))))))))))))))

))))))))))))))))))
))))))))))
)
)

DEFINITION. The matrix

Lk=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((

(

( 1 . . . 0 . . . 1
0 ⋅⋅ ⋅ 0 . . . 0
0 . . . 1 . . . 0
0 . . . −lk+1,k . . . 0
0 . . . −lk+2,k . . . 0
⋅⋅⋅ . . . ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 . . . −lm,k . . . 1 ))))))))))))))))

))))))))))))))))))
))))))))))))))))))
))))))))))))))))

)

)
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with li ,k=ai ,k
(k)/ak,k

(k), and A(k)=(ai ,j(k)) the matrix obtained aſter step k of row echelon reduction (or, equivalently, Gaussian
elimination) is called a Gaussian multiplier matrix.

• For A ∈ℝm×m nonsingular, the successive steps in row echelon reduction (or Gaussian elimination) corre-
spond to successive multiplications on the leſt by Gaussian multiplier matrices

Lm−1Lm−2. . .L2L1A =U

• The inverse of a Gaussian multiplier is

Lk
−1 =

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((

(

( 1 . . . 0 . . . 1
0 ⋅⋅ ⋅ 0 . . . 0
0 . . . 1 . . . 0
0 . . . lk+1,k . . . 0
0 . . . lk+2,k . . . 0
⋅⋅⋅ . . . ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 . . . lm,k . . . 1 ))))))))))))))))

))))))))))))))))))
))))))))))))))))))
))))))))))))))))

)

)
= I − (Lk− I )

• From (Lm−1Lm−2. . .L2L1)A =U obtain

A = (Lm−1Lm−2. . .L2L1)−1U =L1−1L2−1 ⋅ . . . ⋅Lm−1
−1 U =LU

• Due to the simple form of Lk−1 the matrix L is easily obtained as

L=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((

(

( 1 0 0 . . . 0 0
l2,1 1 0 . . . 0 0
l3,1 l3,2 1 . . . 0 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅

lm−1,1 lm−1,2 lm−1,3 . . . 1 0
lm,1 lm,2 lm,3 . . . lm,m−1 1 )))))))))))))))

))))))))))))))))))
))))))))))))))))))
)))

)

)

We will show that this indeed possible if A x = b admits a unique solution. Furthermore, the product of lower
triangular matrices is lower triangular, and the inverse of a lower triangular matrix is lower triangular (same applies
for upper triangular matrices). Introduce the notation

L−1 =Lm−1...L2L1

and obtain

L−1A=U

or

A =LU
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The above result permits a basic insight into Gaussian elimination: the procedure depends on "factoring" the matrix
A into two "simpler" matrices L,U . The idea of representing a matrix as a product of simpler matrices is funda-
mental to linear algebra, and we will come across it repeatedly.

For now, the factorization allows us to devise the following general approach to solving A x =b

1. Find the factorization LU =A

2. Insert the factorization into A x =b to obtain (L U)x =L(U x)=L y =b, where the notation y =U x has been
introduced. The system

Ly =b

is easy to solve by forward substitution to find y for given b

3. Finally find x by backward substitution solution of

Ux =y

Algorithm Gauss elimination without pivoting

for s =1 to m −1
for i = s +1 to m
t =−ais /ass
for j = s +1 to m
aij =aij + t ⋅asj

bi =bi + t ⋅bs

for s =m downto 1
xs =bs /ass
for i =1 to s −1
bi =bi −ais ⋅xs

return x

Algorithm Gauss elimination with partial pivoting

p =1:m (initialize row permutation vector)
for s =1 to m −1
piv = abs(ap(s),s)
for i = s +1 to m
mag = abs(ap(i),s)
if mag>piv then
piv=mag;k =p(s);p(s)=p(i);p(i)=k

if piv <ϵ then break(“Singular matrix”)
t =−ap(i)s /ap(s)s
for j = s +1 to m
ap(i)j =ap(i)j + t ⋅ap(s)j

bp(i)=bp(i)+ t ⋅bp(s)

for s =m downto 1
xs =bp(s)/ap(s)s
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for i =1 to s −1
bp(i)=bp(i)−ap(i)s ⋅xs

return x

Given A ∈ℝm×n

Singular value decomposition Gram-Schmidt Lower-upper
Transformation of coordinates Ax =b
U ΣV T =A QR =A LU =A
(U ΣV T)x =b⇒Uy =b⇒ y =U Tb (QR )x =b⇒Qy =b , y =Q Tb (LU )x =b⇒Ly =b (forwardsub tofind )y
Σz = y ⇒ z =Σ+y Rx = y (back subtofind x ) Ux = y (back sub to find x )
V Tx = z ⇒ x =Vz

3. Inverse matrix

By analogy to the simple scalar equation a x =b with solution x =a−1b when a≠0, we are interested in writing the
solution to a linear system A x =b as x =A−1b for A ∈ℝm×m, x ∈ℝm. Recall that solving A x =b = I b corresponds to
expressing the vector b as a linear combination of the columns of A. This can only be done if the columns of A form
a basis for ℝm, in which case we say that A is non-singular .

DEFINITION 1.3. For matrix A∈ℝm×m non-singular the inverse matrix is denoted by A−1 and satisfies the properties

AA−1=A−1A = I

3.1. Gauss-Jordan algorithm

Computation of the inverse A−1 can be carried out by repeated use of Gauss elimination. Denote the inverse by
B=A−1 for a moment and consider the inverse matrix property A B = I . Introducing the column notation for B, I
leads to

A( B1 ... Bm )=( e1 ... em )

and identification of each column in the equality states

ABk= ek,k =1,2, ..,m

with ek the column unit vector with zero components everywhere except for a 1 in row k . To find the inverse we
need to simultaneously solve the m linear systems given above.

Gauss-Jordan algorithm example. Consider

A =(((((((((((((((((((
( 1 2 3
−1 3 1
2 −1 −2 ))))))))))))))))

)))
)

88 LINEAR ALGEBRA



To find the inverse we solve the systems A B1= e1,A B2 =e2,A B3= e3. This can be done simultaneously by working
with the matrix A bordered by I

(A|I)=(((((((((((((((((((
( 1 1 0 1 0 0
−1 1 1 0 1 0
2 4 −2 0 0 1 ))))))))))))))))

)))
)

Carry out now operations involving linear row combinations and permutations to bring the leſt side to I

(((((((((((((((((((
( 1 1 0 1 0 0
−1 1 1 0 1 0
2 4 −2 0 0 1 ))))))))))))))))

)))
)∼(((((((((((((((((((

( 1 1 0 1 0 0
0 2 1 1 1 0
0 2 −2 −2 0 1 ))))))))))))))))

)))
)∼(((((((((((((((((((

( 1 1 0 1 0 0
0 2 1 1 1 0
0 0 −3 −3 −1 1 ))))))))))))))))

)))
)∼

∼((((((((((((((((((
((((((((
(
( 1 1 0 1 0 0
0 2 1 1 1 0

0 0 1 1
1
3 −

1
3 )))))))))))))
))))))))))))))
)
∼

((((((((((((((((((
((((((((((((((((((
(
( 1 1 0 1 0 0

0 2 0 0 2
3

1
3

0 0 1 1 1
3 −13 )))))))))))))

))))))))))))))))))
)))))
)
)
∼

((((((((((((((((((
((((((((((((((((((
(
( 1 1 0 1 0 0

0 1 0 0 1
3

1
6

0 0 1 1 1
3 −13 )))))))))))))

))))))))))))))))))
)))))
)
)
∼

((((((((((((((((((
((((((((((((((((((
((((((((((

(

( 1 0 0 1 −13 −16
0 1 0 0 1

3
1
6

0 0 1 1
1
3 −

1
3 )))))))))))))
))))))))))))))))))
)))))))))))))))

)

)

to obtain

A−1=

((((((((((((((((((
((((((((((((((((((
((((((((((

(

( 1 −13 −16
0 1

3
1
6

1 1
3 −13 )))))))))))))

))))))))))))))))))
)))))))))))))))

)

)

LU FACTORIZATION OF STRUCTURED MATRICES

The special structure of a matrix can be exploited to obtain more efficient factorizations. Evaluation of the linear
combination Ax =x1a1 + ⋅ ⋅ ⋅+xnan requires mn floating point operations (flops) for A ∈ℂm×n. Evaluation of p linear
combinations AX , X ∈ℂn×p requires mnp flops. If it is possible to evaluate Ax with fewer operations, the matrix is
said to be structured. Examples include:

• Banded matrices A = [aij], aij =0 if i − j > l or j − i >u, with l,u denoting the lower and upper bandwidths. If
l =u =0 the matrix is diagonal. If l =u =b the matrix is said to have bandwidth B=2b +1, i.e., for b =1, the
matrix is tridiagonal, and for b =2 the matrix is pentadiagonal. Lower triangular matrices have u=0, while
upper triangular matrices have l =0. The Ax product requires (l +u+1)m flops.

• Sparse matrices have r non-zero elements per row or c non-zero elements per column. The Ax product
requires rm or cn flops

• Circulant matrices A = [aij] are sqaure and have aij = f (i − j), a property that can be exploited to compute
Ax using 𝒪(m logm) operations
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• For square, rank-deficient matrices A ∈ℂm×m, rank(A)= r , Ax can be evaluated in 𝒪(km) flops

• When A,X are symmetric (hence square), AX requires 𝒪(m3/2) flops instead of m3.

1. Cholesky factorization of positive definite hermitian matrices

1.1. Symmetric matrices, hermitian matrices

Special structure of a matrix is typically associated with underlying symmetries of a particular phenomenon. For
example, the law of action and reaction in dynamics (Newton's third law) leads to real symmetric matrices, A ∈
ℝm×m, AT =A. Consider a system of m point masses with nearest-neighbor interactions on the real line where the
interaction force depends on relative position. Assume that the force exerted by particle i+1 on particle i is linear

fi+1,i = f (ui+1−ui)=k(ui+1−ui),

with ui denoting displacement from an equilibrium position. The law of action and reaction then states that

fi ,i+1=− fi+1,i =k(ui −ui+1).

If the same force law holds at all positions, then

fi−1,i =k(ui−1−ui).

The force on particle i is given by the sum of forces from neighboring particles i−1, i +1

fi = fi−1,i + fi+1,i =k(ui−1−ui)+k(ui+1−ui)=k(ui+1−2ui +ui−1).

Introducing f ,u ∈ℝm, and assuming u0 =um+1=0, the above is stated as

f =Ku ,

with K =k diag([ 1 −2 1 ]) is a symmetric matrix, K =K T , a direct consequence of the law of action and reaction.
The matrix K is in this case tridiagonal as a consequence of the assumption of nearest-neighbor interactions. Recall
that matrices represent linear mappings, hence

K = [ f (e1) f (e2) . . . f (em) ],

with f (u) the force-displacement linear mapping, Fig. 1.12, obtaining the same symmetric, tri-diagonal matrix.

ui =1

k
−2k

k

Figure 1.12. Image of ei through mapping representing a linear force is f (ei)=k[ . . . 1 −2 1 . . . ]T .
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This concept can be extended to complex matrices A ∈ℂm×m through A∗=A, in which case A is said to be self-adjoint
or hermitian. Again, this property is oſten associated with desired physical properties, such as the requirement of
real observable quantitites in quantum mechanics. Diagonal elements of a hermitian matrix must be real, and for
any x , y ∈ℂm, the computation

x ∗Ay =(x ∗Ay)∗= y ∗A∗x = y ∗Ax ,

implies for x = y that

x ∗Ax =x ∗Ax ,

hence x ∗Ax is real.

1.2. Positive-definite matrices

The work (i.e., energy stored in the system) done by all the forces in the above point mass system is

𝒲 =
1
2 uTKu ,

and physical considerations state that 𝒲 0. This leads the following definitions.

DEFINITION. A hermitian matrix A ∈ℂm×m is positive definite if for any non-zero x ∈ℂm, x ∗Ax >0.

DEFINITION. A hermitian matrix A ∈ℂm×m is positive semi-definite if for any non-zero x ∈ℂm, x ∗Ax 0.

If A is hermitian positive definite, then so is X ∗AX for any X ∈ℂm×n. Choosing

X = [ e1 . . . en ]∈ℂm×n

gives An=X ∗AX , the nth principal submatrix of A, itself a hermitian positive definite matrix. Choosing X =ejshows
that the j th diagonal element of A is positive, ajj = ejTAej >0

1.3. Symmetric factorization of positive-definite hermitian matrices

The structure of a hermitian positive definite matrix A ∈ℂm×m, can be preserved by modification of LU-factoriza-
tion. The resulting algorithm is known as Cholesky factorization, and its first stage is stated as

A =[[[[[[ a11 w ∗

w B ]]]]]]=[[[[[[ α 0
w /α I ]]]]]][[[[[[ 1 0∗

0 C ]]]]]][[[[[[ α w ∗/α
0 I ]]]]]]=[[[[[[ α 0

w /α I ]]]]]][[[[[[ α w ∗/α
0 C ]]]]]]=[[[[[[ a11 w ∗

w C +ww ∗/a11 ]]]]]],
whence C =B −ww ∗/a11. Repeating the stage-1 step

A =L1A1L1∗ ,
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leads to

A =L1L2A2L2∗ L1∗ = ⋅ ⋅ ⋅ =LL∗,L=L1L2. . .Lm.

The resulting Cholesky algorithm is half as expensive as standard LU-factorization.

Algorithm (Cholesky factorization, A =LL∗)

L=A
for i =1:m
for j = i +1:m
L[j :m, j]=L[j :m, j]−L[j :m, i] L̄[j , i]/L[i, i]

L[i:m, i]=L[i:m, i]/ L[i, i]√
2. iLU -factorization of sparse matrices

The two-dimensional extension of the nearest-neighbor interacting point mass system

3. Determinants

• A ∈ℝm×m a square matrix, det(A)∈ℝ is the oriented volume enclosed by the column vectors of A (a paral-
lelipiped)

• Geometric interpretation of determinants

• Determinant calculation rules

• Algebraic definition of a determinant

DEFINITION. The determinant of a square matrix A =( a1 . . . am )∈ℝm×m is a real number

det(A)=
|||||||||||||||||||||
||||||||||||||||||
|
| a11 a12 . . . a1m
a21 a22 . . . a2m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . amm |||||||||||||||||||||
||||||||||||||||||
|
|
∈ℝ

giving the (oriented) volume of the parallelepiped spanned by matrix column vectors.

• m =2

A =(((((( a11 a12
a21 a22 )))))), det(A)= ∣ a11 a12

a21 a22
∣
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• m =3

A =(((((((((((((((((((
( a11 a12 a13
a21 a22 a23
a31 a32 a33 )))))))))))))))

))))
), det(A)= ||||||||||||||||||||||

|||
|
| a11 a12 a13
a21 a22 a23
a31 a32 a33 ||||||||||||||||||||

||||||
|

• Computation of a determinant with m =2

∣ a11 a12
a21 a22

∣=a11a22−a12a21
• Computation of a determinant with m =3

||||||||||||||||||||||
|||
|
| a11 a12 a13
a21 a22 a23
a31 a32 a33 ||||||||||||||||||||

||||||
|
= a11a22a33 +a21a32a13+a31a12a23

−a13a22a31−a23a32a11−a33a12a21

• Where do these determinant computation rules come from? Two viewpoints

− Geometric viewpoint: determinants express parallelepiped volumes

− Algebraic viewpoint: determinants are computed from all possible products that can be formed from
choosing a factor from each row and each column

• m =2

A1

A2 A = ( a1 a2 )= (((((( a11 a12
a21 a22 ))))))

Figure 1.13.

• In two dimensions a ``parallelepiped'' becomes a parallelogram with area given as

(Area)= (LengthofBase)×(LengthofHeight)

• Take a1 as the base, with length b = ‖a1‖. Vector a1 is at angle φ1 to x1-axis, a2 is at angle φ2 to x2-axis, and
the angle between a1, a2 is θ =φ2−φ1. The height has length

h= ‖a2‖ sinθ = ‖a2‖sin(φ2−φ1)= ‖a2‖(sinφ2 cosφ1− sinφ1cosφ2)
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• Use cosφ1 =a11/‖a1‖, sinφ1=a12/‖a1‖, cosφ2 =a21/‖a2‖, sinφ2 =a22/‖a2‖

(Area)= ‖a1‖ ‖a2‖(sinφ2 cosφ1− sinφ1cosφ2)=a11a22−a12a21

• The geometric interpretation of a determinant as an oriented volume is useful in establishing rules for
calculation with determinants:

− Determinant of matrix with repeated columns is zero (since two edges of the parallelepiped are
identical). Example for m =3

∆= ||||||||||||||||||||||
|||
|
| a a u
b b v
c c w ||||||||||||||||||||||

|||
|
|
=abw +bcu+ cav −ubc − vca−wab =0

This is more easily seen using the column notation

∆=det( a1 a1 a3 . . . )=0

− Determinant of matrix with linearly dependent columns is zero (since one edge lies in the 'hyper-
plane' formed by all the others)

• Separating sums in a column (similar for rows)

det( a1+b1 a2 . . . am )=det( a1 a2 . . . am )+det( b1 a2 . . . am )

with ai,b1∈ℝm

• Scalar product in a column (similar for rows)

det( αa1 a2 . . . am )=α det( a1 a2 . . . am )

with α ∈ℝ

• Linear combinations of columns (similar for rows)

det( a1 a2 . . . am )=det( a1 αa1 +a2 . . . am )

with α ∈ℝ.

• A determinant of size m can be expressed as a sum of determinants of size m −1 by expansion along a row
or column

|||||||||||||||||||||
||||||||||||||||||
|
| a11 a12 a13 . . . a1m
a21 a22 a23 . . . a2m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 am3 . . . amm |||||||||||||||||||||
||||||||||||||||||
|
|
= a11||||||||||||||||||||||

|||
|
| a22 a23 . . . a2m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am2 am3 . . . amm ||||||||||||||||||||||

|||
|
|
−

a12||||||||||||||||||||||
|||
|
| a21 a23 . . . a2m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am1 am3 . . . amm ||||||||||||||||||||||

|||
|
|
+

a13||||||||||||||||||||||
|||
|
| a21 a22 a24 . . . a2m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am1 am2 am4 . . . amm ||||||||||||||||||||||

|||
|
|
−

. . .

+(−1)m+1a1m||||||||||||||||||||||
|||
|
| a21 a23 . . . a2,m−1

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am1 am3 . . . am,m−1 ||||||||||||||||||||

||||||
|
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• The formal definition of a determinant

detA = ∑
σ ∈Σ

ν(σ)a1i1a2i2. . .amim

requires mm! operations, a number that rapidly increases with m

• A more economical determinant is to use row and column combinations to create zeros and then reduce the
size of the determinant, an algorithm reminiscent of Gauss elimination for systems

Example:

||||||||||||||||||||||
|||
|
| 1 2 3
−1 0 1
−2 −1 4 ||||||||||||||||||||||

|||
|
|
= ||||||||||||||||||||||
|||
|
| 1 2 3
0 2 4
0 3 10 ||||||||||||||||||||||

|||
|
|
= ∣ 2 4

3 10 ∣=20−12=8
The first equality comes from linear combinations of rows, i.e. row 1 is added to row 2, and row 1 multiplied
by 2 is added to row 3. These linear combinations maintain the value of the determinant. The second
equality comes from expansion along the first column

3.1. Cross product

• Consider u, v ∈ℝ3. We've introduced the idea of a scalar product

u ⋅ v =uTv =u1v1 +u2v2 +u3v3

in which from two vectors one obtains a scalar

• We've also introduced the idea of an exterior product

uvT =(((((((((((((((((((
( u1
u2
u3 )))))))))))))))
))))
)( v1 v2 v3 )=(((((((((((((((((((

( u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3 )))))))))))))))

))))
)

in which a matrix is obtained from two vectors

• Another product of two vectors is also useful, the cross product, most conveniently expressed in determi-
nant-like form

u× v = ||||||||||||||||||||||
|||
|
| e1 e2 e3
u1 u2 u3
v1 v2 v3 ||||||||||||||||||||

||||||
|
=(u2v3− v2u3)e1 +(u3v1− v3u1)e2 +(u1v2− v1u2)e3
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LECTURE 10: STABILIZED ORTHOGONAL FACTORIZATIONS

1. Conditioning of linear algebra problems

Recall that the relative condition number of a mathematical problem f :X→Y characterizes the amplification by
f of perturbations in its argument

κ = lim
ε→0

sup
‖δx ‖ ε

((((((‖ f (x +δx)− f (x)‖
‖ f (x)‖ / ‖δx‖‖x‖ )))))).

Linear combination. The basic operation of linear combination Ax , A ∈ℂm×n, seen as the problem ℂn→→
f
ℂm has

the condition number

κ =sup
δx
((((((‖Aδx ‖‖Ax ‖ /

‖δx ‖
‖x ‖ ))))))=supδx ((((((‖Aδx ‖‖δx ‖ )))))) ‖x ‖

‖Ax ‖ = ‖A‖
‖x ‖
‖Ax ‖ .

The matrix norm property ‖Ay ‖ ‖A‖ ‖y ‖ can be used to obtain

‖x ‖= ‖Inx ‖= ‖A+Ax ‖ ‖A+‖ ‖Ax ‖⇒ ‖x ‖
‖Ax ‖ ‖A+‖

leading to

κ ‖A‖ ‖A+‖=κ(A),

where κ(A) is the condition number of the matrix A. If A is of full rank with m >n, the 2-norm condition number
is given by the ratio of largest to smallest singular values.

‖A‖=σ1, ‖A+‖=1/σn⇒κ(A)=σ1/σn 1.

By convention, if A is singular, the condition number κ(A)=∞.

Coordinate transformation. For A ∈ℂm×m of full rank, the coordinates of vector b ∈ℂm expressed in the I basis
can be transformed its coordinates x ∈ℂm in the A basis by solving the linear system Ax = Ib , with the solution
x =A−1b (so written formally, even though the inverse is almost never explicitly computed). This is simply another
linear combination of the columns of A−1, hence the problem f :ℂm→Cm, f (b)=A−1b again has a condition number
bounded by the condition number of the matrix A.

κ ‖A−1‖ ‖A‖=κ(A)=κ(A−1).

Operator perturbation. Instead of changing the input data as above, the linear mapping represented by the
matrix A ∈ℂm×n might itself be perturbed. Two mathematical problems may now be formulated:

1. For fixed b ∈ℂm, f :ℂm×n→ℂn, f (A, b)=A+ b = x . Perturbation of the input A induces perturbation of x in
order for b to be kept fixed

(A +δA)(x +δx)=b .

Using Ax =b , and assuming that δAδx is negligible gives

Aδx +δAx =0⇒δx =−A+δAx ,
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hence the relative condition number is

κ =
‖A+δA x ‖

‖x ‖ ⋅
‖A‖
‖δA‖

‖A+‖ ‖δA x ‖
‖x ‖ ⋅

‖A‖
‖δA‖

‖A+‖ ‖δA‖ ‖x ‖
‖x ‖ ⋅

‖A‖
‖δA‖ =κ(A).

For all above linear algebra problems the condition number is bounded by the associated matrix condition number.
Unitary matrices Q ∈ℂm×m have κ(Q )=1, and define an orthonormal basis for ℂm. A rank-deficient matrix Z ∈ℂm×m

has κ(Z ) =∞, and corresponds to a linearly dependent vector set {z1, . . . , zm}. The behavior of many numerical
approximation procedures based upon linear combinations is determined by condition number of the basis set.

• Monomial basis with uniform sampling . Sampling the monomial basis on interval [a, b] at ti = ih + a, i = 0,m,
h=(b −a)/(m −1) leads to the Vandermonde matrix

V = [ 1 t . . . tm ],

an extremely ill-conditioned matrix (Fig. ). This can readily be surmised from the example a=0, b =1, in which
case for largem the last columns of V become ever more colinear to the same em vector. Series expansions based
on the monomials such as the Taylor series

f (t)= f (0)+ f ʹ(0)t + ⋅ ⋅ ⋅ + f (n)(0)
n! t n+ ⋅ ⋅ ⋅

are highly sensitive to pertubations, small changes in f (t) lead to large changes in the coordinates { f (0),
f ʹ(0), . . .}.

ũ function Vandermonde(a,b,m)
t=LinRange(a,b,m); v=ones(m,1); V=copy(v)
for j=2:m

v = v .* t; V=[V v]
end
return V

end;
ũ

• Monomial basis with Chebyshev sampling . Changing the sampling so that points are clustered towards the
interval endpoints reduces the condition number at fixed number of sampling points m, but the same limiting
behavior for large m is obtained.

ũ function VandermondeC(m)
δ=π/(2*m); ϴ=LinRange(δ,π-δ,m)
t=cos.(ϴ)
v=ones(m,1); V=copy(v)
for j=2:m

v = v .* t; V=[V v]
end
return V

end;
ũ

• Triangular basis with uniform sampling . LU-factorization of the monomial basis leads to a different family of
polynomials, known as a triangular basis

{1, t −x1,(t −x1) ⋅ (t −x2), . . . ,(t −x1) ⋅ . . . ⋅ (t −xm−1)},

where {x1, . . . ,xm} are known as the nodes of the system. These can be chosen to uniformly sample an interval.
As to be expected, applying a sequence of non-unitary linear transformations onto an ill-conditioned basis
yields even worse conditioning.
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ũ function Triangular(a,b,m)
x=LinRange(a,b,m); T=ones(m,1); Tj=copy(T); t=copy(x)
for j=2:m

Tj = Tj .* (t .- x[j-1]); T=[T Tj]
end
return T

end;
ũ

• Triangular basis with Chebyshev sampling . Adopting Chebyshev sampling ameliorates the conditioning, but
only marginally.

ũ function TriangularC(m)
δ=π/(2*m); ϴ=LinRange(δ,π-δ,m)
x=cos.(ϴ); T=ones(m,1); Tj=copy(T); t=copy(x)
for j=2:m

Tj = Tj .* (t .- x[j-1]); T=[T Tj]
end
return T

end;
ũ

• ?
Figure 1.14. Monomial basis with: (o) uniform sampling, (x) Chebyshev sampling. Triangular basis with: (+) uniform sampling,
(*) Chebyshev sampling.

ũ mr=5:5:100; κVDMU=log10.(cond.(Vandermonde.(-1,1,mr)));
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ũ κVDMC=log10.(cond.(VandermondeC.(mr)));

ũ κTU=log10.(cond.(Triangular.(-1,1,mr)));

ũ κTC=log10.(cond.(TriangularC.(mr)));

ũ

ũ x=collect(mr); clf();

ũ plot(x,κVDMU,"o-",x,κVDMC,"x-",κTU,"+-",κTC,"*-");

ũ grid("on"); title("Condition number κ of polynomial bases");

ũ xlabel("Number of sample points"); ylabel("lg(κ)");

ũ pre=homedir()*"/courses/MATH661/images/";

ũ savefig(pre*"PolyBasesCondNr.eps");

ũ

2. Orthogonal factorization through Householder reflectors

The Gram-Schmidt procedure constructs an orthogonal factorization by linear combinations of the column vectors
of A ∈ℂm×n, m n, rank(A)=n

AR1R2 . . .Rn=Q ⇒A =QR ,R =Rn
−1. . .R1

−1.

In exact arithmetic C(Q )=C(A) by construction, and κ(Q )=1, but the sequence of multiplications with R1, . . . ,Rn

might amplify perturbations in A (due for example to floating point representation errors or inherent uncertainty

in knowledge of A). The problem f :ℂm×n→Cm×n×ℂn×n, A→→
f

Q ,R has condition number

κ = ‖δQ ‖
‖Q ‖ ⋅ ‖A‖

‖δA‖ +
‖δR ‖
‖R ‖ ⋅ ‖A‖

‖δA‖ ,

and numerical experimentation (Fig. 1.15) readily exhibits large condition numbers.

An alternative approach is to obtain an orthogonal factorization through unitary transformations

Qn . . .Q1A =R ⇒A =QR ,Q =Q1
∗ . . .Qn

∗.

Unitary transformations do not modify vector 2-norms or relative orientations

‖Qx ‖2=x ∗Q ∗Qx = ‖x ‖2,(Qy)∗(Qx)= y ∗x ,

and are hence said to be isometric. In Euclidean space reflections and rotations are isometric.
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∘ ?
Figure 1.15. QR-conditioning: (o) modified Gram-Schmidt, (x) Householder.

Construction of an isometric reflection transformation suitable for a QR factorization is represented in Fig. 1.16.
Let vector x ∈ℂm+1−k represent the portion of the k th column from the diagonal downwards in stage k of reduction
of A ∈ℂm×n to upper triangular form

Qk−1 . . .Q1A =[[[[[[ R C
0 B ]]]]]],B = [ x b2 . . . bn−k ].

The next stage of in reduction to upper triangular form is the isometric transformation of x into ±‖x ‖ e1, with
e1∈ℂm+1−k the unit vector along the first direction. With v =±‖xe1‖−x , q =v /‖v ‖, the projection of x onto the span
of v , C(v ) is

y =Pv x = qq ∗x ,

and its complementary projector onto N(v ∗) is

z =P⊥v =(I − qq ∗)x .

The reflector transforming x into ±‖x ‖ e1 is obtained by doubling the above displacements, and is known as a
Householder reflector

H = I −2qq ∗.

