FINAL EXAMINATION (PRACTICE)

Solve the following problems (4 course points each). Present a brief motivation of your method of solution.

- 1. Prove that $\mathbf{A} \in \mathbb{C}^{m \times m}$ can be uniquely factored as $\mathbf{A} = \mathbf{R}\mathbf{U}$, with \mathbf{R} hermitian positive definite and \mathbf{U} unitary. (This is known as a polar factorization and generalizes the relation $z = re^{i\theta}$)
- 2. Consider $A, B \in \mathbb{C}^{m \times m}$, both diagonalizable. Prove that AB = BA if and only if A, B are simultaneously diagonalizable, i.e., the same invertible matrix $P \in \mathbb{C}^{m \times m}$ leads to $P^{-1}AP = D_1$, $P^{-1}BP = D_2$, with D_1, D_2 diagonal.
- 3. Do similar matrices have the same characteristic polynomial?
- 4. Consider $\mathbf{A} \in \mathbb{R}^{m \times m}$ symmetric.
 - a) Construct an orthogonal matrix \boldsymbol{Q} to carry out the similarity transformation

$$\boldsymbol{Q}\boldsymbol{A}\boldsymbol{Q}^{T} = \left(\begin{array}{cc} \lambda & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B} \end{array} \right).$$

b) Write pseudo-code that would use the above relation to carry out eigenvalue deflation, e.g., during a QR or Lanczos algorithm.