Of the two possibilities ±‖x ‖e1, the choice

v =−sign(x1)‖x ‖e1−x ,

avoids loss of floating accuracy x ≅ ‖x ‖e1. For x ∈ℂm+1−k, sign(x1)=exp(arg(x1)).
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x

‖x ‖e1−‖x ‖ e1

v = ‖x ‖ e1−x

C(v )

N(v ∗)

y z

y =Pvv =
vv ∗

v ∗v
x

z =P⊥v =(I − vv ∗

v ∗v
)x

‖x ‖e1 =x +2(z −x)=(I −2vv
∗

v ∗v
)x

Figure 1.16. Geometry of Householder reflector

The resulting Householder QR-factorization is given

Input: A ∈ℂm×n

Q =0m,n
for k =1:n
x =A[k :m,k]
v =sign(x1) ‖x ‖+x
q =v /‖v ‖; Q [k :m,k]= q
for j =k :n

A[k :m, j]=A[k :m, j]−2 q (q ∗A[k :m, j])

ũ function HouseholderQR(A)
m,n=size(A)
Q=zeros(m,n); R=copy(A)
for k=1:n

x=R[k:m,k]
e1=zeros(size(x)); e1[1]=1
v=sign(x[1])*norm(x)*e1+x
q=v/norm(v); Q[k:m,k]=q
for j=k:n
aj=R[k:m,j]; c=2*q'*aj
R[k:m,j]=aj.-c*q

end
end
return Q,R

end;
ũ

Note that the above implementation does not return the Q matrix, but rather the Q1, . . . ,Qn reflectors from which
Q can be reconstructed if needed. Usually though, the Q matrix itself is not required, but rather the product Qu
which can readily be evaluated as Qn ...Q1u . The Householder reflector algorithm is typically the default procedure
inQR-factorizations implemented in soſtware systems, and as seen in (Fig. 1.15), leads to much better conditioning.

3. Orthogonal factorization through Given rotators
An alternative approach to orthogonal factorization utilizes isometric rotation transformations of the form

R (i,k ,θ)= I + (cosθ −1)(ei ei∗+ ek ek∗)− sinθ (ei ek∗ − ek ei∗),

with the rotation angle θ chosen to nullify the subdiagonal element (i,k), i >k

(R (i,k ,θ) A)ik =akk sinθ +aik cosθ =0⇒θik =arctan(− aik
akk

).
Composition of repeated rotations Qik=R(i,k ,θik) can be organized to lead to an upper triangular matrix

Qmn . . .Q32Qm1 . . .Q31Q21A =R .
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Whereas Householder reflectors work on entire vectors, Givens rotators nullify individual subdiagonal elements.
For full matrices Householder reflectors typically require fewer floating point operations, but the special structure
of a sparse matrix is better exploited by use of Givens rotators.

Input: A ∈ℂm×n

Q =0m,n
for k =1:n
for i=k +1:m
θ =arctan(−aik/akk)
c =cos(θ); s =sin(θ)
for j =k :n
u=akj; v =aij
akj = cu− s v
aij = su+cv

ũ function GivensQR(A)
m,n=size(A)
Q=zeros(m,n); R=copy(A)
for k=1:n

for i=k+1:m
θ = atan(-R[i,k],R[k,k]); Q[i,k]=
c = cos(θ); s = sin(θ)
for j=k:n

u = R[k,j]; v = R[i,j]
R[k,j]=c*u-s*v
R[i,j]=s*u+c*v

end
end

end
return Q,R

end;
ũ

As in the Householder implementation the above implementation returns data to reconstruct Q if needed.

LECTURE 11: THE EIGENVALUE PROBLEM

1. Definitions

Linear endomorphisms f :ℂm→ℂm, represented by A ∈ℂm×m, can exhibit invariant directions x ≠0 for which

f (x)=Ax =λx ,

known as eigenvectors, with associated eigenvalue λ∈ℂ. Eigenvectors are non-zero elements of the null space of
A −λI ,

(A −λI )x =0,

and the null-space is referred to as the eigenspace of A for eigenvalue λ, ℰA(λ)=N(A −λI ).

Non-zero solutions are obtained if A −λI is rank-deficient (singular), or has linearly dependent columns in which
case

det(A −λI )=0⇒det(λI −A)=
|||||||||||||||||||||
||||||||||||||||||
|
| λ−a11 a12 . . . a1m

a21 λ−a22 . . . a2m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . λ−amm |||||||||||||||||||||
||||||||||||||||||
|
|
=0.
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From the determinant definition as “sum of all products choosing an element from row/column'', it results that

det(λI −A)=λm+ c1λm−1 + . . . + cm−1λ+ cm=pA(λ),

known as the characteristic polynomial associated with the matrix 𝑨, and of degree m. The characteristic polyno-
mial is monic , meaning that the coefficient of the highest power λm is equal to one. The fundamental theorem of
algebra states that pA(λ) of degree m has m roots, hence A ∈ℂm×m has m eigenvalues (not necessarily distinct), and
m associated eigenvectors. This can be stated in matrix form as

AX =X Λ,

with

X = [ x1 . . . xm ],Λ =diag(λ1, . . . ,λm),

the eigenvector matrix and eigenvalue matrix, respectively. By definition, the matrix A is diagonalizable if X is of
full rank, in which case the eigendecomposition of A is

A =X ΛX −1 .

1.1. Coordinate transformations

The statement Ax = λx , that eigenvector x is an invariant direction of the operator A along which the effect of
operator is scaling by λ, suggests that similar behavior would be obtained under a coordinate transformation Ty =
Ix =x . Assuming T is of full rank and introducing B =T −1AT , this leads to

Ax =ATy =λx =λTy ⇒T −1ATy =λy .

Upon coordinate transformation, the eigenvalues (scaling factors along the invariant directions) stay the same.
Metric-preserving coordinate transformations are of particular interest, in which case the transformation matrix is
unitary B =Q ∗AQ .

DEFINITION. Matrices A,B ∈ℂm×m are said to be similar, B ∼A, if there exists some full rank matrix T ∈ℂm×m such that
B =T −1AT.

PROPOSITION. Similar matrices A,B ∈ℂm×m, B =T −1AT, have the same eigenvalues, and eigenvectors x of A, y of B are
related through x =Ty.

Since the eigenvalues of B ∼A are the same, and a polynomial is completely specified by its roots and coefficient of
highest power, the characteristic polynomials of A,B must be the same

pA(λ)=∏
k=1

m

(λ−λk)=pB(λ).

This can also be verified through the determinant definition

pB(t)=det(λI −B)=det(λT −1T −T −1AT )=det(T −1(λI −A)T )=det(T −1)det(λI −A)det(T )=pA(λ),

since det(T −1)=1/det(T ).
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1.2. Paradigmatic eigenvalue problem solutions

∘ Reflection matrix. The matrix

H = I −2qqT ∈ℝ2×2, ‖q ‖=1,

is the two-dimensional Householder reflector across N(qT). Vectors colinear with q change direction along the
same orientation upon reflection, while vectors orthogonal to q (i.e., in the null space N (qT)) are unchanged.
It is therefore to be expected that λ1=−1, x1 = q , and λ2 =1, qTx2=0. This is readily verified

Hq =(I −2qqT)q = q −2q =−q ,

Hx2= (I −2qqT)x2=x2.

q

C(q) N(qT)z

Hz

Figure 1.17. Reflector in two dimensions

∘ Rotation matrix. The matrix

R (θ)=[[[[[[ cosθ −sinθ
sinθ cosθ ]]]]]],

represents the isometric rotation of two-dimensional vectors. If θ = 0, R = I with eigenvalues λ1 =λ2 = 1, and
eigenvector matrix X = I . For θ =π , the eigenvalues are λ1 = λ2 = −1, again with eigenvector matrix X = I . If
sinθ ≠0, the orientation of any non-zero x ∈ℝ2 changes upon rotation by θ . The characteristic polynomial has
complex roots

p(λ)=(λ−cosθ)2+ sin2θ⇒λ1,2 =cosθ ± i sinθ = e±iθ

and the directions of invariant orientation have complex components (are outside the real plane ℝ2)

X =[[[[[[ 1 −1
i i ]]]]]],RX =[[[[[[[[[[ e−iθ −e iθ

ie−iθ ie iθ ]]]]]]]]]]=[[[[[[ 1 −1
i i ]]]]]][[[[[[[[[[ e−iθ 0

0 e iθ ]]]]]]]]]].
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∘ Second-order differentiation matrix. Eigenvalues of matrices arising from discretization of continuum
operators can be obtained from the operator eigenproblem. The second-order differentiation operator ∂x2 has
eigenvalues −ξ 2 associated with eigenfunctions sin(ξx)

∂x2 sin(ξx)=−ξ 2 sin(ξx).

Sampling of sin(ξx) at xk=kh, k =1,...,m, h=π /(m+1) leads to the vector u ∈ℝm with components uk=sin(ξkh).
The boundary conditions at the sampling interval end-points affect the eigenvalues. Imposing sin(ξx)=0, at
x =0 and x =π leads to ξ ∈ℤ. The derivative can be approximated at the sample points through

uḱ́ ≅
sin[ξ(xk +h)]−2sin[ξxk]+sin[ξ(xk −h)]

h2 =
2
h2 (cos(ξh)−1)sin(ξkh)=−

4
h2 sin

2((((((ξh2 ))))))sin(ξkh) .
The derivative approximation vector u ʹʹ= [uḱ́]k=1, . . .m results from a linear mapping u ʹʹ=Du , and the matrix

D = 1
h2 diag([ 1 −2 1 ]),

has eigenvectors u and eigenvalues −(4/h2) sin2(ξh /2), ξ = 1, 2, . . . ,m . In the limit of an infinite number of
sampling points the continuum eigenvalues are obtained, exemplifying again the correspondence principle
between discrete and continuum representations

lim
h→0

− 4
h2 sin

2((((((ξh2 ))))))=−ξ 2.

1.3. Matrix eigendecomposition

A solution X ,Λ to the eigenvalue problem AX =X Λ always exists, but the eigenvectors of A do not always form a
basis set, i.e., X is not always of full rank. The factorized form of the characteristic polynomial of A ∈ℂm×m is

pA(λ)=det(λI −A)=∏
k=1

K

(λ−λk)mk ,

with K m denoting the number of distinct roots of pA(λ), and mk is the algebraic multiplicity of eigenvalue λk,
defined as the number of times the root λk is repeated. Let ℰk denote the associated eigenspace ℰk =ℰA(λk)=
N(A − λk I ). The dimension of ℰk denoted by nk is the geometric multiplicity of eigenvalue λk. The eigenvector
matrix is of full rank when the vector sum of the eigenspaces covers ℂm, as established by the following results.

PROPOSITION. The geometric multiplicity is at least 1, nk 1.

Proof. By contradiction if nk =dimℰk, then ℰk ={0}, but eigenvectors cannot be null. □

PROPOSITION. If λi ≠λj then ℰi ∩ℰj ={0} (the eigenspaces of distinct eigenvalues are disjoint)

Proof. Let x ∈ℰi, hence Ax =λi x and x ∈ℰj, hence Ax =λjx . Subtraction gives

Ax −Ax =0= (λi −λj)x .
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Since λi ≠λj it results that x =0. □

PROPOSITION. The geometric multiplicity of an eigenvalue is less or equal to its algebraic multiplicity,

0<nk=dim(N(A −λkI )) mk.

Proof. Let V̂ ∈ℂm×nk be an orthonormal basis for N(A −λkI ). By definition of a null space, y ∈N(A −λkI )

(A −λkI )y =0⇒Ay =λky ,

i.e., every vector of the eigenspace is an eigenvector with eigenvalue λk. Then

AV̂ =A[ v1 v2 . . . vnk ]= [ Av1 Av2 . . . Avnk ]=λ[ v1 v2 . . . vnk ].

Form the unitary matrix V = [ V̂ Z ]∈ℂm×m, and compute

V ∗AV =[[[[[[[[ V̂ ∗

Z ∗ ]]]]]]]]A[ V̂ Z ]=[[[[[[[[ V̂ ∗

Z ∗ ]]]]]]]][ AV̂ AZ ]=[[[[[[[[[[ V̂ ∗AV̂ V̂ ∗AZ
Z ∗AV̂ Z ∗AZ ]]]]]]]]]].

Since V is unitary, obtain

V̂ ∗AV̂ =λ

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ v1∗

v2∗

⋅⋅⋅
vnk
∗ ]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]
]
]
[ v1 v2 . . . vnk ]=λInk ,Z ∗AV̂ =λ

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ z1∗

z2∗

⋅⋅⋅
zm−nk
∗ ]]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]
]
]
[ v1 v2 . . . vnk ]=0,

where Ink is the nk ×nk identity matrix, and in the above 0 denotes a (m −nk)×nk matrix of zeros. The matrix

B =V ∗AV =[[[[[[ λI C
0 D ]]]]]]

is similar to A and has the same eigenvalues. Since det(zI −B )=det((z −λ)I )det(D), the algebraic multiplicity of
λ must be at least nk, i.e., nk mk. □

DEFINITION 1.4. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be
defective.

∘ Example. Non-defective matrices exist, for example

A =[[[[[[[[[[[[[[[[[[
1 0 0
0 2 0
0 0 3 ]]]]]]]]]]]]]]]

]]],X = I ,Λ=diag([ 1 2 3 ]).
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∘ Example. Non-defective matrices with repeated eigenvalues exist, for example

A =[[[[[[[[[[[[[[[[[[
1 0 0
0 1 0
0 0 1 ]]]]]]]]]]]]]]]

]]],X = I ,Λ=diag([ 1 1 1 ]).

∘ Example. Defective matrices exist, for example

A =[[[[[[[[[[[[[[[[[[
3 1 1
0 3 1
0 0 3 ]]]]]]]]]]]]]]]

]]],

has eigenvalue λ=3 with algebraic multiplicity m1=3. Reduction to row-echelon form of A −λI leads to

A −λI =[[[[[[[[[[[[[[[[[[
0 1 1
0 0 1
0 0 0 ]]]]]]]]]]]]]]]

]]],

and N(A −λI )= ⟨e1⟩, i.e., the geometric multiplicity is equal to 1. The above is known as a Jordan block.

PROPOSITION 1.5. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal to the algebraic
multiplicity of that eigenvalue.

Proof. Recall that A is diagonalizable if the eigenvector matrix X is of full rank. Since the eigenspaces ℰj of the K
distinct eigenvalues are disjoint, the column space of X is the direct vector sum of the eigenspaces

C(X )=ℰ1⊕ . . .⊕ℰK .

The dimension of C(X ) is therefore given by the sum of the eigenspace dimensions

dimC(X )=∑
k=1

K

nk ∑
k=1

K

mk =m.

Since nk mk, the only possibility for X to be of full rank, dimC(X )=m, is for nk=mk. □

1.4. Matrix properties from eigenvalues

Eigenvalues as roots of the characteristic polynomial

pA(λ)=det(λI −A)=λm+ c1λm−1+ . . . + cm−1λ+ cm=∏
k=1

m

(λ−λk)

reveal properties of a matrix A ∈ℂm×m. The evaluation of pA(0) leads to

det(−A)=(−1)mdet(A)= (−1)m∏
k=1

m

λk,
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hence the determinant of a matrix is given by the product of its eigenvalues

det(A)=∏
k=1

m

λk.

The trace of a matrix is the sum of its diagonal elements is equal to the sum of its eigenvalues

tr(A)=∑
k=1

m

akk=∑
k=1

m

λk,

a relationship established by the Vieta formulas.

1.5. Matrix eigendecomposition applications

Whereas the SVD, QR, LU decompositions can be applied to general matrices A ∈ ℂm×n with m not necessarily
equal to n, the eigendecomposition requires A ∈ℂm×m, and hence is especially relevant in the characterization of
endomorphisms. A generic time evolution problem is stated as

∂tu =ut = f (u),u(0)=u0,u :ℝ+→ℂm,

stating that the rate of change in the state variables u characterizing some system is a function of the current state
through the function f :ℂm→ℂm, an endomorphism. An approximation of f is furnished by the MacLaurin series

f (u)=v +Au +𝒪(‖u‖2),v = f (0), A = ∂f
∂u (0).

Truncation at first order gives a linear ODE system ut =v +Au , that can be formally integrated to give

u(t)=v t + e tAu0 .

The matrix exponential e tA is defined as

e tA= I + 1
1! tA + 1

2! (tA)
2+ 1

3! (tA)
3+ . . . .

Evaluation of An requires n−1 matrix multiplications or (n−1)m3 floating point operations. However, if the eigen-
decomposition of A =X ΛX −1 is available the matrix exponential can be evaluate in only 2m3 operations since

Ak =(X ΛX −1)(X ΛX −1). . .(X ΛX −1)=X ΛkX −1,

leads to

e tA =Xe tΛX −1.
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2. Computation of the SVD

The existence of the SVD A =U ΣV ∗ was establish by a constructive procedure by complete induction. However the
proof depends on determining the singular values, e.g., σ1=‖A‖. The existence of the singular values was established
by an argument from analysis, that the norm function on a compact domain must attain its extrema. This however
leaves open the problem of effectively determining the singular values. In practive the singular values and vectors
are determined by solving the eigenvalue problem for AA∗ and A∗A

A∗A =(U ΣV ∗)∗(U ΣV ∗)=V ΣTU ∗U ΣV ∗=V ΣT ΣV ∗⇒(A∗A)V =V ΣT Σ,

AA∗= (U ΣV ∗)(U ΣV ∗)∗=U ΣV ∗V ΣTU ∗=U ΣΣTU ∗⇒ (AA∗)U =U ΣΣT .

From the above the leſt singular vectors U are eigenvectors of AA∗, and the right singular vectors are eigenvectors
of A∗A. Both AA∗ and A∗A have the same eigenvalues that are the squared singular values.

LECTURE 12: POWER ITERATIONS

1. Reduction to triangular form

The relevance of eigendecompositions A =X ΛX −1 to repeated application of the linear operator A ∈ℂm×m as in

e tA = I + 1
1! tA + 1

2! t
2A2+ ⋅ ⋅ ⋅ =Xe tΛX −1,

suggests that algorithms that construct powers of A might reveal eigenvalues. This is indeed the case and leads to
a class of algorithms of wide applicability in scientific computation. First, observe that taking condition numbers
gives

µ(A)=µ(X ΛX −1) µ2(X )µ(Λ)= (|λ|max/ |λ|min),

where |λ|max, |λ|min are the eigenvalues of maximum andminimum absolute values. While these express an intrinsic
property of the operator A, the factor µ2(X ) is associated with the conditioning of a change of coordinates, and a
natural question is whether it is possible to avoid any ill-conditioning associated with a basis set X that is close to
linear dependence. The answer to this line of inquiry is given by the following result.

SCHUR THEOREM. For any A ∈ℂm×m there exists Q unitary and T upper triangular such that A =QTQ ∗.

Proof. Proceed by induction, starting from an arbitrary eigenvalue λ and eigenvector x. Let u1 =x /‖x ‖, the first column
vector of a unitary matrix U = [ u1 V ]. Then

U ∗AU =[[[[[[ u1∗

V ∗ ]]]]]]A[ u1 V ]=[[[[[[ u1∗

V ∗ ]]]]]][ Au1 AV ]=[[[[[[ u1∗

V ∗ ]]]]]][ λu1 AV ]=[[[[[[ λ1 b ∗

0 C ]]]]]],
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with C ∈ℂ(m−1)×(m−1) that by the inductive hypothesis can be written as C =WSW ∗, with W unitary, S upper triangular.
The matrix

Q =U [[[[[[ 1 0
0 W ]]]]]]

is a product of unitary matrices, hence itself unitary. The computation

Q ∗AQ =((((((U [[[[[[ 1 0
0 W ]]]]]]))))))∗AU [[[[[[ 1 0

0 W ]]]]]]=[[[[[[ 1 0
0 W ∗ ]]]]]]U ∗AU [[[[[[ 1 0

0 W ]]]]]]=[[[[[[ 1 0
0 W ∗ ]]]]]][[[[[[ λ1 b ∗

0 C ]]]]]][[[[[[ 1 0
0 W ]]]]]]=[[[[[[ λ1 b ∗

0 S ]]]]]]=T ,

then shows that T is indeed triangular. □

The eigenvalues of an upper triangular matrix are simply its diagonal elements, so the Schur factorization is an
eigenvalue-revealing factorization.

2. Power iteration for real symmetric matrices

When the operator A expresses some physical phenomenon, the principle of action and reaction implies that A ∈
ℝm×m is symmetric, A =AT and has real eigenvalues. Componentwise, symmetry of A = [aij] implies aij =aji. Con-
sider Ax =λx , and take the adjoint to obtain xTAT = λ̄xT , or xTA = λ̄xT since A is symmetric. Form scalar products
xTAx =λxT x , xTAT x = λ̄xT x , and subtract to obtain

0=(λ− λ̄)xT x ⇒λ= λ̄⇒λ∈ℝ,

since x ≠0, an eigenvector.

Example. Consider a linear array of identical mass-springs. The i th point mass obeys the dynamics

mẍi =k(xi+1−xi)−k(xi −xi−1)=k(xi+1−2xi +xi−1),

expressed in matrix form as ẍ =Ax , with A symmetric.

For a real symmetric matrix the Schur theorem states that

A =AT ⇒(QTQ T)=QT TQ T ⇒T =T T ,

and since a symmetric triangular matrix is diagonal, the Schur factorization is also an eigendecomposition, and the
eigenvector matrix Q is a basis, C(Q )=ℝm.

2.1. The power iteration idea

Assume initially that the eigenvalues are distinct and ordered |λ1|> |λ2|> ⋅ ⋅ ⋅ > |λm|. Repeated application of A on an
arbitrary vector v =Qc ∈ℝm=C(Q ) is expressed as

Anv =(Q ΛQ T)nQc = (Q ΛQ T)(Q ΛQ T). . .(Q ΛQ T)Qc =Q Λn c ,
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a linear combination of the columns of Q (eigenvectors of A) with coefficients Λn c = [ λ1
n c1 λ2

n c2 . . . λm
n cm ]T .

∘ For large enough n, |λ1|> |λk|, k =2, . . . ,n, leads to a dominant contribution along the direcion of eigenvector q1

Anv =QΛnc =λ1
n c1 q1 + ⋅ ⋅ ⋅ +λmn cmqm≅λ1

n c1 q1.

This gives a procedure for finding one eigenvector of a matrix, and the Schur theorem proof suggests a recursive
algorithm to find all eigenvalues can be defined.

The sequence of normalized eigenvector approximants vn=Anv /‖Anv ‖ is linearly convergent at rate r = |λ2/λ1|.

2.2. Rayleigh quotient

To estimate the eigenvalue revealed by power iteration, formulate the least squares problem

min
c

‖Av −vc‖,

that seeks the best approximation of one power iteration Av as a linear combination of the initial vector v . Of
course, if v = q is an eigenvector, then the solution would be c =λ, the associated eigenvalue. The projector onto
C(v ) is

P = vvT

vT v
,

that when applied to Av gives the equation

PAv =
vvT

vTv
Av =

vTAv
vTv

v = cv ⇒ c =
vTAv
vTv

.

The function r :ℝm→ℝ,

r(v )= vTAv
vTv

,

is known as the Rayleigh quotient which, evaluated for an eigenvector, gives r(q)=λ. To determine how well the
eigenvalue is approximated, carry out a Taylor series in the vicinity of an eigenvector q

r(v )= r(q)+ 1
1![∇v r(q)]T (v − q)+𝒪(‖v − q ‖2),

where ∇v r is the gradient of r(v )

∇v r =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[
[
[ ∂r
∂v1
⋅⋅⋅
∂r
∂vm ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]
]
]
.

Compute the gradient through differentiation of the Rayleigh quotient

∇v r(v )= ∇v(vTAv)
vTv

−
(vTAv )
(vTv )2 ∇v (vTv ).
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Noting that ∇v vi = ei, the i th column of I , the gradient of vT v is

∇v (vTv )=∇v∑
i=1

m

vi2 =∑
i=1

m

∇v vi2=∑
i=1

m

2vi∇v vi =2∑
i=1

m

viei =2v .

To compute ∇v(vTAv ), let u =Av , and since A is symmetric uT =vTAT =vTA, leading to

∇v(vTAv )=∇v(uTv )=∑
i=1

m

∇v (ui vi )=∑
i=1

m

ui∇v vi +∑
i=1

m

vi∇vui.

Use ui =∑j=1
m aij vj also expressed as uj =∑i=1

m aji vi by swapping indices to obtain

∇vui =∑
j=1

m

aij∇v vj =∑
j=1

m

aijej

and therefore

∑
i=1

m

vi ∇vui =∑
i=1

m

vi ∑
j=1

m

aijej =∑
j=1

m ∑
i=1

m

aij vi ej =∑
j=1

m ∑
i=1

m

aij vi ej.

Use symmetry of A to write

∑
i=1

m

aij vi =∑
i=1

m

aji vi =uj,

and substitute above to obtain

∑
i=1

m

vi∇vui =∑
j=1

m

ujej =u =Av .

Gathering the above results

∇v (vTv )=2v ,∇v(vTAv )=2Av ,

gives the following gradient of the Rayleigh quotient

∇v r(v )= 2
vTv

(Av − r(v )v ) .

When evaluated at v = q , obtain ∇v r(q)=0, implying that near an eigenvector the Rayleigh quotient approximation
of an eigenvalue is of quadratic accuracy,

r(v )−λ=𝒪(‖v − q ‖2).

2.3. Refining the power iteration idea

Power iteration furnishes the largest eigenvalue. Further eigenvalues can be found by use of the following proper-
ties:

− (λ, q) eigenpair of A⇒(λ−µ, q) eigenpair of A −µI ;

− (λ, q) eigenpair of A⇒(1/λ, q) eigenpair of A−1.

112 LINEAR ALGEBRA



If µ is a known initial approximation of the eigenvalue then the inverse power iteration vn=(A −µI )−1vn−1, actually
implemented as successive solution of linear systems

(A −µI )vn=vn−1,

leads to a sequence of Rayleigh quotients r(vn) that converges quadratically to an eigenvalue close to µ. An impor-
tant refinement of the idea is to change the shiſt at each iteration which leads to cubic order of convergence

Algorithm (Rayleigh quotient iteration)

Given v ,A
µ =vTAv /vTv
for i =1 to nmax

w =(A −µI )\v (solve linear system)
v =w /‖w ‖
λ=vTAv
if |λ−µ|< ε exit
µ =λ

end
return λ,v

Power iteration can be applied simultaneously to multiple directions at once

Algorithm (Simultaneous iteration)

Given A
Q = I ; µ =diag(A)
for i =1 to nmax

V =AQ (power iteration applied to multiple directions)
QR =V (orthogonalize new directions)
λ =diag(Q TAQ )
if ‖λ − µ ‖< ε exit

end
return λ ,Q

LECTURE 13: EIGENVALUE-REVEALING FACTORIZATIONS
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CHAPTER 2
SCALAR FUNCTION APPROXIMATION

LECTURE 14: INTERPOLATION

The linear algebra concepts arising from study of linear mappings between vector spaces f :U→V , f (αu +βv )=
αf (u)+βf (v ), are widely applicable to nonlinear functions also. The study of nonlinear approximation starts with
the simplest case of approximation of a function with scalar values and arguments, f :ℝ→ℝ through additive
corrections.

1. Function spaces

An immediate application of the linear algebra framework is to construct vector spaces of real functionsℱ=(F ,+, ⋅),
with F = { f | f :ℝ→ℝ}, and the addition and scaling operations induced from ℝ,

(αf +βg)(t)=αf (t)+g(t), f ,g ∈F ,α ,β ∈ℝ.

Comparing with the real vector space (ℝm, +, ⋅) in which the analogous operation is αu +βv ,u , v ∈ℝm,α ,β ∈ℝ, or
componentwise

(αu +βv )i =αui +βvi, i=1,2, . . . ,m,

the key difference that arises is the dimension of the set of vectors. Finite-dimensional vectors within ℝm can be
regarded as functions defined on a finite set u⇔u:{1,2, . . . ,m}→ℝ, with u(i)=ui. The elements of F are however
functions defined on ℝ, a set with cardinality 𝔠=2ℵ0, with ℵ0 the cardinality of the naturalsℕ. This leads to a review
of the concept of a basis for this infinite-dimensional case.

1.1. Infinite dimensional basis set

In the finite dimensional case B ∈ℝm×m constituted a basis if any vector y ∈ℝm could be expressed uniquely as a
linear combination of the column vectors of

∀y ∈ℝm, ∃!c ∈ℝm suchthat y =Bc = c1b1 + ⋅ ⋅ ⋅ + cmbm .

While the above finite sum is well defined, there is no consistent definition of an infinite sum of vectors. As a simple
example, in the vector space of real numbers ℛ1 =(ℝ, +, ⋅), any finite sum of reals is well defined, for instance

Sn=∑
k=0

n

(−1)k ={{{{{{{{{{{{ 1 if n even
0 if n odd

but the limit Sn→∞ cannot be determined. This leads to the necessity of seeking finite-dimensional linear combi-
nations to span a vector space 𝒱 =(V ,S,+, ⋅). First, define linear independence of an infinite (possibly uncountable)
set of vectors ℬ= {vγ |γ ∈Γ,vγ ∈V}, where Γ is some indexing set.

DEFINITION. The vector set ℬ={vγ |γ ∈Γ,vγ ∈V}, is linearly independent if the only n∈ℕ scalars, x1,...,xn∈S, that satisfy

x1vγ1 + . . . +xn vγn =0,γi ∈Γ (2.1)
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are x1=0, x2 =0,...,xn=0.

The important aspect of the above definition is that all finite vector subsets are linearly independent. The same
approach is applied in the definition of a spanning set.

DEFINITION. Vectors within the set ℬ={vγ |γ ∈Γ,vγ ∈V}, span V, stated as V =span(ℬ), if for any u∈V there exist n∈ℕ
scalars, x1, . . . ,xn∈S, such that

x1vγ1 + . . . +xn vγn =u,γi ∈Γ. (2.2)

This now allows a generally-applicable definition of basis and dimension.

DEFINITION. The vector set ℬ= {vγ |γ ∈Γ,vγ ∈V} is a basis for vector space 𝒱 =(V ,S, +, ⋅) if

1. ℬ is linearly independent;

2. span(ℬ)=V.

DEFINITION. The dimension of a vector space 𝒱 = (V ,S, +, ⋅) is the cardinality of a basis set ℬ, dim(𝒱)= |ℬ|.

The use of finite sums to define linear independence and bases is not overly restrictive since it can be proven that
every vector space has a basis. The proof of this theorem is based on Zorn's lemma from set theory, and asserts
exsitence of a basis, but no constructive procedure. The difficulty in practical construction of bases for infinite
dimensional vector spaces is ascertained through basic examples.

Example. ℛ∞. As a generalization of ℛm= (ℝm,ℝ, +, ⋅), consider the vector space of real sequences {xn}n∈ℕ repre-
sented as a vectors with a countably infinite number of components x = [ x1 x2 x3 . . . ]T . Linear combinations are
defined by

αx +βy = [ αx1 +βy1 αx2 +βy2 αx3+βy3 . . . ]T .

Let ei denote the vector of all zeros except the i th position. In ℝm, the identity matrix I = [ e1 . . . em ] was a basis,
but this does not generalize to ℝ∞; for example the vector v = [ 1 1 1 . . . ]T cannot be obtained by finite linear
combination of the ei vectors. In fact, there is no countable set of vectors that spans ℝ∞.

Example. P(ℝ). The vector space of polynomials P(ℝ)={p|p(t)= cn t n+ cn−1t n−1 + ⋅ ⋅ ⋅ + c0,n ∈ℕ, ci ∈ℝ, i =0, 1, . . . ,N}
on the real line has an easily constructed basis, namely the set of the monomials

ℬ(t)= {t n |n ∈ℕ},

an infinite set with the cardinality as the naturals |ℬ|= |ℕ|=ℵ0.

1.2. Alternatives to the concept of a basis

The difficulty in ascribing significance to an infinite sum of vectors ∑i=1
∞ v i can be resolved by endowing the vector

space with additional structure, in particular a way to define convergence of the partial sums

sn=∑
i=1

n

vi
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to a limit limn→∞ sn=v .

Fourier series. One approach is the introduction of an inner product (u , v ) and the associated norm ‖u ‖= (u ,
v)1/2. A considerable advantage of this approach is that it not only allows infinite linear combinations, but also
definition of orthonormal spanning sets. An example is the vector space of continuous functions defined on [−π ,π]
with the inner product

( f ,g)= 1
π∫

−π

π
f (t)g(t)dt,

and norm ‖ f ‖= ( f , f )1/2. An orthonormal spanning set for C[−π ,π] is given by

{12}⋃ {cos(nx)|n ∈ℕ+}⋃ {sin(nx)|n ∈ℕ+}.

Vector spaces with an inner product are known as Hilbert spaces.

Taylor series. Convergence of infinite sums can be determined through a norm, without the need of an inner
product. An example is the space of real-analytic functions with the inf-norm

‖ f ‖∞=sup
x

| f (t)|,

for which a spanning set is given by the monomials {1, t, t 2, . . .}, and the infinite exapnsion

f (t)=∑
k=0

∞

ak (t − c)k

is convergent, with coefficients given by the Taylor series

f (t)= f (c)+ f ʹ(c)
1! (t − c)+ ⋅ ⋅ ⋅,ak= f (k)(c)

k ! .

Note that orthogonality of the spanning set cannot be established, absent an inner product.

1.3. Common function spaces

Several function spaces find widespread application in scientific computation. An overview is provided in Table 2.1.

B(ℝ) bounded functions
C(ℝ) continuous functions Cr(ℝ) with continuous derivatives up to r
Cc(ℝ) with compact support Cc

r(ℝ) and compact support
C0(ℝ) that vanish at infinity C∞(ℝ) smooth functions
Lp(ℝ) with finite p-norm Wk,p(ℝ) Sobolev space, with norm

‖ f ‖p= (∫−∞∞ | f (t)|2 dt)1/p ‖ f ‖k,p=(∑i=0
k ‖ f (i)‖pp)1/p

Table 2.1. Common vector spaces of functions
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2. Interpolation

The interpolation problem seeks the representation of a function f known only through a sample data set 𝒟 ={(xi,
yi = f (xi))|i=0,...,m}⊂ℝ×ℝ, by an approximant p(t), obtained through combination of elements from some family
of computable functions, ℬ= {b0, . . . ,bn|bk:ℝ→ℝ}. The approximant p(t) is an interpolant of 𝒟 if

p(xi)= f (xi)=yi, i=0, . . . ,m,

or p(t) passes through the known poles (xi, yi) of the function f . The objective is to use p(t) thus determined
to approximate the function f at other points. Assuming x0 < x1 < ⋅ ⋅ ⋅ < xm, evaluation of p(t) at t ∈ (x0, xm) is an
interpolation, while evaluation at t <x0 or t >xm, is an extrapolation. The basic problems arising in interpolation are:

• choice of the family from which to build the approximant p(t);

• choice of the combination technique;

• estimation of the error of the approximation given some knowledge of f .

∘ Algorithms for interpolation of real functions can readily be extended to more complicated objects, e.g., interpo-
lation ofmatrix representations of operators. Implementation is aided by programming language polymorphism
as in Julia.

2.1. Additive corrections

As to be expected, a widely used combination technique is linear combination,

p(t)= c0b0(t)+ c1b1(t)+ ⋅ ⋅ ⋅ + cnbn(t).

The idea is to capture the nonlinearity of f (t) through the functions b0(t), . . . ,bn(t), while maintaining the frame-
work of linear combinations. Sampling of bj(t) at the poles xi of a data set 𝒟 , constructs the vectors

bj =bj(x)= [ bj(x0) . . . bj(xm) ]T ∈ℝm+1,

which gathered together into a matrix leads to the formulation of the interpolation problem as

Bc = y = Iy ,B ∈ℝ(m+1)×(n+1). (2.3)

Before choosing some specific function set ℬ, some general observations are useful.

1. The function values yi = f (xi), i = 0, . . . ,m, are directly incorporated into the interpolation problem (2.3).
Any estimate of the error at other points requires additional information on f . Such information can be
furnished by bounds on the function values, or knowledge of its derivatives for example.

2. A solution to (2.3) exists if y ∈C(B). Economical interpolations would use n <m functions in the set ℬ,
hopefully n≪m.

2.2. Polynomial interpolation

Monomial form of interpolating polynomial. As noted above, the vector space of polynomials P(ℝ) has an
easily constructed basis, that of the monomials mj(t)= t j which shall be organized as a row vector of functions

ℳ(t)= [ 1 t t 2 . . . ].
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Withℳn+1(t) denoting the first n+1 monomials

ℳn+1(t)= [ 1 t . . . t n ],

a polynomial of degree n is the linear combination

p(t)=ℳn+1(t) a = [ 1 t . . . t n ]
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ a0a1
⋅⋅⋅
an ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]
=a0+a1t + ⋅ ⋅ ⋅ +antn.

Let M ∈ℝ(m+1)×(n+1) denote the matrix obtained from evaluation of the first n +1 monomials at the sample points
x = [ x0 x1 . . . xm ]T ,

M =ℳn+1(x).

The above notation conveys that a finite-dimensional matrix M ∈ℝ(m+1)×(n+1) is obtained from evaluation of the
row vector of the monomial basis function ℳ(x):ℝ→ℝn+1, at the column vector of sample points x ∈ℝm+1. The
interpolation condition p(x)= y leads to the linear system

Ma = y . (2.4)

For a solution to exist for arbitrary y , M must be of full rank, hence m =n, in which case M becomes the Vander-
monde matrix

M =

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ 1 x0 . . . x0n

1 x1 ⋅ ⋅ ⋅ x1n

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
1 xn . . . xnn ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]
,

known to be ill-conditioned. Since M is square and of full rank, (2.4) has a unique solution.

Finding the polynomial coefficients by solving the above linear system requires 𝒪(n3/3) operations. Evaluation of
the monomial form is economically accomplished in 𝒪(n) operations through Horner's scheme

p(t)=a0+ (a1+ ⋅ ⋅ ⋅ +(an−2 +(an−1 +an t) ⋅ t) ⋅ t) ⋅ t. (2.5)

∘

Figure 2.1. Monomial basis over interval [−π ,π]
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∘ Algorithm (Horner's scheme)
Input: t ∈ℝ,a ∈ℝn+1

Output: p(t)=a0+a1 t + ⋅ ⋅ ⋅ +an tn
p =an
for k =n −1 downto 0
p =ak+p ⋅ t

end
return p

Lagrange form of interpolating polynomial. It is possible to reduce the operation count to find the interpo-
lating polynomial by carrying out an LU decomposition of the monomial matrix M ,

ℳn+1(x)=M =LU .

Let ℒn+1(t)= [ ℓ0(t) ℓ1(t) . . . ℓn(t) ] denote another set of basis functions that evaluates to the identity matrix at
the sample points x , such that ℒn+1(x)= I ,

ℳn+1(x)=M =LU = ILU =ℒn+1(x)LU .

For arbitrary t, the relationship

ℳn+1(t)=ℒn+1(t)LU ,

describes a linear mapping between the monomialsℳn+1(t) and theℒn+1(t) functions, a mapping which is invert-
ible since M =LU is of full rank

ℒn+1(t)=ℳn+1(t)U −1L−1.

Note that organization of bases as row vectors of functions leads to linear mappings expressed through right
factors.

∘ The LU factorization of the Vandermonde matrix can be determined analytically, as exemplified for n=3 by

((((((((((((((((((
((((((((((((((((
(
( 1 x0 x02 x03

1 x1 x12 x13

1 x2 x22 x23

1 x3 x32 x33 ))))))))))))))
))))))))))))))))))
))
)
)
=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((

(

( 1 0 0 0
1 1 0 0
1 x0−x2

x0−x1
1 0

1
x0−x3
x0−x1

(x0−x3) (x3−x1)
(x0−x2) (x2−x1) 1 ))))))))))))))))))

))))))))))))))))))
))))))))))))))))

)

)
((((((((((((((((((
((((((((((((((
(
( 1 x0 x02 x03

0 x1−x0 x12−x02 x13−x03
0 0 (x0−x2) (x1−x2) (x0−x2) (x1−x2) (x0 +x1+x2)
0 0 0 −((x0−x3)(x3−x1) (x3−x2)) ))))))))))))))

)))))))))))))))))))
)

∘ Both factors can be inverted analytically, e.g., for n =3,

L−1=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((

(

( 1 0 0 0
−1 1 0 0

x1−x2
x0−x1

x2−x0
x0−x1

1 0

(x1−x3)(x3−x2)
(x0−x1)(x0−x2)

(x0−x3) (x2−x3)
(x0−x1) (x1−x2)

(x0−x3)(x1−x3)
(x0−x2)(x2−x1) 1 ))))))))))))))))))

))))))))))))))))))
))))))))))))))))

)

)
,

U −1 =

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((

(

( 1 x0
x0−x1

− x0x1
(x0−x2)(x2−x1)

x0x1x2
(x0−x3) (x3−x1)(x3−x2)

0 1
x1−x0

x0+x1
(x0−x2)(x2−x1) − x1x2 +x0(x1+x2)

(x0−x3) (x3−x1)(x3−x2)
0 0

1
(x0−x2)(x1−x2)

x0 +x1+x2
(x0−x3) (x3−x1)(x3−x2)

0 0 0 − 1
(x0−x3) (x3−x1)(x3−x2) ))))))))))))))

))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))

)

)
.
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∘ The functions that result for n =3

{{{{{{{{{{{{ (t −x1)(t −x2) (t −x3)
(x0−x1) (x0−x2)(x0−x3) ,

(t −x0)(t −x2)(t −x3)
(x1−x0)(x1−x2) (x1−x3) ,

(t −x0) (t −x1) (t −x3)
(x2−x0) (x2−x1) (x2−x3) ,

(t −x0)(t −x1) (t −x2)
(x3−x0) (x3−x1)(x3−x2)}}}}}}}}}}}},

can be generalized as

ℓi(t)=∏
j=0

n ʹ t −xj
xi −xj

,

known as the Lagrange basis set, where the prime on the product symbol skips the index j = i. Note that each
member of the basis is a polynomial of degree n.

By construction, through the condition ℒn+1(x)= I , a Lagrange basis function evaluated at a sample point is

ℓi(xj)=δij ={{{{{{{{{{{{ 1 i = j
0 i ≠ j .

A polynomial of degree n is expressed as a linear combinations of the Lagrange basis functions by

p(t)=ℒn+1(t)c = [ ℓ0(t) ℓ1(t) . . . ℓn(t) ][[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ c0c1
⋅⋅⋅
cn ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]
= c0ℓ0(t)+ c1ℓ1(t)+ . . .cnℓn(t).

The interpolant of data {(xi,yi = f (xi)), i =0, 1, . . . ,n} is determined through the conditions

p(x)= y =ℒn+1(x)c = Ic = c ⇒ c = y ,

i.e., the linear combination coefficients are simply the sampled function values ci =yi = f (xi).

p(t)=∑
i=0

n

yi ℓi(t)=∑
i=0

n

yi ∏
j=0

n ʹ t −xj
xi −xj

. (2.7)

Determining the linear combination coefficients may be without cost, but evaluation of the Lagrange form (2.7)
of the interpolating polynomial requires 𝒪(n2) operations, significantly more costly than the 𝒪(n) operations
required by Horner's scheme (2.5)

∘ Algorithm (Lagrange evaluation)

Input: x , y ∈ℝn+1, t ∈ℝ
Output: p(t)=∑i=0

n yi ∏j=0
n ʹ(t −xj)/(xi −xj)

p =0
for i =0 to n
w =1
for j =0 to n
if j ≠ i then w =w (t −xj)/(xi −xj)

end
p =p +w ⋅yi

end
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return p

∘

Figure 2.2. Lagrange basis for n=6 for sin(x ) over interval [−π ,π]

A reformulation of the Lagrange basis can however reduce the operation count. Let ℓ(t)=∏k=0
n (t −xk), and rewrite

ℓi(t) as

ℓi(t)=∏
j=0

n ʹ t −xj
xi −xj

= ℓ(t) wi

t −xi
,

with the weights

wi =∏
j=0

n ʹ 1
xi −xj

,

depending only on the function sample arguments xi, but not on the function values yi. The interpolating polyno-
mial is now

p(t)=∑
i=0

n

yi ℓi(t)= ℓ(t)∑
i=0

n

yi
wi

t −xi
.

Interpolation of the function g(t)=1 would give

1= ℓ(t)∑
i=0

n
wi

t −xi
,

and taking the ratio yields

p(t)=
∑i=0

n yi
wi

t −xi∑i=0
n wi

t −xi

, (2.9)
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known as the barycentric Lagrange formula (by analogy to computation of a center of mass). Evaluation of the
weights wi costs 𝒪(n2) operations, but can be done once for any set of xi. The evaluation of p(t) now becomes an𝒪(2n) process, comparable in cost to Horner's scheme.

∘ Algorithm (Barycentric Lagrange evaluation)

Input: x , y ∈ℝn+1, t ∈ℝ
Output: p(t)=(∑i=0

n yi
wi

t −xi
) /(∑i=0

n wi

t −xi
)

for i =0 to n
wi =1

for j =0 to n
if j ≠ i wi =wi /(xi −xj)

end
end
q = r =0
for i =0 to n
s =wi /(t −xi); q =q +yi s; r = r + s

end
p =q /r
return p

Newton form of interpolating polynomial. Inverting only one factor of the ℳn+1(t) =ℒn+1(t) LU mapping
yields yet another basis set 𝒮(t)= [ N0(t) N1(t) N2(t) . . . ]

ℳn+1(t)U −1 =ℒn+1(t)L=𝒮n+1(t) .

∘ The first four basis polynomials are

{{{{{{{{{{{{1, t −x0x1−x0
, (t −x0) (t −x1)
(x2−x0) (x2−x1) ,

(t −x0) (t −x1) (t −x2)
(x3−x0) (x3−x1) (x3−x2)}}}}}}}}}}}},

with N0(t)=1, and in general

Nk(t)=∏
j=0

k−1 t −xj
xk −xj

,

for k >0.

Computation of the scaling factors wk =1/∏j=0
k−1 (xk−xj) would require 𝒪(n2/2) operations, but can be avoided by

redefining the basis set as 𝒩(t)= [ n0(t) n1(t) n2(t) . . . ], with n0(t)=1, and

nk(t)=∏
j=0

k−1

(t −xj),

known as the Newton basis. As usual, the coefficients d ∈ℝn+1 of the linear combination of Newton polynomials

p(t)=𝒩n+1(t)c = [ n0(t) n1(t) . . . nn(t) ][[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ d0d1
⋅⋅⋅
dn ]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]
=d0n0(t)+d1n1(t)+ . . . +dnnn(t),
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are determined from the interpolation conditions p(x)= y . The resulting linear system is of triangular form,

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[

[

[ 1 0 0 ⋅ ⋅ ⋅ 0
1 x1−x0 0 ⋅ ⋅ ⋅ 0
1 x2−x0 (x2−x0)(x2−x1) ⋅ ⋅ ⋅ 0
1 x3−x0 (x3−x0)(x3−x1) ⋅ ⋅ ⋅ 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

1 xn−x0 (xn−x0)(xn−x1) ⋅ ⋅ ⋅ ∏
j=0

n−1

(xn−xj) ]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]

]

]

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[
[
[ d0d1
d2
⋅⋅⋅
dn ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]]]]
]
]
=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[
[
[ y0y1
y2
⋅⋅⋅
yn ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]]]
]
]

and readily solved by forward substitution.

∘ The first few coefficients are

d0=y0, d1 =
y1−d0
x1−x0

=
y1−y0
x1−x0

,

d2=
y2−(x2−x0)d1−d0
(x2−x0)(x2−x1) =

y2− (x2−x0)y1−y0x1−x0
−y0

(x2−x0)(x2−x1) =

y2−y1
x2−x1

− y1−y0x1−x0
x2−x0

.

The forward substitution is efficiently expressed through the definition of divided differences

[yi]=yi, [yi+1,yi]= [yi+1]− [yi]
xi+1−xi

=
yi+1−yi
xi+1−xi

, [yi+2,yi+1,yi]= [yi+2,yi+1]− [yi+1,yi]
xi+2−xi

,

or in general, the k th divided difference

[yi+k,yi+k−1, . . . ,yi]= [yi+k,yi+k−1, . . . ,yi+1]− [yi+k−1,yi+k−1, . . . ,yi]
xi+k −xi

,

given in terms of the (k −1) divided differences. The forward substitution computations are conveniently organized
in a table, useful both for hand computation and also for code implementation.

i xi [yi] [yi,yi−1] [yi,yi−1,yi−2]
0 x0 y0 − −
1 x1 y1

y1−y0
x1−x0

−

2 x2 y2
y2−y1
x2−x1

[y2,y1]− [y1,y0]
x2−x0

⋅⋅ ⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
n xn yn

yn−yn−1
xn−xn−1

[yn,yn−1]− [yn−1,yn−2]
xn−xn−2

. . .
[yn, . . . ,y1]− [yn−1, . . . ,y0]

xn−x0
Table 2.2. Table of divided differences. The Newton basis coefficients d are the diagonal terms.

∘ Algorithm (Forward substitution, Newton coefficients)

Input: x , y ∈ℝn+1

Output: d ∈ℝn+1
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d = y
for i =1 to n
for j =n downto i
dj = (dj −dj−1)/(xj −xj−i)

end
end

The above algorithm requires only 𝒪(n) operations, and the Newton form of the interpolating polynomial

p(t)= [y0] ⋅1+ [y1,y0] ⋅(t −x0)+ [y1,y0] ⋅ (t −x0)(t −x1)+ ⋅ ⋅ ⋅ ++[yn,yn−1, . . . ,y0] ⋅(t −x0) ⋅(t −x1) ⋅ . . . ⋅(t −xn−1),

can also be evaluated in 𝒪(n) operations

∘ Algorithm (Newton polynomial evaluation)

Input: x ,d ∈ℝn+1, t ∈ℝ
Output: p(t)=d0 +d1 t + ⋅ ⋅ ⋅ +dn tn
p =d0; r =1
for k =1 to n
r = r ⋅(t −xk−1)
p =p +dk ⋅ r

end
return p

∘

Figure 2.3. Newton basis for n=6 for sin(x ) over interval [−π ,π]

3. Interpolation error

As mentioned, a polynomial interpolant of f :ℝ→ℝ already incorporates the function values yi = f (xi), i =0, . . . ,n,
so additional information on f is required to estimate the error

e(t)= f (t)−p(t),

LECTURE 14: INTERPOLATION 125



when t is not one of the sample points. One approach is to assume that f is smooth, f ∈C∞(ℝ), in which case the
error is given by

f (t)−p(t)= f (n+1)(ξt)
(n +1)! ∏

i=0

n

(t −xi)= f (n+1)(ξt)
(n +1)! w(t), (2.13)

for some ξt ∈[x0,xn], assuming x0<x1< ⋅⋅⋅<xn. The above error estimate is obtained by repeated application of Rolle's
theorem to the function

Φ(u)= f (u)−p(u)− f (t)−p(t)
w(t) w(u),

that has n+1 roots at t,x0,x1,...,xn, hence its (n+1)-order derivative must have a root in the interval (x0,xn), denoted
by ξt

Φ(n+1)(ξt)= dn+1Φ
dun+1 (ξt)=0= f (n+1)(ξt)− f (t)−p(t)

w(t) (n +1)!,

establishing (2.13). Though the error estimate seems promising due to the (n +1)! in the denominator, the deriva-
tive f (n+1) can be arbitrarily large even for a smooth function. This is the behavior that arises in the Runge function
f (t)=1/[1+(5t)2] (Fig. 2.4), for which a typical higher-order derivative appears as

∘ f (10)= 35437500000000(107421875 t 10−64453125 t 8+7218750 t 6−206250 t 4+1375 t 2−1)
(25 t 2 +1)11 , ‖ f (10)‖∞≅3.5×1013.

The behavior might be attributable to the presence of poles of f in the complex plane at t1,2 =±i /5, but the inter-
polant of the holomorphic function g(t)=exp(−(5t)2), with a similar power series to f ,

∘
f (t)≅1−25 t 2+625 t 4−15625 t 6 +O(t 7),
g(t)≅1−25 t 2+ 625 t 4

2 − 15625 t 6

6 +O(t 7),

also exhibits large errors (Fig. 2.4), and also has a high-order derivative of large norm ‖g‖∞≅3×1011.

∘ g (10)(t)=1562500000e−25t 2 (62500000 t 10−56250000 t 8 +15750000 t 6−1575000 t 4 +47250 t 2−189),

∘

Figure 2.4. Interpolants of f (t)=1/[1+(5t)2], g(t)==exp(−(5t)2), based on equidistant sample points.
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3.1. Error minimization - Chebyshev polynomials

Since ‖ f (n+1)‖∞ is problem-specific, the remaining avenue to error control suggested by formula (2.13) is a favorable
choice of the sample points xi, i=0, . . . ,n. The w(t) polynomial

w(t)=∏
i=0

n

(t −xi)

is monic (coefficient of highest power is unity), and any interval [a,b]⊂ℝ can be mapped to the [−1,1] interval by
t =2(s −a)/(b −a)−1, leading to consideration of the problem

min
x

‖w ‖∞=min
x

max
−1 t 1

|w(t)|,

i.e., finding the sample points or roots of w(t) that lead to the smallest possible inf-norm of w(t). Plots of the
Lagrange basis (L18, Fig. 2), or Legendre basis, suggest study of basis functions that have distinct roots in the
interval [−1, 1] and attain the same maximum. The trigonometric functions satisfy these criteria, and can be used
to construct the Chebyshev family of polynomials through

Tn(x)=cos[n cos−1x]=cos(nθ), cosθ =x ,θ =cos−1x .

The trigonometric identity

cos[(n+1)θ]+cos[(n −1)θ]=2cosθ cos(nθ)

leads to a recurrence relation for the Chebyshev polynomials

Tn+1(x)=2xTn(x)−Tn−1(x),T0(x)=1,T1(x)=x .

The definition in terms of the cosine function easily leads to the roots, Tn(xi)=0,

cos[nθ]=0⇒nθi = (2i−1)π2 ⇒θi =
2i−1
2n π⇒xi =cos[2i −12n π], i =1, . . . ,n,

and extrema xj, Tn(xj)=(−1)j

cos[nθ]=±1⇒nθj = jπ⇒ xj =cos[ jπn ], j =0, 1, . . . ,n.
The Chebyshev polynomials are not themselves monic, but can readily be rescaled through

Pn(x)=21−nTn(x),n >0,P0(x)=1.

Since |Tn(x)|= |cos(nθ)|, the above suggests that the monic polynomials Pn have ‖Pn‖∞=21−n, small for large n, and
are indeed among all possible monic polynomials defined on [−1,1] the ones with the smallest inf-norm.
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THEOREM. The monic polynomial p: [−1,1]→ℝ has a inf-norm lower bound

‖p‖∞= max
−1 t 1

|p(t)| 21−n.

Proof. By contradiction, assume the monic polynomial p: [−1,1]→ℝ has ‖q‖∞<21−n. Construct a comparison with the
Chebyshev polynomials by evaluating p at the extrema xj =cos(jπ /n),

(−1)j p(xj) |p(xj)|<21−n=(−1)jPn(xj)=(−1)j 21−nTn(xj).

Since the above states (−1)jp(xj)<(−1)jPn(xj) deduce

(−1)j[p(xj)−Pn(xj)]<0, for j =0, 1, . . . ,n (2.14)

However, p,Pn both monic implies that p(xj)−Pn(xj) is a polynomial of degree n−1 that would change signs n+1 times
to satisfy ( 2.14), and thus have n roots contradicting the fundamental theorem of algebra. □

∘

Figure 2.5. First n=6 Chebyshev polynomials

3.2. Best polynomial approximant

Based on the above, the optimal choice of n +1 sample points is given by the roots xj = cos(θj) of the Chebyshev
polynomial of (n+1)th degree Tn+1(x), for which cos[(n +1)θ]=0,

xj =cos[ π
n +1(12 + j)], j =0, . . . ,n,

For this choice of sample points the interpolation error has the bound
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| f (t)−pn(t)|= ||||||||||||||||| f
(n+1)(ξt)
(n +1)! ∏

i=0

n

(t −xi)||||||||||||||||| | f (n+1)(ξt)|
(n+1)! ‖Pn+1‖∞ ‖ f (n+1)‖∞

(n +1)!2n .

LECTURE 15: DERIVATIVE INTERPOLATION

1. Interpolation in function and derivative values - Hermite interpolation

In addition to sampling of the function f :ℝ→ℝ, information on the derivatives of f might also be available, as in
the data set

𝒟 ʹ={(xi,yi = f (xi),yí = f ʹ(xi)), i =0, 1, . . . ,n}. (2.15)

The extended data set can again be interpolated by a polynomial, this time of degree 2n+1 given in the monomial,
Lagrange or Newton form.

Monomial form of interpolating polynomial. Using the monomial basis

ℳ2n+1(t)= [ 1 t t 2 t 3 . . . t 2n+1 ],
the interpolating polynomial is

p(t)=ℳ2n+1(t) a = [ 1 t . . . t 2n+1 ][[[[[[[[[[[[[[[[[[[[[
[[[[[[[[[
[
[ 0
a1
⋅⋅⋅
a2n+1 ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]
=a0+a1t + ⋅ ⋅ ⋅ +a2n+1 t 2n+1,

with derivative

p ʹ(t)=a1 +2a2t + ⋅ ⋅ ⋅ +(2n +1)a2n+1t 2n.

The above suggests constructing a basis set of monomials and their derivatives

ℳ2n+1ʹ (t)=[[[[[[[[ 1 t t 2 t 3 . . . t 2n+1

0 1 2t 3t 2 . . . (2n+1) t 2n ]]]]]]]],

LECTURE 15: DERIVATIVE INTERPOLATION 129



to allow setting the function p(xi)=yi, and derivative conditions p(xi)=yí . The columns of ℳ2n+1ʹ (t) are linearly
independent since

α[[[[[[[[[[ t jjt j−1 ]]]]]]]]]]+β[[[[[[[[[[ t
k

kt k−1 ]]]]]]]]]]=0,
can only be satisfied for all t by α =β =0.

∘ Sampling at x ∈ℝ(n+1) gives M =ℳ2n+1ʹ (x)∈ℝ(2n+2)×(2n+2), e.g., for n=2, the matrix is

M =

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((

(

( 1 x0 x02 x03 x04 x05

1 x1 x12 x13 x14 x15

1 x2 x22 x23 x24 x25

0 1 2 x0 3x02 4x03 5x04

0 1 2 x1 3x12 4x13 5x14

0 1 2 x2 3x22 4x23 5x24 ))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))

)

)
,

is obtained.

For general n, M is of full rank for distinct sample points with a determinant reminiscent of that of the Vander-
monde matrix

det(M )= ∏
0 i<j n

(xi −xj)4.

The interpolation conditions lead to the linear system

Ma =[[[[[[ y
y ʹ ]]]]]],

whose solution requires 𝒪([2(n +1)]3/3) operations. An error formula is again obtained by repeated application
of Rolle's theorem, i.e., for p interpolant of data set 𝒟 ʹ, ∃ξt ∈ (x0,xn) such that

f (t)−p(t)= f (2n+2)(ξt)
(2n+2)! ∏

j=0

n

(t −xj)2.

The above approach generalizes to higher-order derivatives, e.g., for

𝒟 ʹʹ= {(xi,yi = f (xi),yí = f ʹ(xi),yí ʹ= f ʹʹ(xi)), i =0, 1, . . . ,n}, (2.16)

the basis set is

ℳ3n+2ʹʹ (t)=[[[[[[[[[[[[[[[[[[
[[
[
[ 1 t t 2 t 3 . . . t 3n+2

0 1 2t 3t 2 . . . (3n+2) t 3n+1
0 0 2 6t . . . (3n+2)(3n+1)t 3n ]]]]]]]]]]]]]]]]

]]]]]
]
,

with interpolant

p(t)=ℳ 3n+2ʹʹ (t)a ,
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with a ∈ℝ3(n+1) determined by solving

Ma =[[[[[[[[[[[[[[[[[[[
[ y
y ʹ
y ʹʹ ]]]]]]]]]]]]]]]]

]]]
]

with M =ℳ3n+2ʹʹ (x)∈ℝ(3n+3)×(3n+3), and error formula

f (t)−p(t)= f (3n+3)(ξt)
(3n +3)! ∏

j=0

n

(t −xj)3.

Lagrange form of interpolating polynomial. As in the function value interpolation case, a basis set that evalu-
ates to an identity matrix when sampled at x ∈ℝn+1 is obtained by LU-factorization of the sampledmonomial matrix

ℳ2n+1ʹ (x)=M =LU = ILU =ℒ2n+1ʹ (x)LU ,

that for arbitrary t leads to the basis set

ℒ2n+1ʹ (t)=ℳ2n+1ʹ (t)U −1L−1=[[[[[[ a0(t) a1(t) . . . an(t) b0(t) b1(t) . . . bn(t)
a 0́(t) a 1́(t) . . . ań(t) b0́(t) b1́(t) . . . bń(t) ]]]]]].

The interpolating polynomial of data set 𝒟 ʹ={(xi,yi = f (xi),yí = f ʹ(xi)), i =0, 1, . . . ,n} is

p(t)=∑
i=0

n

yi ai(t)+∑
i=0

n

yí bi(t),

where the basis functions can be expressed in terms of the Lagrange polynomials

ℓi(t)=∏
j=0

n ʹ t −xj
xi −xj

,

as

ai(t)= [1−2(t −xi)ℓí(xi)]ℓi2(t), bi(t)= (t −xi)ℓi2(t),

and have the properties

ai(xj)=δij, aí(xj)=0, bi(xj)=0, bí(xj)=δij .

∘ As, an example, consider the LU-factorization of matrix M =ℳ2n+1ʹ (x) for n =1

((((((((((((((((((
((((((((((((((((((
((((((((((((((((

(

( 1 0 0 0
1 1 0 0

0 − 1
x0−x1

1 0

0 −
1

x0−x1
−1 1 ))))))))))))))))))

))))))))))))))))))
))))))))))))))))

)

)
=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((

(

( 1 0 0 0
1 1 0 0

0 1
x1−x0

1 0

0
1

x1−x0
−1 1 ))))))))))))))))))

))))))))))))))))))
))))))))))))))))

)

)
((((((((((((((((((
((((((((((((((((
(
( 1 x0 x02 x03

0 x1−x0 x12−x02 x13−x03

0 0 x0−x1 2 x02−x1x0−x12

0 0 0 (x0−x1)2 ))))))))))))))))))
))))))))))))))))
)
)
.
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∘ The factor inverses are

L−1 =

((((((((((((((((((
((((((((((((((((((
((((((((((((((((

(

( 1 0 0 0
−1 1 0 0
1

x1−x0
1

x0−x1
1 0

2
x1−x0

2
x0−x1

1 1 ))))))))))))))))))
))))))))))))))))))
))))))))))))))))

)

)
,U −1=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((((

(

( 1
x0

x0−x1
x0x1
x0−x1

−
x02x1

(x0−x1)2

0
1

x1−x0
−
x0+x1
x0−x1

x0(x0+2x1)
(x0−x1)2

0 0 1
x0−x1

− 2 x0 +x1
(x0−x1)2

0 0 0 1
(x0−x1)2 ))))))))))))))))))

))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))

)

)

∘ The functions that result

{[1−2(t −x0) 1
x0−x1

]( t −x1
x0−x1

)2
,[1−2(t −x1) 1

x1−x0
]( t −x0

x1−x0
)2
,(t −x0)( t −x1

x0−x1
)2
, (t −x1)( t −x0

x1−x0
)2},

are indeed expressed in terms of ℓi(t) as

{[1−2(t −x0)ℓ0́(x0)]ℓ02(t), [1−2(t −x1)ℓ1́(x1)]ℓ02(t),(t −x0)ℓ02(t), (t −x1)ℓ12(t)}.

The procedure can be extended to derivatives of arbitrary order, e.g., the data set 𝒟 ʹʹ is interpolated by

p(t)=∑
i=0

n

yi ai(t)+∑
i=0

n

yí bi(t)+∑
i=0

n

yí ʹ ci(t),

where the Lagrange basis polynomials are given as

ℒ3n+2ʹʹ (t)=ℳ3n+2ʹʹ (t)U −1L−1=[[[[[[[[[[[[[[[[[
[
[
[ a0(t) . . . an(t) b0(t) . . . bn(t) c0(t) . . . cn(t)
a 0́(t) . . . ań(t) b0́(t) . . . bń(t) c0́(t) . . . cń(t)
a 0́́(t) . . . ań́(t) b0́́ (t) . . . bń́(t) c0́ʹ(t) . . . cńʹ(t) ]]]]]]]]]]]]]]

]]]]]
].

Newton form of interpolating polynomial. As before, inverting only one factor of the ℳ2n+1ʹ (t)=ℒ2n+1ʹ (t)LU
mapping yields a triangular basis set 𝒮 ʹ(t)= [ s0(t) s1(t) s2(t) . . . ]

ℳ2n+1ʹ (t)U −1=𝒮 2n+1ʹ (t) .

∘ The first six basis polynomials obtained for n =2 are

{{{{{{{{{{{{1, t −x0x1−x0
, (t −x0) (t −x1)
(x2−x0)(x2−x1) ,

(t −x0) (t −x1)(t −x2)
(x2−x0) (x1−x0) , (t −x0)

2(t −x1)(t −x2)
(x1−x0)2 (x1−x2) , (t −x0)

2(t −x1)2 (t −x2)
(x2−x0)2 (x2−x1)2 }}}}}}}}}}}}.

∘ A closer link to divided difference and differential calculus is obtained by permuting rows of M , e.g., for n =2

PM =

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((

(

( 1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1 ))))))))))))))))

))))))))))))))))))
))))))))))))))))))
))

)

)

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((

(

( 1 x0 x02 x03 x04 x05

1 x1 x12 x13 x14 x15

1 x2 x22 x23 x24 x25

0 1 2 x0 3x02 4 x03 5x04

0 1 2 x1 3x12 4 x13 5x14

0 1 2 x2 3x22 4 x23 5x24 ))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))

)

)
=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
((((((((

(

( 1 x0 x02 x03 x04 x05

0 1 2x0 3x02 4 x03 5x04

1 x1 x12 x13 x14 x15

0 1 2x1 3x12 4 x13 5x14

1 x2 x22 x23 x24 x25

0 1 2x2 3x22 4 x23 5x24 ))))))))))))))
))))))))))))))))))
))))))))))))))))))
))))))))))))

)

)
.
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The first six basis polynomials thus obtained are

{{{{{{{{{{{{1, t −x0, (t −x0)2
(x1−x0)2 ,

(t −x0)2(t −x1)
(x1−x0)2 , (t −x0)2(t −x1)2

(x2−x0)2(x2−x1)2 ,
(t −x0)2 (t −x1)2 (t −x2)

(x2−x0)2(x2−x1)2 }}}}}}}}}}}}.
and upon rescaling generalize to the basis set

𝒩2n+1ʹ (t)= [ n0(t) n1(t) . . . n2n+1(t) ],

with

n2k(t)=∏
j=0

k−1

(t −xj)2,n2k+1(t)=(t −xk)n2k(t),k =0, 1, . . . ,n

known as the Newton basis set with repetitions.

The interpolating polynomial in Newton divided difference form is

p(t)= [y0]+ [y0,y0](t −x0)+ [y1,y0,y0](t −x0)2+ ⋅ ⋅ ⋅ + [yn,yn, . . . ,y0,y0](t −x0)2. . .(t −xn−1)2(t −xn).

Divided difference with repeated values are replaced by their, limits, i.e., the derivatives

[yk,yk]= lim
xk −1→xk

yk −yk−1
xk −xk−1

=yḱ .

The forward substitution can again be organized in a table.

i xi [yi] [yi,yi−1] [yi,yi−1,yi−2]
0 x0 y0 − −
0 x0 y0 y0́

1 x1 y1
y1−y0
x1−x0

1
x1−x0

(y1−y0x1−x0
−y0́)

1 x1 y1 y1́
1

x1−x0
(y1́− y1−y0x1−x0

)
2 x2 y2

y2−y1
x2−x1

1
x2−x1

(y2−y1x2−x1
−y1́) ⋅⋅ ⋅

2 x2 y2 y2́
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
n xn yn yń

1
xn−xn−1

(yń− yn−yn−1
xn−xn−1

) . . . [yn, . . . ,y1]− [yn−1, . . . ,y0]
xn−x0

Table 2.3. Table of repeated divided differences. The Newton basis coefficients are the diagonal terms.

Interpolation of data containing higher derivatives, or differing orders of derivative information at each node are
poissible. For multiple repeated values arising in the limit xi+k→xi of sample points xi xi+1 ⋅ ⋅ ⋅ xi+k the divided
difference is determined by

[yi+k,yi+k−1, . . . ,yi]={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{

[yi+k,yi+k−1, . . . ,yi+1]− [yi+k−1,yi+k−1, . . . ,yi]
xi+k−xi

xi <xi+k

yi
(k)

k ! xi =xi+k
.
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LECTURE 16: PIECEWISE INTERPOLATION

1. Splines

Instead of adopting basis functions defined over the entire sampling interval [x0,xn] as exemplified by the monomial
or Lagrange bases, approximations of f :ℝ→ℝ can be constructed with different branches over each subinterval,
by introducing Si: [xi−1,xi]→ℝ, and the approximation

p(t)=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{
{
{ S1(t) x0 t <x1
S2(t) x1 t <x2
⋅⋅⋅ ⋅⋅⋅
Sn(t) xn−1 t < xn
Sn+1(t) t =xn

.

The interpolation conditions p(xi)=yi lead to constraints

Si(xi−1)=yi−1.

The form of S(t) can be freely chosen, and though most oſten S(t) is a low-degree polynomial, the spline functions
may have any convenient form, e.g., trigonometric or arcs of circle. The accuracy of the p(t) approximant is deter-
mined by the choice of form of S(t), and by the sample points. It is useful to introduce a quantitative measure of
the sampling through the following definitions.

DEFINITION. {x0,x1, . . . ,xn} is a partition of the interval [a,b]⊂ℝ if xi ∈ℝ, i =0, 1, . . . ,n, satisfy

a=x0< x1 < ⋅ ⋅ ⋅ < xn−1 <xn=b .

DEFINITION. The norm of partition X = {x0,x1, . . . ,xn} of the interval [a,b]⊂ℝ is

‖X‖=max
1 i n

|xi −xi−1| .

Constant splines (degree 0). A simple example is given by the constant functions Si(t)=yi−1. Arbitrary accuracy
of the approximation can be achieved in the limit of n→∞, ‖X‖→0. Over each subinterval the polynomial error
formula gives

f (t)−Si(t)= f ʹ(ξt)(t −xi−1),

so overall

| f (t)−p(t)| ‖ f ʹ‖∞ ‖X‖,
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which becomes

| f (t)−p(t)| ‖ f ʹ‖∞h,

for equidistant partitions xi =x0 + ih, h= (xn−x0)/n. The interpolant p(t) converges to f (t) linearly (order of con-
vergence is 1)

Linear splines (degree 1). A piecewise linear interpolant is obtained by

Si(t)= t −xi−1
xi −xi−1

(yi −yi−1)+yi−1.

The interpolation error is bounded by

| f (t)−p(t)| 1
2‖ f ʹ‖∞h

2,

for an equidistant partition, exhibiting quadratic convergence.

Quadratic splines (degree 2). A piecewise quadratic interpolant is formulated as

Si(t)=bi(t −xi−1)2+ ci(t −xi−1)+yi−1.

The interpolation conditions are met since Si(xi−1) = yi−1. The additional parameters of this higher order spline
interpolant can be determined by enforcing additional conditions, typically continuity of function and derivative
at the boundary between two subintervals

Si(xi)=bihi2+ ci hi =yi, i =1, 2, . . . ,n
Sí(xi)=2bihi + ci =2bi+1hi+1+ ci+1=Si+1ʹ (xi) i =1, 2, . . . ,n−1

.

An additional condition is required to close the system, for example Sń(xi)=yń (known end slope), or Sń(xi)=0 (zero
end slope), or Sń(xi)=Sń(xi−1) (constant end-slope). The coefficients bi,ci are conveniently determined by observing
that Sí(t) is linear over interval [xi−1,xi] of length hi =xi −xi−1, and is given by

Sí(t)= t −xi−1
hi

(si − si−1)+ si−1 = si−1hi
(xi − t)+ si

hi
(t −xi−1),

with si =yí , the slope of the interpolant at xi. The continuity of first derivative conditions Sí(xi)=Si+1ʹ (xi) are satis-
fied, and integration gives

Si(t)= si
2hi

(t −xi−1)2− si−1
2hi

(xi − t)2 +Ai .

The interpolation condition Si(xi−1)=yi−1, determines the constant of integration Ai

Ai −
si−1hi
2 =yi−1⇒Ai =yi−1+

si−1hi
2 ,

Imposing the continuity of function condition Si(xi)=Si+1(xi) gives

si hi
2 +yi−1+

si−1hi
2 =− si hi+1

2 +yi +
si hi+1
2 ,
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or

si−1+ si =
2
hi
(yi −yi−1), i=1,2, . . . ,n,

a bidiagonal system for the slopes that is solved by backward substituion in 𝒪(2n) operations. For i=1, the s0 value
arising in the system has to be given by an end condition, and the overall system Bs =d is defined by

B =

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[
[
[ 11 1

1 1
⋅⋅ ⋅ ⋅⋅ ⋅

1 1 ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]
]
]
,d =

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[

[

[ 2
h1

(y1−y0)− s0
2
h2

(y2−y1)
⋅⋅⋅
2
hn

(yn−yn−1) ]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]

]

]
, s ∈ℝn,B ∈ℝn×n.

The interpolation error is bounded by

| f (t)−p(t)| 1
2‖ f ʹ‖∞h

2,

for an equidistant partition, exhibiting quadratic convergence.

Cubic splines (degree 3). The approach outlined above can be extended to cubic splines, of special interest since
continuity of curvature is achieved at the nodes, a desirable feature in many applications. The second derivative is
linear

Sí ʹ(t)= zi−1
hi

(xi − t)+ zi
hi
(t −xi−1),

with zi−1=Sí ʹ(xi−1), zi =Sí ʹ(xi) the curvature at the endpoints of the [xi−1,xi] subinterval. Double integration gives

Si(t)= zi−1
6hi

(xi − t)3 + zi
6hi

(t −xi−1)3 +Ai(t −xi−1)+Bi(xi − t).

The interpolation conditions Si(xi−1)=yi−1, Si−1(xi)=yi, gives the integration constants

Ai =
yi
hi
− zi hi

6 ,Bi =
yi−1
hi

− zi−1hi
6

and continuity of first derivative, Sí(xi)=Si+1ʹ (xi), subsequently leads to a tridiagonal system for the curvatures

hi zi−1+2(hi +hi−1)zi +hi+1zi+1= 6(yi+1−yi)
hi+1

− 6(yi −yi−1)hi
, i =1, 2, . . . ,n−1.

End conditions are required to close the system. Common choices include:

1. Zero end-curvature, also known as the natural end conditions: z0= zn=0.

2. Curvature extrapolation: z0= z1, zn= zn−1
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3. Analytical end conditions given by the function curvature: z0= f ʹʹ(x0), zn= f ʹʹ(xn).

1.1. B -splines

The above analytical approach becomes increasingly unwieldy for higher degree piecewise polynomials. An alter-
native approach is to systematically generate basis sets of desired polynomial degree over each subinterval. The
starting point in this basis-spline (B− spline) approach is the piecewise constant functions

Bj,0(t)={{{{{{{{{{{{ 1 xj t < xj+1
0 otherwise ,

leading to the interpolant

f (t)≅p(t)=∑
j=0

n

yj Bj,0(t), (2.17)

of f :ℝ→ℝ, as sampled by data set 𝒟 ={(xi,yi = f (xi)), i=0,1, . . . ,n}, a=x0< x1 < ⋅ ⋅ ⋅ < xn=b. The set

ℬ0(t;x)= {B0,0(t),B1,0(t), . . . ,Bn,0(t)}

constitutes a basis for all piecewise constant approximants of real functions on the interval [x0,xn]. Higher degree
basis sets ℬk(t;x), k >0, are defined recursively through

Bj,k(t)=wj,k(t)Bj,k−1(t)+(1−wj+1,k(t))Bj+1,k−1(t),

with the weight function

wj,k(t)= t −xj
xj+k−xj

.

∘

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 2.6. B-spline sets ℬ0,ℬ1,ℬ2,ℬ3,ℬ4 with x =[ 0 1 2 3 4 5 ]
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As the degree k increases, the support of Bj,k(t) increases to the interval [xj,xj+k+1]. This is the B-spline analog of
the additional end conditions in traditional spline formulations, and leads to the set

ℬk(t;x)= {B0,k(t),B1,k(t), . . . ,Bn,k(t)}

defining a basis for splines of degree k only on a subinterval within [x0,xn]. Consider the piecewise linear case k =1,
(Fig. 2.7). The setℬ1 forms a basis for piecewise linear functions if over each subinterval [xj,xj+1] an arbitrary linear
function S1(t) can be expressed as a linear combination

S1(t)=a+bt =∑
i=0

n

ci Bi ,1(t).

Over [xj,xj+1] only Bj−1,1(t),Bj(t) are not identically zero, hence

S1(t)= cj−1Bj−1,1(t)+ cjBj,1(t).

For the end interval [x0,x1], a definition of B−1,1(t) would be required,

S1(t)= c−1B−1,1(t)+ c0B0,1(t),

not available within the chosen x data set. At the other end interval [xn−1,xn],

S1(t)= cn−1Bn−1,1(t)+ cnBn,1(t),

invokes Bn,1 which requires Bn+1,0(t), again not available within the chosen data set. One can either include samples
outside the [a,b] interval or restrict the spline domain of definition. Again, this is analogous with the treatment
of end conditions in traditional splines:

1. Sampling outside of the [a,b] range seeks additional information on the function being interpolated f , as
for instance imposed by the condition S ʹ(a)= f (a) in traditional splines;

2. Restricting the definition domain corresponds to inferring information on the behavior of f in the end
intervals as in the condition S ʹ(x0)=S ʹ(x1) in traditional splines.

Denote by 𝒮k(t;x) the set of splines S:[x0,xn]→ℝ, that are piecewise polynomials of degree k on the partition x of
[x0,xn]. The k =0, piecewise constant interpolant (2.17) is specified by n+1 coefficients, the components of y ∈ℝn+1,
hence

dim 𝒮0(t;x)=n +1,

i.e., the dimension of the space of piecewise-constant splines is equal to the number of sample points. As the degree
k increases, additional end conditions are required to specify a spline interpolation and

dim 𝒮 k(t;x)=n+1+k ,

requiring a basis set

ℬ.(t;x)={B−k,k(t), . . . ,B0,k(t),B1,k(t), . . . ,Bn,k(t)}.
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∘

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 2.7. B-spline set ℬ1 for x = [ 0 1 2 3 4 5 ]

∘ Algorithm B-spline evaluation (inefficient, does not account for known zero values of B )

Input: K ∈ℕ, t ∈ℝm, x ∈ℝk+n+1

B =0∈ℝm×(k+n+1)

for i =1:m
for j =1:k +n
if xj ti <xj+1 then B[i, j]=1 end

end
if ti ≈xk+n+1 then B[i,k +n+1]=1 end

end
for k =1:K
for j =1:k +n
w =(t −xj)/(xj+k−xj)
B[:, j]=wB[:, j]+ (1−w)B[:, j +1]

end
end
return B

A B-spline interpolant of degree k is given by a linear combination of the basis set ℬk(t;x)

f (t)≅pk(t)= ∑
j=−k

n

ci Bj,k(t) .

∘ The interpolation conditions yi =p(xi) lead to an underdetermined linear system for k >0

Bc = y ,B = [ B−k,k(x) . . . B0,k(x) . . . Bn,k(x) ]∈ℝ(n+1)×(k+n+1),

analogous to the k degrees of freedom in specification of end conditions for 𝒮 k(x).
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LECTURE 17: SPECTRAL APPROXIMATIONS

1. Trigonometric basis

The monomial basis {1, t, t 2,...} for the vector space of all polynomials P(ℝ), and its derivatives (Lagrange, Newton,
B− spline) allow the definition of an approximant p ∈P(ℝ) for real functions f :ℝ→ℝ, e.g., for smooth functions
f ∈C∞(ℝ). A different approach to approximation in infinite-dimensional vector spaces such as P(ℝ) or C∞(ℝ)
is to endow the vector space with a scalar product ( f ,g) and associated norm ‖ f ‖= ( f , f )1/2. The availability of a
norm allows definition of convergence of sequences and series.

DEFINITION. A sequence { fn}n∈ℕ of elements of the normed vector space ℱ=(F ,ℂ, +, ⋅) converges to f, fn→ f if ∀ε >0,
∃N(ε) such that ‖ fn− f ‖< ε for all n >N(ε).

DEFINITION. The vector space ℱ= (F ,ℂ, +, ⋅) with a scalar product (, ):F × F →ℂ is a Hilbert space if the limit of all
Cauchy sequences is an element of F.

All Hilbert spaces have orthonormal bases, and of special interest are bases that arise Sturm-Liouville problems of
relevance to the approximation task.

1.1. Fourier series - Fast Fourier transform

The L2([0,2π]) space of periodic, square-integrable functions is a Hilbert space (L2 is the only Hilbert space among
the Lp function spaces), and has a basis

{12 , cos t, sin t, . . . , coskt, sinkt, . . .}
that is orthonormal with respect to the scalar product

( f ,g)= 1
π∫

0

2π
f (t)g(t)dt.

An element f ∈L2([0, 2π]) can be expressed as the linear combination

f (t)= a02 +∑
k=1

∞

[ak coskt +bk sinkt].

An alternative orthonormal basis is formed by the exponentials

{e ±int},n ∈ℕ,

with respect to the scalar product

( f ,g)= 1
2π∫

0

2π
f (t)g(t)dt.
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The partial sum

SN f (t)= ∑
k=−N

N

ck e ikt

has coefficients ck determined by projection

ck= ( f ,e ikt)= 1
2π∫

0

2π
f (t) e−ikt dt,

that can be approximated by the Darboux sum on the partition tj =2πj /N

ck≅
1
N ∑

j=1

N

fj e −iktj =
1
N ∑

j=1

N

fjωN
−jk

with

ω =exp[2πiN ],
denoting the Nth root of unity. The Fourier coefficients are obtained through a linear mapping

c =Wf ,

with c , f ∈ℂN , and W ∈ℂN×N with elements

W = [ω−jk]1 j,k N .

The above discrete Fourier transform can be seen as a change of basis from the basis I in which the coefficients of
f are c to the basis W in which the coefficients are f .

1.2. Fast Fourier transform

Carrying out the matrix vector product Wf directly would require 𝒪(N2) operations, but the cyclic structure of
the W matrix arising from the exponentiation of ω can be exploited to reduce the computational effort. Assume
N =2P and separate even and odd indexed components of f

ck =∑
j=1

N

fjωN
−jk=∑

j=1

P [ f2j−1ωN
−(2j−1)k+ f2jωN

−2jk]=∑
j=1

P

f2jωP
−jk+ωk∑

j=1

P

f2j−1ωP
−jk.

Through the above, the 𝒪(N 2) matrix-vector product is reduced to two smaller matrix-vector products, each
requiring 𝒪(N2/4) operations. For N = 2q, recursion of the above procedure reduces the overall operation count
to 𝒪(qN), or in general for N composed of a small numer of prime factors, 𝒪(N logN). The overall algorithm
is known as the fast Fourier transform or FFT.

1.3. Data-sparse matrices from Sturm-Liouville problems

One step of the FFT can be understood as a special matrix factorization

WN =[[[[[[ I DN
I −DN ]]]]]][[[[[[ WP 0

0 WP ]]]]]]PN
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where DN is diagonal and PN is the even-odd permutation matrix. Though the matrix WN is full (all elements are
non-zero), its factors are sparse, with many zero elements. The matrixWN is said to be data sparse, in the sense that
its specification requires many fewer than N2 numbers. Other examples of data sparse matrices include:

Toeplitz matrices. A ∈ℂm×m has constant diagonal terms, e.g., for m =4

A =

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[
[
[ a b c d
e a b c
f e a b
g f e a ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]
,

or in general the elements of A =[aij]1 i ,j m can be specified in terms of 2m−1 numbers a1−n, .. . ,an−1 through
aij =ai−j.

Exterior products. Rank-1 updates arising in the singular value or eigenvalue decompositions have the form

A =uvT = [ v1u v2u . . . vmu ],

and the 2m components of u , v are suficient to specify the matrix A with m2 components. This can be
generalized to any exterior product of matrices B ∈ℂn×n, C ∈ℂp×p through

A =B ⊗C = [ b1⊗C b2⊗C . . . bn⊗C ]=
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ b11C b12C . . . b1nC
b21C b22C . . . b2nC
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
bn1C bn2C . . . bnnC ]]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]
]
]
.

The m2= (np)2 components of A are specified through only n2 +p2 components of B ,C .

The relevance to approximation of functions typically arises due basis sets that are solutions to Sturm-Liouville
problems. In the case of the Fourier transform e±ikt are eigenfunctions of the Sturm-Liouville problem

w ʹʹ+λw =0,w =u+ iv ,uʹ(0)=u ʹ(π)=0,v(0)= v(π)=0,

with eigenvalues λn=k 2. The solution set {φ1,φ2, . . .} to a general Sturm-Liouville problem to find f : [a,b]→ℝ

d
dt[[[[[[p(t)d fdt ]]]]]]+q(t) f =−λw(t) f ,

form an orthonormal basis under the scalar product

( f ,g)=∫
a

b
f (t)g(t)w(t)dt,

and approximations of the form

ΦN f (t)=∑
k=1

N

ckφk(t),
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and Parseval's theorem states that

‖c‖22=∑
k=1

∞

ck ck̄ = ‖ f ‖22 =( f , f )=∫
a

b
f (t) f (t)w(t)dt,

read as an equality between the energy of f and that of c . By analogy to the finite-dimensional case, the Fourier
transform is unitary in that it preserves lengths in the ‖ f ‖+ ( f , f )1/2 norm with weight function w(t)=1.

2. Wavelet approximations

The bases {φ1,φ2, . . . } arising from Sturm-Liouville problems are single-indexed, giving functions of increasing
resolution over the entire definition domain. For example sin kx resolves ever finer features over [0, 2π]. When
applied to a function with localized features, k must be increased with increased resolution in the entire [0, 2π]
domain. This leads to uneconomical approximation series SN f (t) with many terms, as exemplified by the Gibbs
phenomenon in approximation of a step function, f (t)=H(t −π /2)−H(t −3π /2) for t ∈[0,2π], and f (t +2π)= f (t).
The approach can be represented as the decomposition of a space of functions by the direct sum

F =Φ1⊕Φ2⊕ . . . ,

with Φk=span(φk), for example

L2 =E0⊕E1⊕E−1⊕E2⊕E−2⊕ . . . ,

with Ek=span{e ikt} for the Fourier series.

Approximation of functions with localized features is more efficiently accomplished by choosing some generating
function ψ (t) and then defining a set of functions through translation and scaling, say

ψjk(t)=2−j/2ψ (2−j t −k).

Such systems are known as wavelets, and the simplest example is the step function

ψ (t)={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
1 0 t <1/2
−1 1/2 t <1
0 otherwise

,

with ψjk having support on the half-open interval hjk = [k2−j, (k +1)2−j). The set {ψ00,ψ01, . . . } is known as an Haar
orthonormal basis for L2(ℝ) since

(ψjk,ψlm)=∫
−∞

∞
ψjk(t)ψlm(t)dt =δjlδkm.

Approximations based upon a wavelet basis

f (t)=∑
j∈ℤ

∑
k∈ℤ

( f ,ψjk)ψjk(t),
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allow identification of localized features in f .

The costly evaluation of scalar products ( f ,ψjk) in the double summation can be avoided by a reformulation of the
expansion as

f (t)=∑
k

cl ,k φl(t)+∑
j l

∑
k

dj,kψjk(t), (2.22)

with . In addition to the ψ (“mother” wavelet), an auxilliary φ scaling function (“father” wavelet) is defined, for
example

φ(t)={{{{{{{{{{{{ 1 0 t <1
0 otherwise ,

for the Haar wavelet system.

The above approach is known as a multiresolution representation and is based upon a hierarchical decomposition
of the space of functions, e.g.,

L2 =Vl ⊕Wl ⊕Wl−1⊕Wl−2⊕ . . .

with

Vj =span {φjk| k ∈ℤ},Wj =span{ψjk |k ∈ℤ}.

The hierarchical decomposition is based upon the vector subspace inclusions

{0}< ⋅ ⋅ ⋅ <V1<V0<V−1 <V−2 < ⋅ ⋅ ⋅ <L2(ℝ),

and the relations

Vm⊕Wm=Vm−1,

that state that the orthogonal complement of Vm within Vm−1 isWm. Analogous to the FFT, a fast wavelet transfor-
mation can be defined to compute coefficients of (2.22).

LECTURE 18: BEST APPROXIMANT

1. Best approximants

Interpolation of data 𝒟 = {(xi, yi = f (xi)), i = 0, . . . , n} by an approximant p(t) corresponds to the minimization
problem

min
p

‖ f −p‖,
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in the discrete one-norm at the sample points xi

‖ f ‖= ‖f ‖1 =∑
i=0

n

| f (xi)| .

Different approximants are obtained upon changing the norm.

THEOREM (EXISTENCE OF BEST APPROXIMANT. For any element f ∈F in a normed vector space ℱ=(F ,S,+, ⋅), there exists
a best approximant g ∈G within a finite dimensional subspace G ⊂F that is a solution of

min
g∈G

‖ f −g‖ .

The argument underlying the above theorem is based upon constructing the closed and bounded subset of G

K = {g ∈G | ‖g − f ‖ ‖0− f ‖= ‖ f ‖}⊂G.

Since G is finite dimensional, K is compact, and the continuous mapping g→ ‖g − f ‖ attains is extrema.

The two main classes of approximants g of real functions f :[a,b]→ℝ that arise are:

Approximants based upon sampling. The vectors f = f (x), g =g(x) are constructed at sample points x ∈ℝm

and the best approximant solves the problem

min
g∈G

‖f − g ‖.

Note that the minimization is carried out over the members of the subset G, not over the vectors g . The
norm can include information on derivatives as in the norm

‖ f ‖H = ‖f ‖1+ ‖f ʹ‖1,

arising in Hermite interpolation.

Approximants over the function domain. The norm is now expressed through an integral such as the p-
norms

‖ f ‖p=(∫
a

b| f (t)|pdt)1/p .

In general, the best approximant in a normed space is not unique. However, the best approximant is unique in a
Hilbert space, and is further characterized by orthogonality of the residual to the approximation subspace.

THEOREM (BEST APPROXIMANT IN HILBERT SPACE). For any element f ∈F in a Hilbert space ℱ= (F ,S, +, ⋅), there exists
a unique approximant g ∈G within a finite dimensional subspace G ⊂F that is a solution of

min
g∈G

‖ f −g‖,
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and the residual f −g is orthogonal to G, ∀h∈G

( f −g ,h)=0.

Note that orthogonality of the residual ( f − g , h) = 0 implies ( f , h) = (g , h) or that the best approximant is the
projection of f onto G.

2. Two-norm approximants in Hilbert spaces

For Hilbert spaces with a norm is induced by the scalar product

‖ f ‖=( f , f )1/2,

finding the best approximant reduces to a problem within ℝm (or ℂm). Introduce a basis ℬ= {b1,b2, . . .} for ℱ such
that any f ∈F has an expansion

f (t)=∑
j=1

∞

fj bj(t), fj = ( f ,bj)

Since G is finite dimensional, say n=dim(G), an approximant has expansion

g(t)=∑
j=1

n

gj bs(j)(t).

Note that the approximation may lie in an arbitrary finite-dimensional subspace of ℱ. Choosing the appropriate
subset through the function s:ℕ→ℕ is an interesting problem in itself, leading to the goal of selecting those basis
functions that capture the largest components of f , i.e., the solution of

min
s∈ℕn

∑
j=1

n

|( f ,bs(j))| .

Approximate solutions of the basis component selection are obtained by processes such as greedy approximation
or clustering algorithms. The approach typically adopted is to exploit the Bessel inequality

∑
i=1

n

fs(i)2 ‖ f ‖2,

and select

s(1)=argmax
i∈S

fi2,

eliminate s(1) from S, and search again. The k th-step is

s(k)=argmax
i∈S

fi2,

with Sk =S −{s(1), . . . , s(k −1)}.
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Assuming s(j)= j , the orthogonality relation f −g⊥G leads to a linear system

( f −g ,bi)=0⇒((((((((((((((∑
j=1

n

gj bj,bi))))))))))))))=∑
j=1

n

(bi,bj)gj =( f ,bi)⇒Bg = f .

If the basis is orthonormal, then B = I , and the best approximant is simply given by the projection of f onto the
basis elements. Note that the scalar product need not be the Euclidean discrete or continuous versions

( f ,g)=∑
i=1

n

fi gi,( f ,g)=∫
a

b
f (t)g(t)dt.

A weighting function may be present as in

( f ,g)= f TWg , ( f ,g)=∫
a

b
f (t)g(t)w(t)dt,

discrete and continuous versions, respectively. In essense the appropriate measure µ(t) for some specific problem

dµ(t)=w(t)dt,

arises and might not be the Euclidean measure w(t)=1.

3. Inf-norm approximants

In the vector space of continuous functions defined on a topological space X (e.g., a closed and bounded set in ℝn),
a norm can be defined by

‖ f ‖=max
x ∈X

| f (x)|,

and the best approximant is found by solving the problem

inf
g∈G

‖ f −g‖= inf
g∈G

max
x ∈X

| f (x)−g(x)|.

The fact that g is the best approximant of f can be restated as 0 being the approximant of f −g since

‖ f −g −0‖ ‖ f −(g +h)‖.

A key role is played by the points where f (x)=g(x) leading to the definition of a critical set as

crit( f )=𝒵( f )= {x ∈X : | f (x)|= ‖ f ‖} .

When G = Pn−1, the space of polynomials of degree at most n − 1, with dimPn−1 = n, the best approximant can be
charaterized by the number of sign changes of f (x)−g(x).

LECTURE 18: BEST APPROXIMANT 147



THEOREM (CHEBYSHEV ALTERNATION). The polynomial p∈Pn−1 is the best approximant of f :[a,b]→ℝ in the inf-norm

‖ f −p‖∞= max
a x b

| f (x)−p(x)|

if and only if there exist n+1 points a x0< x1 < ⋅ ⋅ ⋅ <xn b such that

f (xi)−p(xi)= s ⋅(−1)i ‖ f −p‖∞,

where |s|=1.

Recall that choosing xi=cos[(2i−1)π /(2n)], the roots of the Tn(θ)=cos(nθ)Chebyshev polynomial (with x =cosθ ,
a=−1, b =1), leads to the optimal error bound in polynomial interpolation

| f (t)−p(t)| ‖ f (n+1)‖∞
(n +1)!2n .

The error bound came about from consideration of the alternation of signs of p(xj)− q(xj) at the extrema of the
Chebyshev polynomial Tn, xi = cos(iπ /n), i = 0, 1, . . . n, with p, q monic polynomials. The Cebyshev alternation
theorem generalizes this observation and allows the formulation of a general approach to finding the best inf-
norm approximant known as the Remez algorithm. The idea is that rather than seeking to satisfy the interpolation
conditions

Ma = y

in the monomial basis

M =ℳn−1(x)= [ 1 x . . . x n−1 ]∈ℝn×n,

attempt to find n alternating-sign extrema points by considering the basis set

R =ℛn(x)= [ 1 x . . . x n−1 ±1]∈ℝ(n+1)×(n+1)

with ±1= [ +1 −1 +1 . . . ].

Algorithm (Remez)

1. Initialize x ∈ℝn+1 to Chebyshev maxima on interval [a,b]
2. Solve Rc = f (x) ℛ(x), cT =[ aT cn+1 ], a ∈ℝn

3. Find the extrema y of p(t)− f (t) with p(t)=a0+a1t + ⋅ ⋅ ⋅ +an−1 t n−1

4. If p(yi)− f (yi) are approximately equal in absolute value and of opposite signs, return x

5. Otherwise set x = y , repeat
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CHAPTER 3
LINEAR OPERATOR APPROXIMATION

LECTURE 19: DERIVATIVE APPROXIMATION

1. Linear operator approximation

An operator is understood here as a mapping from a domain vector space 𝒰 =(U ,S,+, ⋅) to a co-domain vector space𝒱 = (V ,S, +, ⋅), and the operator ℒ:U→V is said to be linear if for any scalars c1, c2∈S and vectors u1,u2∈U ,

ℒ(c1u1+ c2u2)= c1ℒ(u1)+ c2ℒ(u2),

i.e., the image of a linear combination is the linear combination of the images. Linear algebra considers the case of
finite dimensional vector spaces, such as U =ℝm, V =ℝn, in which case a linear operator is represented by a matrix
L∈ℝm×n, and satisfies

L(c1u1 + c2u2)= c1Lu1+ c2Lu2 .

In contrast, the focus here is on infinite-dimensional function spaces such as Cr(ℝ) (cf. Tab. 1, L18), the space of
functions with continuous derivatives up to order r . Common linear operator examples include:

Differentiation. ℒ f =∂kf /∂t k, ℒ:Cr(ℝ)→Cr−k(ℝ).

Riemann integration. ℒf =∫abω(t) f (t)dt, ℒ:C(ℝ\∆)→ℝ, where ∆ is a set of measure zero.

Linear differential equation. ℒy =∑j=0
k aj(t)y (j)= f (t), ℒ:Cr(ℝ)→Cr−k(ℝ).

1.1. Numerical differentiation

A general approach to operator approximation is to simply introduce an approximation of the function the operator
acts upon, f ≅p,

ℒf ≅ℒp.

Monomial basis. As an example consider the polynomial interpolant of f based upon data 𝒟 = {(xi,yi = f (xi)),
i=0, . . . ,n},

p(t)= [ 1 t t 2 . . . t n ]c ,
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with coeffcients c determined as the solution of the interpolation conditions

Mc = y ,

with notations

M = [ 1 x x 2 . . . x n ], x k =[ x0k . . . xnk ]T , y = [ y0 . . . yn ]T .

Differentiation of f (ℒ=d/dt) can be approximated as

d
dt f ≅

d
dtp = [ 0 1 2t . . . ntn−1 ]c .

It is oſten of interest to express the result of applying an operator directly in terms of known information on f .
Formally, in the case of differentiation,

d
dt f ≅ [ 0 1 2t . . . ntn−1 ]M −1 y ,

allowing the identification of a differentiation approximation operator 𝒟
d
dt f ≅𝒟(y),𝒟 = [ 0 1 2t . . . nt n−1 ]M −1 .

This formulation explicitly includes the inversion of the sampled basis matrixM , and is hence not computationally
efficient. Alternative formulations can be constructed that carry out some of the steps in computing M −1 analyti-
cally.

Newton basis (finite difference calculus). An especially useful formulation for numerical differentiation arises
from the Newton interpolant of data 𝒟 = {(xi = ih,yi = f (xi)), i =0, . . . ,n}, f :ℝ→ℝ, f ∈C(n+1)(ℝ),

f (t)≅p(t)= [y0]+ [y1,y0](t −x0)+ ⋅ ⋅ ⋅ + [yn,yn−1, . . . ,y0](t −x0) ⋅(t −x1) ⋅ . . . ⋅ (t −xn−1).

For equidistant sample points xi = ih, the Newton interpolant can be expressed as an operator acting upon the data.
Introduce the translation operator

Ef (t)= f (t +h).

Repeated application of the translation operator leads to

Ek f (t)=E(Ek−1f (t))= ⋅ ⋅ ⋅ = f (t +kh),

and the identity operator is given by

If (t)= f (t)=E 0 f (t)⇒ I =E 0.

Finite differences of the function values are expressed through the forward, backward and central operators

∆=E − I ,∇= I −E ,δ =E 1/2−E −1/2,
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leading to the formulas

∆ f (t)= f (t +h)− f (t),∇ f (t)= f (t)− f (t −h),δf (t)= f (t +h/2)− f (t −h/2).

Applying the above to the data set 𝒟 leads to

∆yi =yi+1−yi,∇yi =yi −yi−1,δyi =yi+1/2−yi−1/2 .

The divided differences arising in the Newton can be expressed in terms of finite difference operators,

[y1,y0]= y1−y0
h =

1
h∆y0, [y2,y1,y0]=

[y2,y1]− [y1,y0]
2h =

∆y1−∆y0
2h2 =

∆2y0
2h2 ,

or in general

[yk, . . . ,y1,y0]= ∆k

k !hk y0.

Using the above and rescaling the variable t in the Newton basis 𝒩 ={1, t −x0,(t −x0)(t −x1), . . .} in units of the step
size t =αh+x0 leads to

p(t(α))=P(α)=((((((I +α ∆
1! +α(α −1)∆

2

2! + ⋅ ⋅ ⋅ +α(α −1) ⋅ . . . ⋅ (α −1+n)∆
n

n! ))))))y0 . (3.1)

The generalized binomial series states

(1+x)α=∑
k=0

∞

(((((( α
k ))))))x k, (3.2)

with

(((((( α
k ))))))= α(α −1). . .(α −k +1)

k !

the generalized binomial coefficient. The operator acting upon y0 in (3.1) can be interpreted as the truncation at
order n

P(α)≅(I +∆)αy0 =ℱαy0,

of the operator (I +∆)α defined through (3.2) by the substitutions 1→ I , x→∆. The operator ℱα = (I +∆)αcan be
interpreted as the interpolation operator with equidistant sampling points, with P(α) its truncation to order n.
Reversing the order of the sampling points leads to the Newton interpolant

p(t)= [yn]+ [yn−1,yn](t −xn)+ ⋅ ⋅ ⋅ + [y0,y1, . . . ,yn](t −xn)(t −xn−1) ⋅ . . . ⋅(t −x1).

The divided differences can be expressed in terms of the backward operator as

[yn−1,yn]= yn−1−yn
h =− 1

h ∇yn, [yn−2,yn−1,yn]=
[yn−2,yn−1]− [yn−1,yn]

2h =− ∇yn−1−∇yn
2h2 = ∇

2yn
2h2 ,
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leading to an analogous expression of the interpolation operator in terms backward finite differences

p(t(α))=P(α)=((((((I −α ∇
1!h +α(α −1) ∇2

2!h2 + ⋅ ⋅ ⋅ +(−1)nα(α −1) ⋅ . . . ⋅ (α −1+n) ∇n

n!hn))))))yn≅ (I −∇)αyn=ℬαyn .

Differentiation of the interpolation expressed in terms of forward finite differences gives

f ʹ(t)≅ d
dtP(α)=

dα
dt P

ʹ(α)≅ 1
h
d
dαℱαy0=

1
h [ln(I +∆)] (I +∆)a y0≅ 1

h ln(I +∆)P(α).

The particular interpolant P(α) is irrelevant, leading to the operator identity

d
dt ≅

1
h ln(I +∆).

For |x |<1, the power series expansions are

d
dx ln(1+x)=

1
1+x =1−x +x

2− ⋅ ⋅ ⋅⇒ ln(1+x)=x − x 2

2 +
x 3

3 − . . . +(−1)k+1x
k

k + ⋅ ⋅ ⋅ ,

are uniformly convergent, leading to the expression

d
dt ≅

1
h (∆− 1

2∆
2 + 1

3∆
3− . . . + (−1)k1k ∆

k+ ⋅ ⋅ ⋅),
stating that the (continuum) differentiation operator can be approximated by an infinite series of finite difference
operations, recovered exactly in the h→0 limit. Denote byDk

+ the truncation at term k of the above operator series
such that

f ʹ(x0)≅Dk
+( f )(x0)= 1

h (∆− 1
2∆

2+ 1
3∆

3− . . . +(−1)k1k ∆
k)y0.

Truncation at k =1,2, 3 leads to the expressions

D1
+( f ) = f (h + t)− f (t)

h , D2
+( f ) = 4 f (h + t) − f (2 h + t) − 3 f (t)

2 h , D3
+( f ) =

18 f (h+ t)−9 f (2h+ t)+2 f (3h+ t)−11 f (t)
6h .

The h→0 limit of divided differences is given by

lim
h→0

[yk,yk−1, . . . ,y0]= lim
h→0

( 1
k !hk ∆

ky0)= 1
k ! f

(k)(x0),

such that for small finite h>0,

∆ky0≅hk f (k)(x0).
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The resulting derivative approximation error is of order k ,

ek+(t)=Dk
+( f )(t)− f ʹ(t)= (−1)k+1hk

k +1 f (k+1)(t)=𝒪(hk).

The analogous expression for backward differences is

d
dt ≅−

1
h ln(I −∇)=

1
h (∇+ 1

2∇
2 +

1
3∇

3 + . . . +
1
k ∇

k+ ⋅ ⋅ ⋅),
and the first few truncations are

D1
−( f ) = f (t − h) − f (t)

h , D2
−( f ) = − f (t − 2 h)+ 4 f (t − h)− 3 f (t)

2 h , D3
−( f ) =

2 f (t −3h)−9 f (t −2h)+18 f (t −h)−11 f (t)
6h

with errors

ek−(t)=Dk
−( f )(t)− f ʹ(t)= hk

k f (k+1)(t)=𝒪(hk).

The above operator identities can be inverted to obtain

∆=E − I =exp((((((h d
dt))))))− I ,∇= I −E −1= I −exp((((((−h d

dt)))))),
leading to

E =exp((((((h d
dt))))))=1+h d

dt +
1
2((((((h d

dt))))))2 + . . . + 1
k !((((((h d

dt))))))k+ ⋅ ⋅ ⋅ +
this time expressing the finite translation operator as an infinite series of continuum differentiation operations.
This allows expressing the central difference operator as

δ =E 1/2−E −1/2 =exp((((((h2 d
dt))))))−exp((((((−h2 d

dt))))))=2 sinh((((((h2 d
dt)))))),

and approximations of the derivative based on centered differencing are obtained from

d
dt ≅

2
h arcsinh((((((δ2))))))= 1

h((((((δ − δ 3

24 +
3δ 5

640 −
5δ 7

7168 +
35δ 9

294912 − ⋅ ⋅ ⋅)))))).
An advantage of the centered finite differences (surmised from the odd power series) is a higher order of accuracy

ek =Dkf ( f )− f ʹ(t)=𝒪(h2k) .
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Higher order derivative are obtained by repeated application of the operator series, e.g.,

d2

dt 2
= d
dt ⋅

d
dt =

1
h2 (∆− 1

2∆
2+ 1

3∆
3− ⋅ ⋅ ⋅)2

= 1
h2 (∆2−∆3 + 1112∆

4− ⋅ ⋅ ⋅)2
.

Moment method. An alternative derivation of the above finite difference formulas is to construct a linear com-
bination of function values

Lmn f (t)= ∑
k=−m

n

ck f (t +kh)=(((((((((( ∑
k=−m

n

ckE k)))))))))) f (t),

and determine the coefficients ck such that the pth derivative is approximated to order q

f (p)(t)=Lmn f (t)+𝒪(hq).

For example, for m=0, n=1, carrying out Taylor series expansions gives

f (t +h) = f (t)+hf ʹ(t)+ 12 h
2 f ʹʹ(t)+ ⋅ ⋅ ⋅

f (t) = f (t) .

Eliminating f (t) by multiplying the first equation by c1 = 1 and the second by c0 =−1 recovers the forward finite
difference formula

f ʹ(t)= f (t +h)− f (t)
h +𝒪(h).

B-spline basis. The above example used a truncation of the monomial basisℳn(t)={1, t,..., t n}. Analogous results
are obtained when using a different basis. Consider the equidistant sample points xi = ih + x0, data 𝒟 = {(xi, yi =
f (xi), i=0,1, . . . ,n)}and the first-degree B-spline basis

ℬn,1(t)={B0,1(t),B1,1(t), . . . ,Bn,1(t)},

in which case the linear piecewise interpolant is expressed as

p(t)=∑
i=0

n

yi Bi ,1(t),

and over interval [xi−1,xi] reduces to

pi(t)=yi−1Bi−1,1(t)+yiBi ,1(t)=yi−1 ⋅ xi − t
xi −xi−1

+yi ⋅
t −xi−1
xi −xi−1

.

Differentiation recovers the familiar slope expression

pí(t)= yi −yi−1
xi −xi−1

= yi −yi−1
3h .
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At the nodes, a piecewise linear spline is discontinuous, hence the derivative is not defined, though one could
consider the one-sided limits. Evaluation of derivatives at midpoints ti = (xi−1 +xi)/2= (i −1)h+h/2+x0, i =1, 2, . . . ,
n, leads to

y ʹ=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[
[
[ y1́y2́
⋅⋅⋅
yń ]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]
=p ʹ(t)=Dx =

1
h[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[
[
[ −1 1 0 0 . . . 0
0 −1 1 0 . . . 0

⋅⋅ ⋅ ⋅⋅ ⋅
⋅⋅ ⋅ ⋅⋅ ⋅

−1 1 ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]
]
]
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[
[
[ x0x1
⋅⋅⋅
xn ]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]
,

with D ∈ℝn×(n+1).

LECTURE 20: QUADRATURE

0.1. Numerical integration

Numerical integration proceeds along the same lines as numerical differentiation

ℒf ≅ℒp,

with a different operator

ℒ f =∫
a

b
ω(t) f (t)dt,

withℒ:C([a,b]\Z)→ℝ with Z a set of measure zero, e.g., Z =∅ for a function continuous at all points in [a,b]. It
is oſten useful to explicitly identify a weight function ω(t) that can attribute higher significance to subsets of [a,b].
In the integration case, the approximation basis choice can be combined with decomposition of the domain into m
subintervals [ak,bk) such that ⋃k=1

m [ak,bk)= [a,b) through

∫
a

b
ω(t) f (t)dt =∑

k=1

m ∫
ak

bk
ω(t) f (t)dt,

with

a=a1<b1 =a2 <b2 =a3 < ⋅ ⋅ ⋅ <bm=b.

Monomial basis. As for numerical differentiation, an integration operator ℐ can be obtained from the polynomial
interpolant of f based upon data 𝒟 = {(xi,yi = f (xi)), i =0, . . . ,n},

p(t)= [ 1 t t 2 . . . t n ]c , c =M −1 y ,

M = [ 1 x x 2 . . . x n ], x k =[ x0k . . . xnk ]T , y = [ y0 . . . yn ]T .
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Integration of f for ω(t)=1 is approximated as

∫
a

b
f (t)dt ≅ℐ( f )=∫

a

b
p(t)dt =[ b −a 1

2(b
2−a2) 1

3(b
3−a3) . . . 1

n +1(b
n+1−an+1) ]M −1 y .

As for numerical differentation, the computational effort in the above formulation can be reduced through alter-
native basis choices.

Lagrange basis. Assume n = dm in the data set 𝒟 = {(xi,yi = f (xi)), i = 0, . . . ,n}, and construct an interpolant of
degree d in each subinterval [ak,bk)=[xd(k−1),xdk). As highlighted by the approximation of the Runge function, the
degree d should be small, typically d ∈ {1,2, 3}.

Trapezoid formula. For d =1, a linear approximant is defined over each subinterval [xk−1,xk], stated in Lagrange
form as

pk(t)= ℓk−1(t)yk−1+ ℓk(t)yk= t −xk
xk−1−xk

yk−1 +
t −xk−1
xk −xk−1

yk.

The resulting integral approximation

ℒ( f )=∫
xk −1

xk
f (t)dt ≅ℐ(p)=∫

xk −1

xk
pk(t)dt = (xk −xk−1)yk−1+yk2 .

The approximation error results from the known polynomial interpolation error formula

f (t)−p(t)= f ʹʹ(ξt)
2 (t −xk)(t −xk−1),

that gives

ek(t)= ∣∫
xk −1

xk [ f (t)−p(t)]dt∣ ‖ f ʹʹ‖∞ (xk−xk−1)3
12 .

Using an equidistant partition xk = a + kh, h = (b − a)/n, over the entire [a, b] interval gives the composite
trapezoid formula

∫
a

b
f (t)dt =∑

k=1

n ∫
xk −1

xk
f (t)dt ≅∑

k=1

n ∫
xk −1

xk
pk(t)dt =h((((((((((y02 +∑

k=1

n

yk +
yn
2 )))))))))).

The overall approximation error is bounded by the error over each subinterval

e ∑
k=1

n

ek ‖ f ʹʹ‖∞n h3

12 = (b −a)
h2 ‖ f ʹʹ‖∞

12 ,
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and the trapezoid formula exhibits quadratic convergence, e =𝒪(h2).

Simpson formula. A more accurate, quadratic approximant is obtained for d = 2 using sample points xk−2,
xk−1,xk

pk(t)= ℓk−2(t)yk−2 + ℓk−1(t)yk−1+ ℓk(t)yk,

pk(t)= (t −xk−1)(t −xk)
(xk−2−xk−1)(xk−2−xk) yk−2+

(t −xk−2)(t −xk)
(xk−1−xk−2)(xk−1−xk) yk−1 +

(t −xk−2)(t −xk−1)
(xk −xk−2)(xk −xk−1) yk.

Assuming n =2m, xk=a+kh, h=(b −a)/n, over a subinterval the Simpson approximation is

∫
xk −2

xk
f (t)dt ≅∫

xk −2

xk
pk(t)dt = h

3(yk−2+4yk−1+yk).

Integration of the interpolation error

f (t)−pk(t)= f (3)(ξt)
3! (t −xk−2)(t −xk−1)(t −xk),

leads to calculation of

∫
xk −2

xk (t −xk−2)(t −xk−1)(t −xk)dt =∫
−h

h (τ −h)τ(τ +h)dτ =0. (3.3)

This null result is a feature of even-degree interpolants d = 2r . Note that the interpolation error formula
contains an evaluation of f (3)(ξt) at some point ξt ∈ [xk−2,xk] that depends on t, so the integral

∫
xk −2

xk f (3)(ξt)
3! (t −xk−2)(t −xk−1)(t −xk)dt

is not necessarily equal to zero. To obtain an error estimate, rewrite the interpolating polynomial in Newton
form

pk(t)=yk−1+ [yk−1,yk−2](t −xk−2)+ [yk,yk−1,yk−2](t −xk−2)(t −xk−1),

The next higher degree interpolant would be

qk(t)=pk(t)+ ck(t −xk−2)(t −xk−1)(t −xk),

and (3.3) implies that the integral of qk is equal to that of pk

∫
xk −2

xk
qk(t)dt =∫

xk −2

xk
pk(t)dt,

hence the Simpson formula based on a quadratic interpolation is as accurate as that based on a cubic
interpolation. The error can now be estimated using

ek = ∣∫
xk −2

xk [ f (t)−qk(t)]dt∣ ‖ f (iv)‖∞
4! ∫

xk −2

xk (t −xk−2)(t −xk−1)(t −xk)(t − zk)dt,

where zk is some additional interpolation point within [xk−2,xk]. It is convenient to choose zk =xk−1, which
corresponds to a Hermite interpolation condition at the midpoint. This is simply for the purpose of obtaining
an error estimate, and does not affect the Simpson estimate of the integral. Carrying out the calculations
gives

ek
‖ f (4)‖∞
90 h5.
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When applied to the overall interval [a,b], the Simpson formula is stated as

∫
a

b
f (t)dt ≅ b −a

6 [[[[[[ f (a)+4 f ((((((a+b2 ))))))+ f (b)]]]]]],
with error

e ‖ f (4)‖∞
2880 (b −a)5.

The composite Simpson formula is

∫
a

b
f (t)dt =∑

k=1

m ∫
x2k −2

x2k
f (t)dt ≅∑

k=1

m ∫
x2k −2

x2k
pk(t)dt = h

3((((((((((((y0 +4∑
k=1

m

y2k−1+2∑
k=1

m−1

y2k+yn)))))))))))),
with an overall error bound

e ∑
k=1

m ∫
x2k −2

x2k | f (t)−pk(t)|dt ‖ f (4)‖∞
90 h5 n

2 =
(b −a)
180 ‖ f (4)‖∞h4,

that shows fourth-order convergence e =𝒪(h4).

Moment method. As in numerical differentiation, an alternative derivation is available. Numerical integration is
stated as a quadrature formula

ℒ( f )=∫
a

b
ω(t) f (t)dt ≅𝒬( f )=∑

i=0

n

wi yi,

using data 𝒟 = {(xi,yi = f (xi)), i =0, . . . ,n}. Once the sampling points are chosen, there remain n +1 weights wi to
be determined. One approach is to enforce exact quadrature for the first n +1 monomials

ℒ(x k)=𝒬(x k)⇒∫
a

b
ω(t)t k dt =∑

i=0

n

wi xik,k =0, 1, . . . ,n.

A Vandermonde system results whose solution furnishes the appropriate weights. Since the Vandermonde matrix
is ill-conditioned, a solution is sought in exact arithmetic, using rational numbers as opposed to floating point
approximations.

The principal utility of the moment method is construction of quadrature formulas for singular integrands. For
example, in the integral

−∫
0

1
ln t sin tdt,

the ln t is an integrable singularity, and accurate quadrature rules can be constructed by the method of moments for

ℒ( f )=∫
a

b
ω(t) f (t)dt,

with ω(t)=−ln t.

0.2. Gauss quadrature

Recall that the method of moments approach to numerical integration based upon sampling 𝒟 = {(xi,yi = f (xi)),
i=0, . . . ,n},

∫
a

b
ω(t) f (t)dt =∑

i=0

n

wi yi + e ≅∑
i=0

n

wi yi,
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imposes exact results for a finite number of members of a basis set {ϕ0, . . . ,ϕn, . . .}

∫
a

b
ω(t)ϕk(t)dt =∑

i=0

n

wiϕk(xi),k =0,1, . . . ,n.

The trapezoid, Simpson formulas arise from the monomial basis set {1, t, t 2, . . .}, in which case

∫
a

b
ω(t)t kdt =∑

i=0

n

wi xik,k =0,1, . . . ,n,

but any basis set can be chosen. Instead of prescribing the sampling points xi a priori, which typically leads to an
error e =𝒪(ϕn+1(t)), the sampling points can be chosen to minimize the error e. For the monomial basis this leads
to a system of 2(n+1) equations

∫
a

b
ω(t)t kdt =∑

i=0

n

wi xik,k =0,1, . . . , 2n +1,

for the unknown n+1 quadrature weights wi and the n+1 sampling points xi. The system is nonlinear, but can be
solved in an insightful manner exploiting the properties of orthogonal polynomials known as Gauss quadrature.

The basic idea is to consider a Hilbert function space with the scalar product

( f ,g)=∫
a

b
ω(t) f (t)g(t)dt,

and orthonormal basis set {ϕ0(t),ϕ1(t),ϕ2(t),, . . . },

(ϕj,ϕk)=∫
a

b
ω(t)ϕj(t)ϕk(t)dt =δjk .

Assume that ϕk(t) are polynomials of degree k . A polynomial p2n+1 of degree 2n+1 can be factored as

p2n+1(t)=qn(t)ϕn+1(t)+ rn(t),

where qn(t) is the quotient polynomial of degree n, and rn is the remainder polynomial of degree n. The weighted
integral of p2n+1 is therefore

∫
a

b
ω(t)p2n+1(t)dt =∫

a

b
ω(t)[qn(t)ϕn+1(t)+ rn(t)]dt = (qn,ϕn+1)+∫

a

b
ω(t)rn(t)dt.

Since {ϕ0, . . . ,ϕn+1} is an orthonormal set, (qn,ϕn+1)=0, and the integral becomes

∫
a

b
ω(t)p2n+1(t)dt =∫

a

b
ω(t)rn(t)dt.

The integral of the nth remainder polynomial can be exactly evaluated through an n +1 point quadrature

∫
a

b
ω(t)rn(t)dt =∑

i=0

n

wi r(xi),

that however evaluates r(t) rather than the original integrand p2n+1(t). However, evaluation of the factorization
(0.2) at the roots xi of ϕn+1, ϕn+1(xi)=0, i =0, 1, . . . ,n, gives

p2n+1(xi)=qn(xi)ϕn+1(xi)+ rn(xi)= rn(xi),
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stating that the values of the remainder at these nodes are the same as those of the p2n+1 polynomial. This implies
that

∫
a

b
ω(t)p2n+1(t)dt =∑

i=0

n

wi p2n+1(xi),

is an exact quadrature of order 2n+1, e=𝒪(t 2n+1). The weights wi can be determined through any of the previously
outlined methods, e.g., method of moments

∫
a

b
ω(t)t k dt =∑

i=0

n

wi xik,k =0, . . . ,n,

which is now a linear system that can be readily solved. Alternatively, the weights are also directly given as inte-
grals of the Lagrange polynomials based upon the nodes that are roots of ϕn+1

wi =∫
a

b
ω(t)ℓi(t)dt.

LECTURE 21: ORDINARY DIFFERENTIAL EQUATIONS - SINGLE STEP METHODS

1. Ordinary differential equations

An nth-order ordinary differential equation given in explicit form

y (n)= f (t,y ,y ʹ, . . . ,y (n−1)) (3.4)

is a statement of equality between the action of two operators. On the leſt hand side the linear differential operator

ℒ= d
dt n

acts upon a sufficiently smooth function, y ∈C(n)(ℝ), ℒ:C(n)(ℝ)→C(ℝ). On the right hand side, a nonlinear
operator ℱ acts upon the independent variable t and the first n −1 derivatives

ℱ:ℝ×C(ℝ)× ⋅ ⋅ ⋅ ×C(n−1)(ℝ).

An associated function f :ℝn+1→ℝ has values given by

f (t)= f (t,y(t),y ʹ(t), . . . ,y (n−1)(t)).

The numerical solution of (3.4) seeks to find an approximant of y through:

1. Approximation of the differentiation operator ℒ;

2. Approximation of the nonlinear operator ℱ;

3. Approximation of the equality between the effect of the two operators

ℒ(y)=ℱ(t,y , . . . ,y (n−1)).

These approximation problems shall be considered one-by-one, starting with approximation of ℒ assuming that
the action of ℱ is exactly represented through knowledge of f .
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Note that an nth-order differential equation can be restated as a system of n first-order equations

z ʹ=F (t, z ) (3.5)

by introducing

z = [ z1 z2 . . . zn−1 zn ]T =[ y y ʹ . . . y (n−2) y (n−1) ]T ,
F (t, z )= [ z2(t) z3(t) . . . zn(t) f (t,z1(t), . . . , zn(t)) ]T .

Approximation of the differentiation operator for the problem

y ʹ= f (t,y) (3.6)

can readily be extended to the individual equations of system (3.5).

Construction of approximants to (3.6) is first considered for the initial value problem (IVP)

y ʹ= f (t,y),y(0)=y0 . (3.7)

The two procedures are:

1. Approximation of the differentiation operator;

2. Differentiation of an approximation of y .

Oſten the two approaches leads to the same algorithm. The problem (3.7) has a unique solution over some rectangle
R= [0,T ]× [y1,y2] in the ty -plane if f is Lipschitz-continuous, stated as the existence of K ∈ℝ+ such that

| f (t,y2)− f (t,y1)| K |y2−y1|.

Note that Lipschitz continuity is a stronger condition than standard continuity in that it states | f (t, y2) − f (t,
y1)|=𝒪(|y2−y1|). Differentiability implies Lipschitz continuity.

Consider approximation of d/dt through forward finite differences

d
dt =

1
h(∆−

1
2∆

2+
1
3∆

3− ⋅ ⋅ ⋅ −), (3.8)

and denote by yi the approximation of y(t), yi ≅y(ti) at the equidistant sample points ti = ih. Evaluation of (3.5)
with a k th order truncation of (3.8) then gives

f (ti,y(ti))=((((((dydt ))))))(ti)≅ 1
h(∆− 1

2∆
2 + 1

3∆
3− ⋅ ⋅ ⋅ −(−1)k 1k∆

k).
Euler forward scheme. For k =1, the resulting scheme is

1
h∆yi =

yi+1−yi
h = f (ti,yi)= fi⇒yi+1=yi +hfi,

where fi ≅ f (ti,y(ti)), and is known as the Euler forward scheme. New values are obtained from previous values.
Such methods are said to be explicit schemes. As to be expected from the truncation of (3.8) to the first term in the
series, the scheme is first-order accurate. This can be formally established by evaluation of the error at step i

ei =y(ti)−yi.
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At the next step, ei+1=y(ti+1)−yi, and subtraction of the two errors gives upon Taylor-series expansion

ei+1−ei =y(ti+1)−y(ti)−(yi+1−yi)=y(ti)+hy ʹ(ti)+ h
2

2 y ʹʹ(ξi)−y(ti)−hfi.

Since fi = f (ti,y(ti)), the one-step error is given by

τi =ei+1− ei =
h2

2 y ʹʹ(ξi).

Aſter N steps,

eN − e0 =
h2

2 ∑
i=1

N

y ʹʹ(ξi).

Assuming e0 =0 (exact representation of the initial condition),

eN
Nh2

2 ‖y ʹʹ‖∞.

Numerical solution of the initial value problem is carried out over some finite interval [0,T ], with T =Nh, hence

eN h
T
2 ‖y ʹʹ‖∞=𝒪(h), (3.9)

indeed with first-order convergence.

Alternatively, one could use the backward or centered finite difference approximations of the derivative

d
dt =

1
h(∇+ 1

2∇
2+ 1

3∇
3+ ⋅ ⋅ ⋅)= 1

h(δ − 1
24δ

3 + 3
640δ

5− ⋅ ⋅ ⋅ −). (3.10)

Backward Euler scheme. Truncation of the backward operator at first order gives

f (ti,y(ti))=((((((dydt ))))))i ≅ 1
h(∇y)i =

yi −yi−1
h ⇒yi =yi−1+hfi =yi−1+hf (ti,yi).

Note now that the unknown value yi appears as an argument to f , with fi = f (ti,yi), the approximation of the exact
slope f (ti,y(ti)). Some procedure to solve the equation

yi −yi−1−hf (ti,yi)=0,

must be introduced in order to advance the solution from ti−1 to ti. Such methods are said to be implicit schemes.
The same type of error analysis as in the forward Euler case again leads to the conclusion that the one-step error
is 𝒪(h2), while the overall error over a finite interval [0,T ] satisfies (3.9), and is first-order.

Leapfrog scheme. Truncation of the centered operator at first order gives

f (ti,y(ti))=((((((dydt ))))))i ≅ 1
h(δy)i =

yi+1/2−yi−1/2
h ⇒yi+1/2 =yi−1/2 +hfi =yi−1/2+hf (ti,yi).

The higher-order accuracy of the centered finite differences leads to a more accurate numerical solution of the
problem (3.7). The one-step error is third-order accurate,

ei+1/2− ei−1/2 =y(ti+1/2)−y(ti−1/2)+hf (ti,yi)= h
3

3 y ʹʹʹ(ξi),
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and the overall error over interval [0,T =Nh] is second-order accurate

eN
h2

3 T ‖y ʹʹʹ‖∞ .

LECTURE 22: ORDINARY DIFFERENTIAL EQUATIONS - MULTISTEP METHODS

1. Adams-Bashforth and Adams-Moulton schemes
Consider now the approximation of ℱ= f in the first-order differential equation

y ʹ= f (t,y). (3.11)

Integration over a time step [ti, ti+1] gives

y(ti+1)−y(ti)=∫
ti

ti+1
f (t,y(t))dt,

and use of quadrature formulas leads to numerical solutions for solving (3.11). Consider for instance data 𝒟 =
{(ti+1−k, fi+1−k), k =1, . . . , s} going back s intervals of size h, ti+1−k = ti+1− kh. Any quadrature formula based on this
data could be used, but the most oſten encountered approach is to use a polynomial approximant. This can be
stated in Lagrange form as

f (t,y(t))≅∑
k=1

s

ℓk(t) fk, fk= f (ti+1−k,y(ti+1−k))≅ f (ti+1−k,yi+1−k).

The last approximate equality arises from replacing the exact value y(ti+1−k) by its approximation yk ≅ y(ti+1−k).
The result is known as an Adams-Bashforth scheme

yi+1=yi +∫
ti

ti+1∑
k=1

s

ℓk(t) fk dt =yi +∑
k=1

s (∫
ti

ti+1
ℓk(t) dt) fk =yi +h∑

k=1

s

bk fi+1−k,

with coefficients that are readily computed (cf. Table 1).

bk =
1
h(∫

ti

ti+1
ℓk(t) dt).

s b1 b2 b3 b4
1 1

2 3
2 −12

3
23
12 −

16
12

5
12

4 55
24 −5924

37
24 − 9

24
Table 3.1. Adams-Bashforth scheme coefficients.

The s =1 Adams-Bashforth scheme is identical to forward Euler and the above approach yields schemes that are
explicit, i.e., the new value is directly obtained from knowledge of previous values.

Choosing data 𝒟 ={(ti+1−k, fi+1−k),k =0, . . . , s −1} that contains the point yet to be computed (ti+1,yi+1) gives rise to
a class of implicit schemes known as the Adams-Moulton schemes (Table 2)

yi+1=yi +h∑
k=0

s−1

bk fi+1−k,
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s b0 b1 b2 b3
1 1

2
1
2

1
2

3 5
12

8
12 − 1

12
4 9

24
19
24 − 5

24
1
24

Table 3.2. Adams-Moulton scheme coefficients.

2. Simultaneous operator approximation - linear multistep methods

Approximation of both operators ℒ = d/dt and ℱ = f arising in ℒy =ℱy , or y ʹ = f (t, y) is possible. Combining
previous computations, the resulting schemes can be stated as

∑
k=0

s

ak yi+k =h∑
k=0

s

bk fi+k , fi+k= f (ti+k,yi+k). (3.12)

Both sides arise from linear approximants: of the derivative on the leſt, and of f on the right.

3. Consistency, convergence, stability

Any of the above schemes defines a sequence {yn}n∈ℕ that approximates the solution y(tn) of the initial value
problem

y ʹ= f (t,y),y(0)=y0,

over a time interval [0,T ], tn=nh, h=T /N . A scheme is said to be convergent if

lim
h→0
Nh=T

yN =y(T).

The above states that in the limit of taking small step sizes while maintaining Nh =T for some finite time T , the
estimate at the endpoint converges to the exact value. Such a definition is rather difficult to apply directly, and an
alternative characterization of convergence is desirable.

To motivate the overall approach, consider first the following model problem

y ʹ=λy ,y(0)=y0,λ 0 (3.13)

The model problem arises from truncation of the general non-linear function f to first order

y ʹ= f (y)= f (0)+ f ʹ(0)y + ⋅ ⋅ ⋅ .

Since f (0) is a constant that simply leads to linear growth, and the model problem captures the lowest-order non-
trivial behavior. The exact solution is

y(t)= eλt y0⇒y(tn)=enλhy0,

giving y(T)= eλT y0. The restriction of λ 0 in the model problem arises from consideration of the effect of a small
perturbation in the initial condition representative of floating point representation errors. This leads to ỹ(T) =
eλT(y0+δ), and the error ε= ỹ(T)−y(T)=eλTδ can only be maintained small if λ 0.
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Applying the forward Euler scheme to the model problem (3.13) gives

yn+1=yn+λhyn= (1+ z)yn,

with z =λh. Aſter N steps the numerical approximation is

yN = (1+ z)N y0.

The exponential decay of the exact solution can only be recovered if which leads to a restriction on the allowable
step size

−2λ >h >0.

If the step size is too large, h>−2/λ, inherent floating point errors are amplified by the forward Euler method, and
the scheme is said to be unstable. This is avoided by choosing a subunitary parameter z , |z |= |λh| 1, which leads
to a step size restriction h<1/ |λ|.

These observations on the simple case of the Euler forwardmethod generalize to linear multistep methods. Applying
(3.12) to the model problem (3.13) leads to the following linear finite difference equation

∑
k=0

s

ak yi+k =z ∑
k=0

s

bk yi+k . (3.14)

The above is solved using a procedure analogous to that for differential equations by hypothesizing solutions of
the form

yn= rn,

to obtain a characteristic equation

π(r ;z)=ρ(r)−zσ(r)=0,

where ρ(r),σ(r) are polynomials

ρ(r)=∑
k=0

s

ak rk,σ(r)=∑
k=0

s

bk r k.

The above polynomials allow an operational assessment of algorithms of form (3.12). An algorithm (3.12) that
recovers the ordinary differential equation (3.11) in the limit of h→0 is said to be consistent, which occurs if and
only if

ρ(1)=0,ρ ʹ(1)−σ(1)=0.

Furthermore an algorithm of form (3.12) that does not amplify inherent floating point errors is said to be stable,
which occurs if the roots of π(r ;z) are subunitary in absolute value

|rj|<1,π(rj; z)=0.

THEOREM. An algorithm to solve ( 3.11) that is consistent and stable is convergent.

Boundary locus method. A convenient procedure to determine the stable range of step sizes is to consider r of
unit absolute value

r =e iθ ,
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and evaluate the characteristic equation

π(e iθ ; z)=ρ(e iθ)− zσ(e iθ)=0⇒ z(θ)= ρ(e iθ)
σ(e iθ) ,

where z(θ) is the boundary locus delimiting zones of stability in the complex plane (Fig 1).

A method is said to be A-stable if its region of stability contains the entire leſt half-plane in ℂ, and is said to be L-
stable if limω→∞ρ(ωe iθ)/σ(ωe iθ)=0.

LECTURE 23: NONLINEAR SCALAR OPERATOR EQUATIONS

1. Root-finding algorithms

The null space of a linear mapping represented through matrix A ∈ℂm×n is defined as N(A)= {x |Ax =0}, the set of
all points that have a null image through the mapping. The null space is a vector subspace of the domain of the
linear mapping. A first step in the study of nonlinear mappings is to consider the generalization of the concept of
a null set, starting with the simplest case,

f (x)=0 (3.15)

where f :ℝ→ℝ, f ∈Cp(ℝ), p 0, i.e., f has p continuous derivatives. It is assumed that a closed form analytical
solution is not available, and algorithms are sought to construct an approximating sequence {xn}n∈ℕ whose limit is
a root of (3.15). The general approach is to replace (3.15) with

gn(x)=0, (3.16)

where gn is some approximation of f , and xn the root of (3.16) can be easily determined.
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1.1. First-degree polynomial approximants

Secant method. Consider g(x)= ax +b (a linear function, but not a linear mapping for b ≠ 0), an approximant of
f based upon data {(xn−2, fn−2 = f (xn−2)),(xn−1, fn−1= f (xn−1))}, given in Newton interpolant form by

gn(x)= fn−2 +
fn−1− fn−2
xn−1−xn−2

(x −xn−2). (3.17)

The solution of (3.17) is

xn=xn−2−
fn−2

fn−1− fn−2
(xn−1−xn−2)= xn−2 fn−1−xn−1 fn−2fn−1− fn−2

,

an iteration known as the secant method. The error in root approximation is

en=xn−x = en−2−
fn−2

fn−1− fn−2
(en−1−en−2),

and can be estimated by Taylor series expansions around the root x for which f (x)=0,

fn−k = f (xn−k)= f ʹ(x)(xn−k −x)+ 12 f ʹʹ(x)(xn−k −x)
2 + ⋅ ⋅ ⋅ = f ʹ en−k+

1
2 f

ʹʹen−k2 + ⋅ ⋅ ⋅,

where derivatives f ʹ, f ʹʹ are assumed to be evaluated at x . In the result

en= en−2−
f ʹ en−2+

1
2 f ʹʹen−2

2 + ⋅ ⋅ ⋅

f ʹ ⋅(en−1− en−2)+ 1
2 f ʹʹ ⋅ (en−12 −en−22 )+ ⋅ ⋅ ⋅

(en−1−en−2)= en−2[[[[[[[[[[[[[[1− f ʹ+1
2 f ʹʹ ⋅en−2+ ⋅ ⋅ ⋅

f ʹ+ 1
2 f ʹʹ ⋅ (en−1 +en−2)+ ⋅ ⋅ ⋅ ]]]]]]]]]]]]]],

assuming f ʹ(x)≠0, (i.e., x is a simple root) gives

en= en−2[[[[[[1− 1+c ⋅ en−2 + ⋅ ⋅ ⋅
1+ c ⋅ (en−1 +en−2)+ ⋅ ⋅ ⋅ ]]]]]], c = 1

2( f ʹʹ/ f ʹ).

For small errors, to first order the above can be written as

en= en−2[1−(1+c ⋅ en−2)(1− c ⋅(en−1+ en−2))]= cen−1 en−2.

Assuming p-order convergence of en,

|en|∼A |en−1|p,

leads to

Ap+1 |en−2|p2∼ cA |en−2|p+1⇒ |en−2|p2−p−1∼ cA−p.

Since c ,A are finite while en→0, the above asymptotic relation can only be satisfied if

p2−p −1=0⇒p =
1+ 5√
2 ≅1.62,

hence the secant method exhibits superlinear, but subquadratic convergence.
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Newton-Raphson method. A different linear approximant arises from the Hermite interpolant based on data

{(xn−1, fn−1= f (xn−1), fn−1ʹ = f ʹ(xn−1))},

which is given in Newton form as

gn(x)= fn−1 + fn−1ʹ ⋅(x −xn−1),

with root

xn=xn−1−
fn−1
fn−1ʹ

, (3.18)

an iteration known as the Newton-Raphson method. The error is given by

en=xn−x =en−1−
fn−1
fn−1ʹ

. (3.19)

Taylor series exapnsion around the root gives for small en−1,

en= en−1−
f ʹ ⋅en−1 +

1
2 f ʹʹ ⋅en−1

2 + ⋅ ⋅ ⋅
f ʹ+ f ʹʹ en−1 + ⋅ ⋅ ⋅

=en−1[1− 1+ cen−1+ ⋅ ⋅ ⋅
1+2cen−1 + ⋅ ⋅ ⋅

]≈ en−1[1−(1+ cen−1)(1−2cen−1)] .
The resulting expression

en≈ cen−12 = 1
2
f ʹʹ
f ʹ

en−12 , (3.20)

states quadratic convergence for Newton's method. This faster convergence than the secant method requires how-
ever knowledge of the derivative, and the computational expense of evaluating it.

The above estimate assumes convergence of {xn}n∈ℕ, but this is not guaranteed in general. Newton's method
requires an accurate initial approximation x0, within a neighborhood of the root in which f is increasing, f ʹ >
0, and convex, f ʹʹ > 0. Equivalently, since roots of f are also roots of − f , Newton's method converges when f ʹ,
f ʹʹ< 0. In both cases (3.20) in the prior iteration states that en−1 = xn−1− r > 0, hence xn−1 > r . Since f is increasing
f (xn−1) > f (r) = 0, hence (3.19) implies en < en−1. Thus the sequence {en}n∈ℕ is decreasing and bounded below by
zero, hence limn→∞en=0, and Newton's method converges.

1.2. Second-degree polynomial approximants

An immediate extension of the above approach is to increase the accuracy of the approximant by seeking a higher-
degree polynomial interpolant. The expense of the resulting algorithm increases rapidly though, and in practice
linear and quadratic approximants are the most widely used. Consider the Hermite interpolant based on data

{(xn−1, fn−1 = f (xn−1), fn−1ʹ = f ʹ(xn−1),, fn−1ʹʹ = f ʹʹ(xn−1))},

given in Newton form as

gn(x)= fn−1+ fn−1ʹ ⋅(x −xn−1)+ 1
2 fn−1ʹʹ ⋅ (x −xn−1)2 =C +Bs +As 2,
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with roots

xn=xn−1 +
− fn−1ʹ ± ( fn−1ʹ )2−2 fn−1 fn−1ʹʹ√

fn−1ʹʹ
.

Tha above exhibits the difficulties arising in higher-order interpolants. The iteration requires evaluation of a square
root, and checking for a positive discriminant.

Halley's method. Algebraic manipulations can avoid the appearance of radicals in a root-finding iteration. As an
example, Halley's method

xn=xn−1−
2 fn−1 fn−1ʹ

2( fn−1ʹ )2− fn−1 fn−1ʹʹ
,

exhibits cubic convergence.

2. Composite approximations

The secant iteration

xn=xn−2−
fn−2

fn−1− fn−2
(xn−1−xn−2)=xn−2− fn−2

fn−1− fn−2
xn−1−xn−2

,

in the limit of xn−2→xn−1 recovers Newton's method

xn=xn−1−
fn−1
fn−1ʹ

.

This suggests seeking advantageous approximations of the derivative

xn=xn−1−
fn−1

f (xn−1+hn−1)− f (xn−1)
hn−1

,

based upon some step-size sequence {hn}. Since f (xn)→ 0, the choice hn−1 = f (xn−1) suggests itself, leading to
Steffensen's method

xn=xn−1−
fn−1

f (xn−1+ f (xn−1))− f (xn−1)
f (xn−1)

=xn−1−
fn−1
gn−1

,gn−1 =
f (xn−1 + f (xn−1))

f (xn−1) −1.

Steffensen's method exhibits quadratic convergence, just like Newton's method, but does not require knowledge
of the derivative. The higher order by comparison to the secant method is a direct result of the derivative approx-
imation

f ʹ(xn−1)≅ f (xn−1 + f (xn−1))− f (xn−1)
f (xn−1) ,

which, remarkably, utilizes a composite approximation

f (xn−1 + f (xn−1))= ( f ∘(1+ f ))(xn−1).
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Such composite techniques are a prominent feature of various nonlinear approximations such as a k-layer deep
neural network f (x)= (lk ∘ lk−1 ∘ . . . ∘ l1)(x).

3. Fixed-point iteration

The above iterative sequences have the form

xn=F(xn−1),

and the root is a fixed point of the iteration

x =F(x).

For example, in Newton's method

F(x)=x − f (x)
f ʹ(x) ,

and indeed at a root x =F(x). Characterization of mappings F that lead to convergent approximation sequences is
of interest and leads to the following definition and theorem.

DEFINITION. A function F :[a,b]→[a,b] is said to be a contractive mapping if ∀x ,y ∈[a,b] there exists c ∈ (0,1) such
that

|F(x)−F(y)| c |x −y | .

THEOREM. (Contractive Mapping theorem). If F :[a,b]→[a,b] is a contractive mapping then F has a unique fixed point
x ∈ [a,b], x =F(x).

The fixed point theorem is an entry point to the study of non-additive approximation sequences.

Example 3.1. The sequence

x1= p√ ,x2 = p + p√√ , . . . (p >0)

is expressed recursively as

xn+1= p +xn√ ,

and has the limit

x = p+ p+ p + ⋅ ⋅ ⋅√√√ ,

that is the fixed point of F ,

x =F(x)= p +x√ =
1+ 1+p√

2 .

Over the interval [0,p +1], F is a contraction since

F ʹ(x)= 1
2 p+x√ 1

2 p√ <1.
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Example 3.2. The sequence

x1 =
1
p ,x2=

1
p + 1

p

, . . . (p >0)

is expressed recursively as

xn+1=
1

p +xn
,

and has the limit

x = 1
p+ 1

p+ ⋅ ⋅ ⋅

,

that is the fixed point of F ,

x =F(x)= 1
p +x =

−p+ p2 +1√
2 .

Over the interval [0,1], F is a contraction since

|F ʹ(x)|= 1
(p +x)2

1
p2 < 1.
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CHAPTER 4
NONLINEAR OPERATOR APPROXIMATION

LECTURE 24: NONLINEAR VECTOR OPERATOR EQUATIONS

1. Multivariate root-finding algorithms

Consider now nonlinear finite-dimensional mappings f :ℝd→ℝd , and the root-finding problem

f (x)=0, (4.1)

whose set of solutions generalize the linear mapping concept of a null space, N(A)={x |Ax =0,A ∈ℂd×d}. As in the
scalar-valued case, algorithms are sought to construct an approximating sequence {xk}k∈ℕ whose limit is a root of
(4.1), by approximating f with gk, and solving

gk(x)=0. (4.2)

Multivariate approximation is however considerably more complex than univariate approximation. For example,
consider d =2, f :ℝ2→ℝ2, and the univariate monomial interpolants in Lagrange form

ℒt f (s, t)=∑
i=0

m

f (xi, t) lix(s),ℒs f (s, t)=∑
j=0

n

f (s,yj) ljy(t),

with

lix(s)=∏
k=0

m ʹ s −xk
xi −xk

, lj
y(s)=∏

l=0

n ʹ t −yl
yj −yl

.

The operator ℒt carries out interpolation at fixed t value of the data set 𝒟x = {(xi, f (xi, t)), i =0, . . . ,m}. Similarly,
operator ℒs carries out interpolation at fixed s value of the data set 𝒟y = {(yj, f (s, yj)), j = 0, . . . , n}. Multivariate
interpolation of the data set

𝒟 = {(xi,yj, f (xi,yj)), i =0, . . . ,m, j =0, . . . ,n},

can be carried out through multiple operator composition procedures.

Operator product. Define ℒ=ℒt ⊗ℒs as

ℒf (s, t)=(ℒtℒs)f (s, t)=ℒt(ℒs f (s, t))=ℒt((((((((((((∑
i=0

m

f (xi, t) lix(s)))))))))))))=∑
i=0

m ∑
j=0

n

f (xi,yj) lix(s) ljy(t).
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Operator Boolean sum. Define ℒ=ℒt ⊕ℒs as ℒ=ℒt +ℒs −ℒtℒs

ℒf (s, t)=∑
i=0

m

f (xi, t) lix(s)+∑
j=0

n

f (s,yj) ljy(t)−∑
i=0

m ∑
j=0

n

f (xi,yj) lix(s) ljy(t).

1.1. First-degree polynomial approximants

Secant method. Bivariate (d = 2) root-finding algorithms already exemplifies the additional complexity in con-
structing root finding algorithms. The goal is to determine a new approximation (xk,yk) from the prior approximants

(x0,y0), . . . ,(xk−2,yk−2), (xk−1,yk−1) .

Whereas in the scalar case two prior points allowed construction of a linear approximant, the two points in data

𝒟 ={(xk−2,yk−2), (xk−1,yk−1)}

are insufficient to determine

ℒf = ∑
i=k−2

k−1 ∑
j=k−2

k−1

f (xi,yj) lix(s) ljy(t),

which requires four data points. Various approaches to exploit the additional degrees of freedom are available, of
which the class of quasi-Newton methods finds widespread applicability.

Newton, quasi-Newton methods. A linear multivariate approximant in d dimensions requires 2d data. A Her-
mite interpolant based upon function and partial derivative values can be constructed, but it is more direct to
truncate the multivariate Taylor series

f (x)= f (xk)+ ∂f
∂x (xk)(x −xk)+ ⋅ ⋅ ⋅,

where

J = ∂f
∂x =

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[

[

[ ∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xd

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xd

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅
∂ fd
∂x1

∂ fd
∂x2

⋅ ⋅ ⋅ ∂ fd
∂xd ]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]

]

]
=∇f ,

is the Jacobian matrix of f . Setting f (xk+1)=0, as the condition for the next iterate leads to the update

J (xk)(xk+1−xk)=−f (xk),
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a linear system that is solved at each iteration. Computation of the multiple partial derivatives arising in the
Jacobian might not be possible or too expensive, hence approximations are sought Bk ≅ J (xk), similar in principle
to the approximation of a tangent by a secant. In such quasi-Newton methods, a secant condition on Bk is stated as

Bk(xk−xk−1)= f (xk)− f (xk−1),

and corresponds to a truncation of the Taylor series expansion around xk−1. The above secant condition is not
sufficient by itself to determine Bk, hence additional considerations can be imposed.

1. Recalling that the scalar Newton method for finding roots of f (x)=0 converges in a region where f ʹ, f ʹʹ>0,
imposing analogous behavior for Bk suggests itself. This is typically done by requiring Bk to be symmetric
positive definite.

2. Assuming convergence of the approximating sequence {xk}k∈ℕ to a root, Bk+1 should be close to the previous
approximation suggesting the condtion

min
Bk +1

‖Bk+1−Bk‖ .

Various algorithms arise from a particular choice of norm and procedure to apply (2).

One widely used quasi-Newton method, arising from a rank-two update at each iteration to maintain positive
definiteness, is the Broyden-Fletcher-Goldfard-Shanno update

Bk+1=Bk+
ykyk

T

yk
Tsk

− Bk sk sk
TBk

T

sk
TBk sk

,

where the updates are determined by

1. Solving Bkpk=−[f (xk)− f (xk−1)] to find a search direction pk ;

2. Finding the distance along the search direction by αk=argmin ‖f (xk+αkpk )‖2 ;

3. Updating the approximation sk=αkpk, xk+1=xk+ sk

4. Computing yk= f (xk+1)− f (xk).
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4.1. HISTORICAL ANALOGUES

4.1.1. Operator calculus
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4.1.1.1. Heavisde study of telgraphist equation

In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x , t)
and voltage V (x , t)

∂
∂xV (x , t)=−L ∂

∂t I(x , t)−RI(x , t)

∂
∂xI(x , t)=−C

∂
∂t C(x , t)−GV (x , t)

Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical
formulation, e.g., for the ODE for y(t)

dy
dt +ay =b

Heaviside considered the associated algebraic problem for Y(s)

sY +aY =b⇒Y(s)= b
a+ s⇒y(t)=ℒ−1[Y(s)]

4.1.1.2. Development of mathematical theory of operator calculus

Why should I refuse a good dinner simply because I don't understand the diges-
tive processes involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathe-
matical rigour.

• Russian mathematician 1920's established first results (Vladimirov)

• Theory of Distributions (Schwartz, 1950s)

4.2. BASIC APPROXIMATION THEORY

4.2.1. Problem definition

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε
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for some ε >0.

4.2.1.1. Linear approximation example

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

( f ,ϕj)ϕj =∑
j=1

n

cjϕj

The approximation is convergent if

lim
n→∞

‖ f −g ∘T ‖=0,

This assumes cj =( f ,ϕj) rapidly decrease.

THEOREM. (Parseval) The Fourier transform is unitary. For A, B:ℝ→ℂ, square integrable, 2π-
periodic with Fourier series

A(t)= ∑
n=−∞

∞

an eint,B(t)= ∑
n=−∞

∞

bneint,

∑
n=−∞

∞

an b̄n=
1
2π∫

−π

π
A(t)B̄(t)dt .

Bessel inequality:

∑
j=1

n

|( f ,ϕj)|2 ‖ f ‖2 .

Fourier coefficient decay: for f ∈C(k−1)(ℝ), f (k−1) absolutely continuous,

|cn| min
0 j k

‖ f (j)‖1
|n|j .

In practice: coefficients decay as

• 1/n for functions with discontinuities on a set of Lebesgue measure 0;

• 1/n2 for functions with discontinuous first derivative on a set of Lebesgue measure 0;
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• 1/n3 for functions with discontinuous second derivative on a set of Lebesgue measure 0.

Fourier coefficients for analytic functions decay faster than anymonomial power cn=ο(n−p),∀p∈
ℕ, a property known as exponential convergence.

Denote such approximations by ℒ, and they are linear

ℒ(αf +βg)=αℒ( f )+βℒ(g)

•

4.2.1.2. Non-Linear approximation example

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

cjϕj

Let Φn= {φk(1),φk(2), . . . ,φk(n)} such

( f ,φk(1)) ( f ,φk(2)) ⋅ ⋅ ⋅ ( f ,φk(n)).

Choose cj=( f ,φk(j)), and

gn(t)=∑
j=1

n

cjϕj .

Denote such approximations by 𝒢, and they are non-linear.

4.2.2. Nonlinear approximation by composition

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.
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What questions do you ask?

Does T exist?. ∀ f , ε, ∃T , suchthat ‖ f −g ∘T ‖< ε

Can arbitrary ε be achieved?.

Can we construct T ?.

→ By what procedure?

T =T1 ∘T2 ∘ . . . ∘TJ

with Ti simple modifications of identity (ReLU)

min
T1, . . .TJ

‖ f −g ∘T1 ∘T2 ∘ . . . ∘TJ‖

Tj(x)=η(Ajx +bj)

η(t)={{{{{{{{{{{{ 0 t <0
t t 0

→ At what cost?

How big is n?.

.
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CHAPTER 5
DIFFERENTIAL CONSERVATION LAWS

LECTURE 27: DIFFERENTIAL CONSERVATION LAWS

1. The relevance of physics for scientific computation

Efficient algorithms oſten arise from the specifities of an underlying application domain, perhaps none more so
than those inspired from physics. Classical physics can be derived from a remarkably small set of experimentally
verified postulates.

• The least action principle asserts that a physical system can be described by a function L(t, q, q̇) of the
system generalized coordinates q(t) and velocities q̇(t)=dq /dt, known as the Lagrangian, itself the differ-
ence of the system's kinetic and potential energy L=K −U . The time evolution of the system is known as
the system's trajectory (q(t), q̇(t)), and of all possible trajectories consistent with system constraints the
trajectory actually followed by the system from initial time t0 to final time t1 minimizes a functional known
as the action S

S(q, q̇)=∫
t0

t1
L(t,q(t), q̇(t))dt .

Example. However complex a physical system might be, application of the least action principle follows
the procedure exemplified here for a simple mass-spring system. A point mass m attached to a spring
of stiffness k is at distance q(t) away from the equilibrium position q = 0. For constant m, this harmonic
oscillator motion is described by the differential system

d
dt(mv)=−kq⇒ dv

dt =−
k
m q, dqdt = v .

A state of this system is given by the values for position and velocity (q,v), and the above equations specify
the time evolution of the system. Denoting the velocity as v = q̇, dv /dt = q̈, and eliminating v gives the
familiar

mq̈ +kq =0. (5.1)

The same equation also results from the minimization of the action S(q, q̇) of the Lagrangian

L(q, q̇)= 1
2 mq̇2−

1
2kq

2, (5.2)

with K =mq̇2/2, U = kq2/2. The minimization is performed over all trajectories (q(t), q̇(t)) with the same
end-point values at t0, t1. Let the δ operator denote a small change in a trajectory. Since all trajectories have
the same endpoints δq(t0)=δq(t1)=0. The change in the action is

δS =∫
t0

t1
δL(t,q(t), q̇(t))dt =∫

t0

t1((((((∂L∂q δq + ∂L
∂q̇ δq̇))))))dt.
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Consider changes in overall trajectory to be independent of time such that the δ and d/dt operators com-
mute, and apply integration by parts

∫
t0

t1[[[[[[∂L∂q̇ δ((((((dqdt ))))))]]]]]]dt =∫
t0

t1[[[[[[∂L∂q̇ d
dt(δq)]]]]]]dt =[[[[[[∂L∂q̇ δq]]]]]]

t0

t1
−∫

t0

t1[[[[[[δq d
dt((((((∂L∂q̇))))))]]]]]]dt =−∫

t0

t1[[[[[[δq d
dt((((((∂L∂q̇))))))]]]]]]dt.

For S to be at a minimum the change in the action must be stationary δS =0,

∫
t0

t1[[[[[[∂L∂q − d
dt((((((∂L∂q̇))))))]]]]]]δqdt =0.

For the above to be valid for all δq the equation

∂L
∂q −

d
dt((((((∂L∂q̇))))))=0

must hold, and replacing (5.2) recovers (5.1).

• One class of constraints are the conservation laws, the experimental observation that certain quantities
remain constant during the system's evolution. Classical mechanics identifies three conserved quantities:
mass, momentum, and energy. It is a matter of personal preference to also consider conservation of angular
momentum as fundamental or as a consequence of conservation of linear momentum. Classical electrody-
namics adds conservation of electric charge, while quantum mechanics also defines conservation of certain
microscopic quantities known as quantum numbers such as the baryon or lepton numbers.

Other constraints oſten refer to allowed spatial positions and are known generically as geometric constraints. Note
that this is an idealization: in reality some other physical system M is interacting with the one being considered
P and it is assumed that the system M is so much larger that its position does not change. Such idealization or
modeling assumptions are oſten encountered. As another important example, the system P may exhibit energy
dissipation, such as the decrease of an object's momentum due to friction. Energy is indeed lost from system P to
the surrounding mediumM, but the overall energy of the combined systemM+P is conserved.

Scientific computation uses many concepts and terms from physics, such as the characterization of a numerical
scheme for differential equations as being “conservative”, in the sense of maintaining the conserved physical quan-
tities. Also, a remarkably large number of efficient algorithms arise from the desire to mimic physical properties.
Conservation laws can be stated for a small enough spatial domain that it can be considered to be infinitesimal
in the sense of calculus. In this case differential conservation laws are obtained. Alternatively, consideration of
a finite-sized spatial domain leads to integral formulation of the conservation laws. In a large class of physical
systems of current research interest models are constructed in which the evolution of the system P depends on the
history of interactions with the surrounding medium M. Such systems are described by integro-differential laws,
elegantly expressed through fractional derivatives.

2. Conservation laws

Banking example. Conservation of some physical quantity is stated for a hypothesized isolated system. In reality
no system is truly isolated and the most interesting applications come about from the study of interaction between
two or more systems. This leads to the question of how one can follow the changes in physical quantities of the
separate systems. An extremely useful procedure is to set up an accounting procedure. Amundane but illuminating
example is quantity of Euros E in a building B. If the building is a commonplace one, it is to be expected that when
completely isolated, the amount of currency in the building is fixed

E =E0 . (5.3)
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E0 is some constant. Equation (5.3) is self-evident but not particularly illuminating – of course the amount of money
is constant if nothing goes in or out! Similar physics statements such as “the total mass-energy of the universe
is constant” are again not terribly useful, though one should note this particular statement is not obviously true.
Things get more interesting when we consider a more realistic scenario in which the system is not isolated. People
might be coming and going from building B and somemight actually have money in their pockets. In more leisurely
economic times, one might be interested just in the amount of money in the building at the end of the day. Just a
bit of thought leads to

En=En−1 +∆En−1,n

where En is the amount of money at the end of day n, En−1 that from the previous day and ∆En−1,n the difference
between money received and that payed in the building during day n

∆En−1,n=Rn−1,n−Pn−1,n .

As economic activity picks up and we take building B to mean “bank” it becomes important to keep track of the
money at all times, not just at the end of the day. It thenmakes sense to think of the rate at which money is moving
in or out of the building so we can not only track the amount of currency at any given time, but also be able to make
future predictions. Instead of separate receipts R and payments P , use a single quantity F to denote the amount
of money leaving or entering building B during time interval ∆t with the understanding that positive values of
F represent incomes and negative ones expenditures. Such understandings go by the name of sign conventions.
They're not especially meaningful but it aids communication if a single convention is adopted. The amount of euros
in the building then changes in accordance to

E (t +∆ t)=E(t)+F∆t, (5.4)

and F is known as a flux , the Latin term for flow.

While (5.4) is a good approximation for small intervals, errors arise when ∆t is large since economic acitvity might
change from hour to hour. Better accounting is obtained by considering F as defined at any given time t, such that
F(t) is the instantaneous flux of euros at time t. The fundamental theorem of calculus then states

E (t +∆ t)=E(t)+∫
t

t +∆t
F(τ)dτ , (5.5)

with the same significance as (5.4).

In a large bank one keeps track of the amount of money in individual rooms and the inflows and outflows through
individual doors. A room or door can be identified by its spatial position x = (x1, x2, x3), but x refers to a single
point and physical currency occupies some space. The conceptual difficulty is overcome by introducing a fictitious
density of currency at time t denoted by e(x, t). The only real meaning associated with this density is that the sum
of all values of e(x, t) in some volume ω is the amount of currency in that volume

E(ω, t)=∫
ω
e(x , t)dx . (5.6)

On aſterthought, the same sort of question should have arisen when E(t) was defined at one instant in time.
Ingrained psychological perspectives make E(t) more plausible, but were we to live our lives such that quantum
fluctuations are observable, E(t) would be much more questionable.
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By an analogous procedure, define f (x , τ) as the instantaneous flux density of euros in a small region around (x ,
τ). This flux is a vector quantity to distinguish fluxes along different spatial directions. The flux density along
direction n(x) is given by f (x ,τ) ⋅n(x). Consider n(x) as the inward pointing unit vector normal to the surface ∂B
that bounds the bank. The total flux is again obtained by integrating flux densities

F(τ)=∫
∂B
f (x ,τ) ⋅n(x)dx . (5.7)

Gathering the above leads to re-expressing (5.4) or (5.5) gives

E(B, t +∆ t)=E(B, t)+∫
t

t +∆t∫
∂B
f (x ,τ) ⋅n(x)dx dτ (5.8)

Using (5.6) leads to the statement,

∫
B
e(x , t +∆ t)dx =∫

B
e(x , t)dx +∫

t

t +∆t∫
∂B
f (x ,τ) ⋅n(x)dx dτ .

There are special cases in which additional events affecting the balance of E can occur. When B is a reserve bank
money might be (legally) printed and destroyed in the building. Again by analogy with fluid dynamics, such events
are said to be sources of E within B, much like a underground spring is a source of surface water. Let Σ(t) be the
total sources at time t. As before, Σ(t) might actually be obtained by summing over several sources placed in a
number of positions, for instance the separate printing presses and furnaces that exist in B. It is useful to introduce
a spatial density of sources σ(x, t). The conservation statement now becomes

∫
B
e(x , t +∆ t)dx −∫

B
e(x , t)dx =∫

t

t+∆t∫
∂B
f (x ,τ) ⋅n(x)dx dτ +∫

t

t +∆t∫
∂B
σ(x ,τ)dx dτ . (5.9)

The above encompasses all physical conservation laws, and is quite straightforward in interpretation:

change in Euros in B = net Euros coming in or going out of B + net Euros produced or destroyed in B.

It should be emphasized that the above statement has true physical meaning and is referred to as an integral
formulation of a conservation law . The key term is “integral” and refers to the integration over some spatial domain.

Local formulations. Equation (5.9) is useful and oſten applied directly in the analysis of physical systems. From
an operational point of view it does have some inconveniences though. These have mainly to do with the integra-
tion domains B, sometimes difficult to describe and to perform integrations over. Avoid this by considering f (x , t)
defined everywhere, not only on ∂B (the doors and windows of B). These internal fluxes can be shown to have a
proper physical interpretation. Assuming that f (x , t) is smooth allows use of the Gauss theorem to transform the
surface integral over ∂B into a volume integral over B

∫
∂B
f (x ,τ) ⋅n(x)dx =−∫

B
∇⋅ f (x ,τ)dx (5.10)

The minus assign arises from the convention of an inward pointing normal. Applying (5.10) to (5.9) leads to

∫
B
[e(x, t +∆ t)− e(x, t)+∫

t

t +∆t
∇⋅ f (x ,τ)dτ ]dx=∫

t

t +∆t∫
∂B
σ(x ,τ)dx dτ . (5.11)
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There was nothing special about the shape of the building B or the length of the time interval ∆t we used in
deriving (5.11), hence the equality should hold for infinitesimal domains

∂e
∂ t +∇ ⋅ f =σ , (5.12)

where, as is customary, the dependence of e, f ,σ on space and time is understood but not written out explicitly.
Equation (5.12) is known as the local or differential form of the conservation law for E .

3. Special forms of conservation laws

Second law of dynamics. The full general form (5.12) oſten arises in applications, but simplifications can arise
from specific system properties. As a simple example, the dynamics of a point mass m which has no internal
structure is described by the conservation of momentum statement

d
dt(mv )=∑ F . (5.13)

The correspondence with (5.12) is given by e ←→←→←→ (mv), σ ←→←→←→ ∑ F , hence the statement: “external forces are
sources of momentum”. Instead of a PDE, the lack of internal structure has led to an ODE.

Advection equation. Other special forms of (5.12) are not quite so trivial. Oſten f , σ depend on e, with the
specific form of this dependence is given by physical analysis. Accounting for all physical effects is so difficult that
simple approximations are oſten used. For instance if f (e) is sufficiently smooth Taylor series expansion gives

f (e)= f0+ f ʹ(e0) (e − e0)+ . . . . (5.14)

Choosing the origin such that f0 =0 and e0=0, the simplest truncation is

f (e)≅ f ʹ(0)e =ue, (5.15)

and the σ =0 form of (5.12) is

∂ e
∂ t +∇ ⋅(ue)=0. (5.16)

In this approximation u is a constant giving

∂e
∂ t +u ⋅ ∇e =0 (5.17)

known as the constant velocity advection equation. Its one-dimensional form is the basis of much development in
numerical methods for PDE's

∂e
∂ t +u

∂e
∂x =0 (5.18)

Diffusion equation. Another widely encountered dependence of f on e is of the form

f (e)=−α ∇ e (5.19)
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and this leads to

∂ e
∂ t −∇ ⋅ (α ∇ e)=σ(e). (5.20)

If there are no sources and α is a constant we have

∂e
∂ t =α ∇2e (5.21)

the heat or diffusion equation.

Combined effects. Both above flux types can appear in which case the associated conservation law is

∂e
∂ t +∇ ⋅(ue)=α ∇2e, (5.22)

known as the advection-diffusion equation, and is a linear PDE. If sources σ exist the above becomes

∂e
∂ t +∇ ⋅(ue)=α ∇2e +σ , (5.23)

or for constant advection velocity u

∂ e
∂ t +u ⋅∇e =α ∇2 e +σ . (5.24)

It is oſten the case that the flux depends on the conserved quantity itself, f (e)=u(e)e, in which case (5.22) becomes
a non-linear PDE.

Steady-state transport. Various effects can balance leading to no observable time dependence, ∂e /∂t =0. If there
is no overall diffusive flux f (e)=−α ∇ e within an infinitesimal volume, then ∇ ⋅ f =−α ∇2 e =0 leads to the Laplace
equation

∇2e =0.

If the infinitesimal volume contains sources the Poisson equation

∇2e =σ ,

is obtained.

Separation of variables. Often, the time dependence can be isolated from the spatial dependence, e(x , t) =
X(x)T(t), in which case the diffusion equation for constant α leads to

Ṫ
T =α

∇2X
X =−λ,

with λ a positive constant to avoid unphysical exponential growth. The spatial part of the solution statisfies the
Helmholtz equation

∇2X =−κ 2X ,

with κ 2=λ/α . The above is interpreted as an eigenproblem for the Laplacian operator ∆=∇2.
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The above special forms of differential conservation laws play an important role in scientific computation. Numer-
ical techniques have been developed to capture the underlying physical behavior expressed in say the diffusion
equation of the Helmholtz equation. These equations were first studied within physics, but they reflect universal
behavior. Consider the Black-Scholes financial model for the price of an option V(S, t) on an asset S(t)

∂V
∂t + rS

∂V
∂S = rV −

1
2 σ

2S2 ∂
2V
∂S2 ,

with σ the standard deviation of stock market returns and r the annualized risk-free interest rate. The terminology
might be totally different, but the same patterns emerge and the Black Scholes model can be interpreted as an
advection diffusion equation with non-constant advection velocity rS, negative diffusion coefficient −σ 2S2/2 and
source term rV . The similarity to the physics advection and diffusion equations arises from the same type of
modeling assumptions relating fluxes to state variables.
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LECTURE 28: LINEAR OPERATOR SPLITTING

1. Finite difference Poisson equation

Consider now the approximation of ℱ= f in the first-order differential equation

y ʹ= f (t,y). (5.25)

Integration over a time step [ti, ti+1] gives

y(ti+1)−y(ti)=∫
ti

ti+1
f (t,y(t))dt,

and use of quadrature formulas leads to numerical solutions for solving (5.25). Consider for instance data 𝒟 =
{(ti+1−k, fi+1−k), k =1, . . . , s} going back s intervals of size h, ti+1−k = ti+1− kh. Any quadrature formula based on this
data could be used, but the most oſten encountered approach is to use a polynomial approximant. This can be
stated in Lagrange form as

f (t,y(t))≅∑
k=1

s

ℓk(t) fk, fk= f (ti+1−k,y(ti+1−k))≅ f (ti+1−k,yi+1−k).

The last approximate equality arises from replacing the exact value y(ti+1−k) by its approximation yk ≅ y(ti+1−k).
The result is known as an Adams-Bashforth scheme

yi+1=yi +∫
ti

ti+1∑
k=1

s

ℓk(t) fk dt =yi +∑
k=1

s (∫
ti

ti+1
ℓk(t) dt) fk =yi +h∑

k=1

s

bk fi+1−k,

with coefficients that are readily computed (cf. Table 1).

bk =
1
h(∫

ti

ti+1
ℓk(t) dt).

s b1 b2 b3 b4
1 1

2 3
2 −12

3 23
12 −1612

5
12

4 55
24 −5924

37
24 − 9

24
Table 5.1. Adams-Bashforth scheme coefficients.

The s =1 Adams-Bashforth scheme is identical to forward Euler and the above approach yields schemes that are
explicit, i.e., the new value is directly obtained from knowledge of previous values.
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Choosing data 𝒟 ={(ti+1−k, fi+1−k),k =0, . . . , s −1} that contains the point yet to be computed (ti+1,yi+1) gives rise to
a class of implicit schemes known as the Adams-Moulton schemes (Table 2)

yi+1=yi +h∑
k=0

s−1

bk fi+1−k,

s b0 b1 b2 b3
1 1

2 1
2

1
2

3
5
12

8
12 −

1
12

4 9
24

19
24 − 5

24
1
24

Table 5.2. Adams-Moulton scheme coefficients.

2. Matrix splitting iteration

Approximation of both operators ℒ = d/dt and ℱ = f arising in ℒy =ℱy , or y ʹ = f (t, y) is possible. Combining
previous computations, the resulting schemes can be stated as

∑
k=0

s

ak yi+k =h∑
k=0

s

bk fi+k , fi+k= f (ti+k,yi+k). (5.26)

Both sides arise from linear approximants: of the derivative on the leſt, and of f on the right.

3. Convergence analysis

Any of the above schemes defines a sequence {yn}n∈ℕ that approximates the solution y(tn) of the initial value
problem

y ʹ= f (t,y),y(0)=y0,

over a time interval [0,T ], tn=nh, h=T /N . A scheme is said to be convergent if

lim
h→0
Nh=T

yN =y(T).

The above states that in the limit of taking small step sizes while maintaining Nh =T for some finite time T , the
estimate at the endpoint converges to the exact value. Such a definition is rather difficult to apply directly, and an
alternative characterization of convergence is desirable.

To motivate the overall approach, consider first the following model problem

y ʹ=λy ,y(0)=y0,λ 0 (5.27)
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The model problem arises from truncation of the general non-linear function f to first order

y ʹ= f (y)= f (0)+ f ʹ(0)y + ⋅ ⋅ ⋅ .

Since f (0) is a constant that simply leads to linear growth, and the model problem captures the lowest-order non-
trivial behavior. The exact solution is

y(t)= eλt y0⇒y(tn)=enλhy0,

giving y(T)= eλT y0. The restriction of λ 0 in the model problem arises from consideration of the effect of a small
perturbation in the initial condition representative of floating point representation errors. This leads to ỹ(T) =
eλT(y0+δ), and the error ε= ỹ(T)−y(T)=eλTδ can only be maintained small if λ 0.

Applying the forward Euler scheme to the model problem (5.27) gives

yn+1=yn+λhyn= (1+ z)yn,

with z =λh. Aſter N steps the numerical approximation is

yN = (1+ z)N y0.

The exponential decay of the exact solution can only be recovered if which leads to a restriction on the allowable
step size

−2λ >h >0.

If the step size is too large, h>−2/λ, inherent floating point errors are amplified by the forward Euler method, and
the scheme is said to be unstable. This is avoided by choosing a subunitary parameter z , |z |= |λh| 1, which leads
to a step size restriction h<1/ |λ|.

These observations on the simple case of the Euler forwardmethod generalize to linear multistep methods. Applying
(5.26) to the model problem (5.27) leads to the following linear finite difference equation

∑
k=0

s

ak yi+k =z ∑
k=0

s

bk yi+k . (5.28)

The above is solved using a procedure analogous to that for differential equations by hypothesizing solutions of
the form

yn= rn,

to obtain a characteristic equation

π(r ;z)=ρ(r)−zσ(r)=0,
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where ρ(r),σ(r) are polynomials

ρ(r)=∑
k=0

s

ak rk,σ(r)=∑
k=0

s

bk r k.

The above polynomials allow an operational assessment of algorithms of form (5.26). An algorithm (5.26) that
recovers the ordinary differential equation (5.25) in the limit of h→0 is said to be consistent, which occurs if and
only if

ρ(1)=0,ρ ʹ(1)−σ(1)=0.

Furthermore an algorithm of form (5.26) that does not amplify inherent floating point errors is said to be stable,
which occurs if the roots of π(r ;z) are subunitary in absolute value

|rj|<1,π(rj; z)=0.

THEOREM. An algorithm to solve ( 5.25) that is consistent and stable is convergent.

A convenient procedure to determine the stable range of step sizes is to consider r of unit absolute value

r =e iθ ,

and evaluate the characteristic equation

π(e iθ ; z)=ρ(e iθ)− zσ(e iθ)=0⇒ z(θ)= ρ(e iθ)
σ(e iθ) ,

where z(θ) is the boundary locus delimiting zones of stability in the complex plane (Fig 1).
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A method is said to be A-stable if its region of stability contains the entire leſt half-plane in ℂ, and is said to be L-
stable if limω→∞ρ(ωe iθ)/σ(ωe iθ)=0.

LECTURE 29: SPLITTING FOR VARIABLE COEFFICIENT LINEAR OPERATORS

1. Spatially dependent diffusivity

The null space of a linear mapping represented through matrix A ∈ℂm×n is defined as N(A)= {x |Ax =0}, the set of
all points that have a null image through the mapping. The null space is a vector subspace of the domain of the
linear mapping. A first step in the study of nonlinear mappings is to consider the generalization of the concept of
a null set, starting with the simplest case,

f (x)=0 (5.29)

where f :ℝ→ℝ, f ∈Cp(ℝ), p 0, i.e., f has p continuous derivatives. It is assumed that a closed form analytical
solution is not available, and algorithms are sought to construct an approximating sequence {xn}n∈ℕ whose limit is
a root of (5.29). The general approach is to replace (5.29) with

gn(x)=0, (5.30)

where gn is some approximation of f , and xn the root of (5.30) can be easily determined.

Consider g(x)= ax +b (a first-degree polynomial, but not a linear mapping for b ≠ 0), an approximant of f based
upon data {(xn−2, fn−2 = f (xn−2)),(xn−1, fn−1= f (xn−1))}, given in Newton interpolant form by

gn(x)= fn−2 +
fn−1− fn−2
xn−1−xn−2

(x −xn−2). (5.31)

The root of (5.31) is

xn=xn−2−
fn−2

fn−1− fn−2
(xn−1−xn−2)= xn−2 fn−1−xn−1 fn−2fn−1− fn−2

,

an iteration known as the secant method. The error in root approximation is

en=xn−x = en−2−
fn−2

fn−1− fn−2
(en−1−en−2),

and can be estimated by Taylor series expansions around the root x for which f (x)=0,

fn−k = f (xn−k)= f ʹ(x)(xn−k −x)+ 12 f ʹʹ(x)(xn−k −x)
2 + ⋅ ⋅ ⋅ = f ʹ en−k+

1
2 f

ʹʹen−k2 + ⋅ ⋅ ⋅,

where derivatives f ʹ, f ʹʹ are assumed to be evaluated at x . In the result

en= en−2−
f ʹ en−2+

1
2 f ʹʹen−2

2 + ⋅ ⋅ ⋅

f ʹ ⋅(en−1− en−2)+ 1
2 f ʹʹ ⋅ (en−12 −en−22 )+ ⋅ ⋅ ⋅

(en−1−en−2)= en−2[[[[[[[[[[[[[[1− f ʹ+1
2 f ʹʹ ⋅en−2+ ⋅ ⋅ ⋅

f ʹ+ 1
2 f ʹʹ ⋅ (en−1 +en−2)+ ⋅ ⋅ ⋅ ]]]]]]]]]]]]]],
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assuming f ʹ(x)≠0, (i.e., x is a simple root) gives

en= en−2[[[[[[1− 1+c ⋅ en−2 + ⋅ ⋅ ⋅
1+ c ⋅ (en−1 +en−2)+ ⋅ ⋅ ⋅ ]]]]]], c = 1

2( f ʹʹ/ f ʹ).

For small errors, to first order the above can be written as

en= en−2[1−(1+c ⋅ en−2)(1− c ⋅(en−1+ en−2))]= cen−1 en−2.

Assuming p-order convergence of en,

|en|∼A |en−1|p,

leads to

Ap+1 |en−2|p2∼ cA |en−2|p+1⇒ |en−2|p2−p−1∼ cA−p.

Since c ,A are finite while en→0, the above asymptotic relation can only be satisfied if

p2−p −1=0⇒p =
1+ 5√
2 ≅1.62,

hence the secant method exhibits superlinear, but subquadratic convergence.

A different linear approximant arises from the Hermite interpolant based on data

{(xn−1, fn−1= f (xn−1), fn−1ʹ = f ʹ(xn−1))},

which is given in Newton form as

gn(x)= fn−1 + fn−1ʹ ⋅(x −xn−1),

with root

xn=xn−1−
fn−1
fn−1ʹ

, (5.32)

an iteration known as the Newton-Raphson method. The error is given by

en=xn−x =en−1−
fn−1
fn−1ʹ

. (5.33)

Taylor series exapnsion around the root gives for small en−1,

en= en−1−
f ʹ ⋅en−1 +

1
2 f ʹʹ ⋅en−1

2 + ⋅ ⋅ ⋅
f ʹ+ f ʹʹ en−1 + ⋅ ⋅ ⋅

=en−1[1− 1+ cen−1+ ⋅ ⋅ ⋅
1+2cen−1 + ⋅ ⋅ ⋅

]≈ en−1[1−(1+ cen−1)(1−2cen−1)] .
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The resulting expression

en≈ cen−12 = 1
2
f ʹʹ
f ʹ

en−12 , (5.34)

states quadratic convergence for Newton's method. This faster convergence than the secant method requires how-
ever knowledge of the derivative, and the computational expense of evaluating it.

The above estimate assumes convergence of {xn}n∈ℕ, but this is not guaranteed in general. Newton's method
requires an accurate initial approximation x0, within a neighborhood of the root in which f is increasing, f ʹ >
0, and convex, f ʹʹ > 0. Equivalently, since roots of f are also roots of − f , Newton's method converges when f ʹ,
f ʹʹ< 0. In both cases (5.34) in the prior iteration states that en−1 = xn−1− r > 0, hence xn−1 > r . Since f is increasing
f (xn−1) > f (r) = 0, hence (5.33) implies en < en−1. Thus the sequence {en}n∈ℕ is decreasing and bounded below by
zero, hence limn→∞en=0, and Newton's method converges.

An immediate extension of the above approach is to increase the accuracy of the approximant by seeking a higher-
degree polynomial interpolant. The expense of the resulting algorithm increases rapidly though, and in practice
linear and quadratic approximants are the most widely used. Consider the Hermite interpolant based on data

{(xn−1, fn−1 = f (xn−1), fn−1ʹ = f ʹ(xn−1),, fn−1ʹʹ = f ʹʹ(xn−1))},

given in Newton form as

gn(x)= fn−1+ fn−1ʹ ⋅(x −xn−1)+ 1
2 fn−1ʹʹ ⋅ (x −xn−1)2 =C +Bs +As 2,

with roots

xn=xn−1 +
− fn−1ʹ ± ( fn−1ʹ )2−2 fn−1 fn−1ʹʹ√

fn−1ʹʹ
.

Tha above exhibits the difficulties arising in higher-order interpolants. The iteration requires evaluation of a square
root, and checking for a positive discriminant.

Algebraic manipulations can avoid the appearance of radicals in a root-finding iteration. As an example, Halley's
method

xn=xn−1−
2 fn−1 fn−1ʹ

2( fn−1ʹ )2− fn−1 fn−1ʹʹ
,

exhibits cubic convergence.

2. Gradient descent

The secant iteration

xn=xn−2−
fn−2

fn−1− fn−2
(xn−1−xn−2)=xn−2− fn−2

fn−1− fn−2
xn−1−xn−2

,
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in the limit of xn−2→xn−1 recovers Newton's method

xn=xn−1−
fn−1
fn−1ʹ

.

This suggests seeking advantageous approximations of the derivative

xn=xn−1−
fn−1

f (xn−1+hn−1)− f (xn−1)
hn−1

,

based upon some step-size sequence {hn}. Since f (xn)→ 0, the choice hn−1 = f (xn−1) suggests itself, leading to
Steffensen's method

xn=xn−1−
fn−1

f (xn−1+ f (xn−1))− f (xn−1)
f (xn−1)

=xn−1−
fn−1
gn−1

,gn−1 =
f (xn−1 + f (xn−1))

f (xn−1) −1.

Steffensen's method exhibits quadratic convergence, just like Newton's method, but does not require knowledge
of the derivative. The higher order by comparison to the secant method is a direct result of the derivative approx-
imation

f ʹ(xn−1)≅ f (xn−1 + f (xn−1))− f (xn−1)
f (xn−1) ,

which, remarkably, utilizes a composite approximation

f (xn−1 + f (xn−1))= ( f ∘(1+ f ))(xn−1).

Such composite techniques are a prominent feature of various nonlinear approximations such as a k-layer deep
neural network f (x)= (lk ∘ lk−1 ∘ . . . ∘ l1)(x).

3. Conjugate gradient

The above iterative sequences have the form

xn=F(xn−1),

and the root is a fixed point of the iteration

x =F(x).

For example, in Newton's method

F(x)=x − f (x)
f ʹ(x) ,
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and indeed at a root x =F(x). Characterization of mappings F that lead to convergent approximation sequences is
of interest and leads to the following definition and theorem.

DEFINITION. A function F :[a,b]→[a,b] is said to be a contractive mapping if ∀x ,y ∈[a,b] there exists c ∈ (0,1) such
that

|F(x)−F(y)| c |x −y | .

THEOREM. (Contractive Mapping theorem). If F :[a,b]→[a,b] is a contractive mapping then F has a unique fixed point
x ∈ [a,b], x =F(x).

The fixed point theorem is an entry point to the study of non-additive approximation sequences.

Example 5.1. The sequence

x1= p√ ,x2 = p + p√√ , . . . (p >0)

is expressed recursively as

xn+1= p +xn√ ,

and has the limit

x = p+ p+ p + ⋅ ⋅ ⋅√√√ ,

that is the fixed point of F ,

x =F(x)= p +x√ =
1+ 1+p√

2 .

Over the interval [0,p +1], F is a contraction since

F ʹ(x)= 1
2 p+x√ 1

2 p√ <1.

Example 5.2. The sequence

x1 =
1
p ,x2=

1
p + 1

p

, . . . (p >0)

is expressed recursively as

xn+1=
1

p +xn
,

and has the limit

x = 1
p+ 1

p+ ⋅ ⋅ ⋅

,
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that is the fixed point of F ,

x =F(x)= 1
p +x =

−p+ p2 +1√
2 .

Over the interval [0,1], F is a contraction since

|F ʹ(x)|= 1
(p +x)2

1
p2 < 1.

LECTURE 30: NONSYMMETRIC LINEAR OPERATORS, IRREGULAR SPARSITY

1. Finite element discretization

Consider now nonlinear finite-dimensional mappings f :ℝd→ℝd , and the root-finding problem

f (x)=0, (5.35)

whose set of solutions generalize the linear mapping concept of a null space, N(A)={x |Ax =0,A ∈ℂd×d}. As in the
scalar-valued case, algorithms are sought to construct an approximating sequence {xk}k∈ℕ whose limit is a root of
(5.35), by approximating f with gk, and solving

gk(x)=0. (5.36)

Multivariate approximation is however considerably more complex than univariate approximation. For example,
consider d =2, f :ℝ2→ℝ2, and the univariate monomial interpolants in Lagrange form

ℒt f (s, t)=∑
i=0

m

f (xi, t) lix(s),ℒs f (s, t)=∑
j=0

n

f (s,yj) ljy(t),

with

lix(s)=∏
k=0

m ʹ s −xk
xi −xk

, lj
y(s)=∏

l=0

n ʹ t −yl
yj −yl

.

The operator ℒt carries out interpolation at fixed t value of the data set 𝒟x = {(xi, f (xi, t)), i =0, . . . ,m}. Similarly,
operator ℒs carries out interpolation at fixed s value of the data set 𝒟y = {(yj, f (s, yj)), j = 0, . . . , n}. Multivariate
interpolation of the data set

𝒟 = {(xi,yj, f (xi,yj)), i =0, . . . ,m, j =0, . . . ,n},

can be carried out through multiple operator composition procedures.
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Bivariate (d =2) root-finding algorithms already exemplifies the additional complexity in constructing root finding
algorithms. The goal is to determine a new approximation (xk,yk) from the prior approximants

(x0,y0), . . . ,(xk−2,yk−2), (xk−1,yk−1) .

Whereas in the scalar case two prior points allowed construction of a linear approximant, the two points in data

𝒟 ={(xk−2,yk−2), (xk−1,yk−1)}

are insufficient to determine

ℒf = ∑
i=k−2

k−1 ∑
j=k−2

k−1

f (xi,yj) lix(s) ljy(t),

which requires four data points. Various approaches to exploit the additional degrees of freedom are available, of
which the class of quasi-Newton methods finds widespread applicability.

A linear multivariate approximant in d dimensions requires 2d data. A Hermite interpolant based upon function
and partial derivative values can be constructed, but it is more direct to truncate the multivariate Taylor series

f (x)= f (xk)+ ∂f
∂x (xk)(x −xk)+ ⋅ ⋅ ⋅,

where

J = ∂f
∂x =

[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[

[

[ ∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xd

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xd

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅
∂ fd
∂x1

∂ fd
∂x2

⋅ ⋅ ⋅ ∂ fd
∂xd ]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
=∇f ,

is the Jacobian matrix of f . Setting f (xk+1)=0, as the condition for the next iterate leads to the update

J (xk)(xk+1−xk)=−f (xk),

a linear system that is solved at each iteration. Computation of the multiple partial derivatives arising in the
Jacobian might not be possible or too expensive, hence approximations are sought Bk ≅ J (xk), similar in principle
to the approximation of a tangent by a secant. In such quasi-Newton methods, a secant condition on Bk is stated as

Bk(xk−xk−1)= f (xk)− f (xk−1),

and corresponds to a truncation of the Taylor series expansion around xk−1. The above secant condition is not
sufficient by itself to determine Bk, hence additional considerations can be imposed.

1. Recalling that the scalar Newton method for finding roots of f (x)=0 converges in a region where f ʹ, f ʹʹ>0,
imposing analogous behavior for Bk suggests itself. This is typically done by requiring Bk to be symmetric
positive definite.
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2. Assuming convergence of the approximating sequence {xk}k∈ℕ to a root, Bk+1 should be close to the previous
approximation suggesting the condtion

min
Bk +1

‖Bk+1−Bk‖ .

Various algorithms arise from a particular choice of norm and procedure to apply (2).

One widely used quasi-Newton method, arising from a rank-two update at each iteration to maintain positive
definiteness, is the Broyden-Fletcher-Goldfard-Shanno update

Bk+1=Bk+
ykyk

T

yk
Tsk

−
Bk sk sk

TBk
T

sk
TBk sk

,

where the updates are determined by

1. Solving Bkpk=−[f (xk)− f (xk−1)] to find a search direction pk ;

2. Finding the distance along the search direction by αk=argmin ‖f (xk+αkpk )‖2 ;

3. Updating the approximation sk=αkpk, xk+1=xk+ sk

4. Computing yk= f (xk+1)− f (xk).

2. Krylov iteration

3. GMRES and biconjugate gradient

LECTURE 31: INCOMPLETE OPERATOR DECOMPOSITION

1. Finite difference Helmholtz equation

In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x , t)
and voltage V (x , t)

∂
∂xV (x , t)=−L ∂

∂t I(x , t)−RI(x , t)

∂
∂xI(x , t)=−C

∂
∂t C(x , t)−GV (x , t)
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Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical
formulation, e.g., for the ODE for y(t)

dy
dt +ay =b

Heaviside considered the associated algebraic problem for Y(s)

sY +aY =b⇒Y(s)= b
a+ s⇒y(t)=ℒ−1[Y(s)]

Why should I refuse a good dinner simply because I don't understand the diges-
tive processes involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathe-
matical rigour.

• Russian mathematician 1920's established first results (Vladimirov)

• Theory of Distributions (Schwartz, 1950s)

2. Arnoldi iteration

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

( f ,ϕj)ϕj =∑
j=1

n

cjϕj
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The approximation is convergent if

lim
n→∞

‖ f −g ∘T ‖=0,

This assumes cj =( f ,ϕj) rapidly decrease.

THEOREM. (Parseval) The Fourier transform is unitary. For A, B:ℝ→ℂ, square integrable, 2π-
periodic with Fourier series

A(t)= ∑
n=−∞

∞

an eint,B(t)= ∑
n=−∞

∞

bneint,

∑
n=−∞

∞

an b̄n=
1
2π∫

−π

π
A(t)B̄(t)dt .

Bessel inequality:

∑
j=1

n

|( f ,ϕj)|2 ‖ f ‖2 .

Fourier coefficient decay: for f ∈C(k−1)(ℝ), f (k−1) absolutely continuous,

|cn| min
0 j k

‖ f (j)‖1
|n|j .

In practice: coefficients decay as

• 1/n for functions with discontinuities on a set of Lebesgue measure 0;

• 1/n2 for functions with discontinuous first derivative on a set of Lebesgue measure 0;

• 1/n3 for functions with discontinuous second derivative on a set of Lebesgue measure 0.

Fourier coefficients for analytic functions decay faster than anymonomial power cn=ο(n−p),∀p∈
ℕ, a property known as exponential convergence.

Denote such approximations by ℒ, and they are linear

ℒ(αf +βg)=αℒ( f )+βℒ(g)

•
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Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

cjϕj

Let Φn= {φk(1),φk(2), . . . ,φk(n)} such

( f ,φk(1)) ( f ,φk(2)) ⋅ ⋅ ⋅ ( f ,φk(n)).

Choose cj=( f ,φk(j)), and

gn(t)=∑
j=1

n

cjϕj .

Denote such approximations by 𝒢, and they are non-linear.

3. Lanczos iteration

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

What questions do you ask?

Does T exist?. ∀ f , ε, ∃T , suchthat ‖ f −g ∘T ‖< ε

Can arbitrary ε be achieved?.

Can we construct T ?.

→ By what procedure?

T =T1 ∘T2 ∘ . . . ∘TJ
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with Ti simple modifications of identity (ReLU)

min
T1, . . .TJ

‖ f −g ∘T1 ∘T2 ∘ . . . ∘TJ‖

Tj(x)=η(Ajx +bj)

η(t)={{{{{{{{{{{{ 0 t <0
t t 0

→ At what cost?

How big is n?.

.

LECTURE 32: BASES FOR INCOMPLETE DECOMPOSITION

1. Preconditioning

In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x , t)
and voltage V (x , t)

∂
∂xV (x , t)=−L ∂

∂t I(x , t)−RI(x , t)

∂
∂xI(x , t)=−C

∂
∂t C(x , t)−GV (x , t)

Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical
formulation, e.g., for the ODE for y(t)

dy
dt +ay =b

Heaviside considered the associated algebraic problem for Y(s)

sY +aY =b⇒Y(s)= b
a+ s⇒y(t)=ℒ−1[Y(s)]
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Why should I refuse a good dinner simply because I don't understand the diges-
tive processes involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathe-
matical rigour.

• Russian mathematician 1920's established first results (Vladimirov)

• Theory of Distributions (Schwartz, 1950s)

2. Multigrid

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

( f ,ϕj)ϕj =∑
j=1

n

cjϕj

The approximation is convergent if

lim
n→∞

‖ f −g ∘T ‖=0,

This assumes cj =( f ,ϕj) rapidly decrease.

THEOREM. (Parseval) The Fourier transform is unitary. For A, B:ℝ→ℂ, square integrable, 2π-
periodic with Fourier series

A(t)= ∑
n=−∞

∞

an eint,B(t)= ∑
n=−∞

∞

bneint,

∑
n=−∞

∞

an b̄n=
1
2π∫

−π

π
A(t)B̄(t)dt .
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Bessel inequality:

∑
j=1

n

|( f ,ϕj)|2 ‖ f ‖2 .

Fourier coefficient decay: for f ∈C(k−1)(ℝ), f (k−1) absolutely continuous,

|cn| min
0 j k

‖ f (j)‖1
|n|j .

In practice: coefficients decay as

• 1/n for functions with discontinuities on a set of Lebesgue measure 0;

• 1/n2 for functions with discontinuous first derivative on a set of Lebesgue measure 0;

• 1/n3 for functions with discontinuous second derivative on a set of Lebesgue measure 0.

Fourier coefficients for analytic functions decay faster than anymonomial power cn=ο(n−p),∀p∈
ℕ, a property known as exponential convergence.

Denote such approximations by ℒ, and they are linear

ℒ(αf +βg)=αℒ( f )+βℒ(g)

•

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

cjϕj

Let Φn= {φk(1),φk(2), . . . ,φk(n)} such

( f ,φk(1)) ( f ,φk(2)) ⋅ ⋅ ⋅ ( f ,φk(n)).

Choose cj=( f ,φk(j)), and

gn(t)=∑
j=1

n

cjϕj .
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Denote such approximations by 𝒢, and they are non-linear.

3. Random multigrid and stochastic descent

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

What questions do you ask?

Does T exist?. ∀ f , ε, ∃T , suchthat ‖ f −g ∘T ‖< ε

Can arbitrary ε be achieved?.

Can we construct T ?.

→ By what procedure?

T =T1 ∘T2 ∘ . . . ∘TJ

with Ti simple modifications of identity (ReLU)

min
T1, . . .TJ

‖ f −g ∘T1 ∘T2 ∘ . . . ∘TJ‖

Tj(x)=η(Ajx +bj)

η(t)={{{{{{{{{{{{ 0 t <0
t t 0

→ At what cost?

How big is n?.

.
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LECTURE 33: MULTIPLE OPERATORS

1. Semi-discretization

In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x , t)
and voltage V (x , t)

∂
∂xV (x , t)=−L ∂

∂t I(x , t)−RI(x , t)

∂
∂xI(x , t)=−C

∂
∂t C(x , t)−GV (x , t)

Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical
formulation, e.g., for the ODE for y(t)

dy
dt +ay =b

Heaviside considered the associated algebraic problem for Y(s)

sY +aY =b⇒Y(s)= b
a+ s⇒y(t)=ℒ−1[Y(s)]

Why should I refuse a good dinner simply because I don't understand the diges-
tive processes involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathe-
matical rigour.

• Russian mathematician 1920's established first results (Vladimirov)

• Theory of Distributions (Schwartz, 1950s)
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2. Method of lines

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

( f ,ϕj)ϕj =∑
j=1

n

cjϕj

The approximation is convergent if

lim
n→∞

‖ f −g ∘T ‖=0,

This assumes cj =( f ,ϕj) rapidly decrease.

THEOREM. (Parseval) The Fourier transform is unitary. For A, B:ℝ→ℂ, square integrable, 2π-
periodic with Fourier series

A(t)= ∑
n=−∞

∞

an eint,B(t)= ∑
n=−∞

∞

bneint,

∑
n=−∞

∞

an b̄n=
1
2π∫

−π

π
A(t)B̄(t)dt .

Bessel inequality:

∑
j=1

n

|( f ,ϕj)|2 ‖ f ‖2 .

Fourier coefficient decay: for f ∈C(k−1)(ℝ), f (k−1) absolutely continuous,

|cn| min
0 j k

‖ f (j)‖1
|n|j .
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In practice: coefficients decay as

• 1/n for functions with discontinuities on a set of Lebesgue measure 0;

• 1/n2 for functions with discontinuous first derivative on a set of Lebesgue measure 0;

• 1/n3 for functions with discontinuous second derivative on a set of Lebesgue measure 0.

Fourier coefficients for analytic functions decay faster than anymonomial power cn=ο(n−p),∀p∈
ℕ, a property known as exponential convergence.

Denote such approximations by ℒ, and they are linear

ℒ(αf +βg)=αℒ( f )+βℒ(g)

•

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

cjϕj

Let Φn= {φk(1),φk(2), . . . ,φk(n)} such

( f ,φk(1)) ( f ,φk(2)) ⋅ ⋅ ⋅ ( f ,φk(n)).

Choose cj=( f ,φk(j)), and

gn(t)=∑
j=1

n

cjϕj .

Denote such approximations by 𝒢, and they are non-linear.

3. Implicit-explicit methods

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε
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for some ε >0.

What questions do you ask?

Does T exist?. ∀ f , ε, ∃T , suchthat ‖ f −g ∘T ‖< ε

Can arbitrary ε be achieved?.

Can we construct T ?.

→ By what procedure?

T =T1 ∘T2 ∘ . . . ∘TJ

with Ti simple modifications of identity (ReLU)

min
T1, . . .TJ

‖ f −g ∘T1 ∘T2 ∘ . . . ∘TJ‖

Tj(x)=η(Ajx +bj)

η(t)={{{{{{{{{{{{ 0 t <0
t t 0

→ At what cost?

How big is n?.

.

LECTURE 34: OPERATOR-INDUCED BASES

1. Spectral methods
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In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x , t)
and voltage V (x , t)

∂
∂xV (x , t)=−L ∂

∂t I(x , t)−RI(x , t)

∂
∂xI(x , t)=−C

∂
∂t C(x , t)−GV (x , t)

Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical
formulation, e.g., for the ODE for y(t)

dy
dt +ay =b

Heaviside considered the associated algebraic problem for Y(s)

sY +aY =b⇒Y(s)= b
a+ s⇒y(t)=ℒ−1[Y(s)]

Why should I refuse a good dinner simply because I don't understand the diges-
tive processes involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathe-
matical rigour.

• Russian mathematician 1920's established first results (Vladimirov)

• Theory of Distributions (Schwartz, 1950s)

2. Quasi-spectral methods

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.
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Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

( f ,ϕj)ϕj =∑
j=1

n

cjϕj

The approximation is convergent if

lim
n→∞

‖ f −g ∘T ‖=0,

This assumes cj =( f ,ϕj) rapidly decrease.

THEOREM. (Parseval) The Fourier transform is unitary. For A, B:ℝ→ℂ, square integrable, 2π-
periodic with Fourier series

A(t)= ∑
n=−∞

∞

an eint,B(t)= ∑
n=−∞

∞

bneint,

∑
n=−∞

∞

an b̄n=
1
2π∫

−π

π
A(t)B̄(t)dt .

Bessel inequality:

∑
j=1

n

|( f ,ϕj)|2 ‖ f ‖2 .

Fourier coefficient decay: for f ∈C(k−1)(ℝ), f (k−1) absolutely continuous,

|cn| min
0 j k

‖ f (j)‖1
|n|j .

In practice: coefficients decay as

• 1/n for functions with discontinuities on a set of Lebesgue measure 0;

• 1/n2 for functions with discontinuous first derivative on a set of Lebesgue measure 0;

• 1/n3 for functions with discontinuous second derivative on a set of Lebesgue measure 0.
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Fourier coefficients for analytic functions decay faster than anymonomial power cn=ο(n−p),∀p∈
ℕ, a property known as exponential convergence.

Denote such approximations by ℒ, and they are linear

ℒ(αf +βg)=αℒ( f )+βℒ(g)

•

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

cjϕj

Let Φn= {φk(1),φk(2), . . . ,φk(n)} such

( f ,φk(1)) ( f ,φk(2)) ⋅ ⋅ ⋅ ( f ,φk(n)).

Choose cj=( f ,φk(j)), and

gn(t)=∑
j=1

n

cjϕj .

Denote such approximations by 𝒢, and they are non-linear.

3. Fast transforms

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

What questions do you ask?

Does T exist?. ∀ f , ε, ∃T , suchthat ‖ f −g ∘T ‖< ε

Can arbitrary ε be achieved?.
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Can we construct T ?.

→ By what procedure?

T =T1 ∘T2 ∘ . . . ∘TJ

with Ti simple modifications of identity (ReLU)

min
T1, . . .TJ

‖ f −g ∘T1 ∘T2 ∘ . . . ∘TJ‖

Tj(x)=η(Ajx +bj)

η(t)={{{{{{{{{{{{ 0 t <0
t t 0

→ At what cost?

How big is n?.

.

LECTURE 35: NONLINEAR OPERATORS

1. Advection equation

In late nineteenth century, telegrapher's equations, a system of linear PDEs for current I(x , t)
and voltage V (x , t)

∂
∂xV (x , t)=−L ∂

∂t I(x , t)−RI(x , t)

∂
∂xI(x , t)=−C

∂
∂t C(x , t)−GV (x , t)

Heaviside avoided solution of the PDEs by reduction to an algebraic formulation historical
formulation, e.g., for the ODE for y(t)

dy
dt +ay =b
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Heaviside considered the associated algebraic problem for Y(s)

sY +aY =b⇒Y(s)= b
a+ s⇒y(t)=ℒ−1[Y(s)]

Why should I refuse a good dinner simply because I don't understand the diges-
tive processes involved? (Heaviside, ?)

Heaviside's formal framework (1890's) for solving ODEs was discounted since it lacked mathe-
matical rigour.

• Russian mathematician 1920's established first results (Vladimirov)

• Theory of Distributions (Schwartz, 1950s)

2. Convection equation

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

( f ,ϕj)ϕj =∑
j=1

n

cjϕj

The approximation is convergent if

lim
n→∞

‖ f −g ∘T ‖=0,

This assumes cj =( f ,ϕj) rapidly decrease.
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THEOREM. (Parseval) The Fourier transform is unitary. For A, B:ℝ→ℂ, square integrable, 2π-
periodic with Fourier series

A(t)= ∑
n=−∞

∞

an eint,B(t)= ∑
n=−∞

∞

bneint,

∑
n=−∞

∞

an b̄n=
1
2π∫

−π

π
A(t)B̄(t)dt .

Bessel inequality:

∑
j=1

n

|( f ,ϕj)|2 ‖ f ‖2 .

Fourier coefficient decay: for f ∈C(k−1)(ℝ), f (k−1) absolutely continuous,

|cn| min
0 j k

‖ f (j)‖1
|n|j .

In practice: coefficients decay as

• 1/n for functions with discontinuities on a set of Lebesgue measure 0;

• 1/n2 for functions with discontinuous first derivative on a set of Lebesgue measure 0;

• 1/n3 for functions with discontinuous second derivative on a set of Lebesgue measure 0.

Fourier coefficients for analytic functions decay faster than anymonomial power cn=ο(n−p),∀p∈
ℕ, a property known as exponential convergence.

Denote such approximations by ℒ, and they are linear

ℒ(αf +βg)=αℒ( f )+βℒ(g)

•

Choose a basis set (Monomials, Exponentials, Wavelets) {ϕ1,ϕ2, . . . } to approximation of L2(ℝ)
functions in Hibert space

gn(t)=∑
j=1

n

cjϕj
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Let Φn= {φk(1),φk(2), . . . ,φk(n)} such

( f ,φk(1)) ( f ,φk(2)) ⋅ ⋅ ⋅ ( f ,φk(n)).

Choose cj=( f ,φk(j)), and

gn(t)=∑
j=1

n

cjϕj .

Denote such approximations by 𝒢, and they are non-linear.

3. Discontinuous solutions

Consider function f :ℝd→ℝ, d≫1 assumed large, f of unknown form, difficult to compute for
general input. Seek g:ℝn→ℝ, T :ℝd→ℝn such that

‖ f −g ∘T ‖< ε

for some ε >0.

What questions do you ask?

Does T exist?. ∀ f , ε, ∃T , suchthat ‖ f −g ∘T ‖< ε

Can arbitrary ε be achieved?.

Can we construct T ?.

→ By what procedure?

T =T1 ∘T2 ∘ . . . ∘TJ

with Ti simple modifications of identity (ReLU)

min
T1, . . .TJ

‖ f −g ∘T1 ∘T2 ∘ . . . ∘TJ‖

Tj(x)=η(Ajx +bj)

η(t)={{{{{{{{{{{{ 0 t <0
t t 0

→ At what cost?

How big is n?.

.
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