FINAL EXAMINATION SOLUTION (PRACTICE)

Solve the following problems (4 course points each). Present a brief motivation of your method of solution.

* Prove that $\mathbf{A} \in \mathbb{C}^{m \times m}$ can be uniquely factored as $\mathbf{A} = \mathbf{R}\mathbf{U}$, with \mathbf{R} hermitian positive definite and \mathbf{U} unitary. (This is known as a polar factorization and generalizes the relation $z = re^{i\theta}$)

Solution. Inspired by $r^2 = z \bar{z}$, set $R^2 = AA^*$. From SVD $A = V \Sigma W^*$ obtain

$A = V \Sigma V^* V W^*$

identify $\mathbf{R} = \mathbf{V} \Sigma \mathbf{V}^*$, $\mathbf{U} = \mathbf{V} \mathbf{W}^*$ satisfying all conditions.

* Consider $A, B \in \mathbb{C}^{m \times m}$, both diagonalizable. Prove that AB = BA if and only if A, B are simultaneously diagonalizable, i.e., the same invertible matrix $P \in \mathbb{C}^{m \times m}$ leads to $P^{-1}AP = D_1$, $P^{-1}BP = D_2$, with D_1 , D_2 diagonal.

Solution. $AB = BA \Leftrightarrow A, B$ simultaneously diagonalizable. " \Leftarrow ": Assume $A = P\Lambda_1 P^{-1}, B = P\Lambda_2 P^{-1}$, and compute

$$\boldsymbol{A}\boldsymbol{B} = \boldsymbol{P}\boldsymbol{\Lambda}_1\boldsymbol{P}^{-1}\boldsymbol{P}\boldsymbol{\Lambda}_2\boldsymbol{P}^{-1} = \boldsymbol{P}\boldsymbol{\Lambda}_1\boldsymbol{\Lambda}_2\boldsymbol{P}^{-1}, \boldsymbol{B}\boldsymbol{A} = \boldsymbol{P}\boldsymbol{\Lambda}_2\boldsymbol{P}^{-1}\boldsymbol{P}\boldsymbol{\Lambda}_1\boldsymbol{P}^{-1} = \boldsymbol{P}\boldsymbol{\Lambda}_2\boldsymbol{\Lambda}_1\boldsymbol{P}^{-1}$$

Since $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$, it results that AB = BA.

" \Rightarrow ": Assume AB = BA, and consider $Ax = \lambda x$, $By = \mu y$. To gain insight, first assume A, B, have distinct eigenvalues (algebraic multiplicity equals 1 for all eigenvalues). From (BA - AB)x = 0 obtain

$BAx = ABx \Rightarrow \lambda Bx = ABx$

so Bx must be the eigenvector of A associated with eigenvalue λ . Since eigenvectors are determined up to a scaling, write this as $Bx = \nu x$, and deduce that x is also an eigenvector of B. Similar considerations imply y eigenvector of B is also an eigenvector of A. For eigenvalues λ with algebraic multiplicity n > 1, define $X \in \mathbb{C}^{m \times n}$ as an orthonormal basis for the eigenspace of A, $AX = \lambda X$. By the same argument,

$$BAX = ABX \Rightarrow \lambda BX = ABX,$$

hence, $BX \in C(X)$, hence X is also a basis for the eigenspace of B, and with the same multiplicity.

* Do similar matrices have the same characteristic polynomial?

Solution. $A, B \in \mathbb{C}^{m \times m}$ are similar if there exists T, s.t. $A = TBT^{-1}$. Let p_A denote the characteristic polynomial of A. By Cayley-Hamilton theorem

$$p_{\boldsymbol{A}}(\boldsymbol{A}) = \boldsymbol{A}^m + a_1 \boldsymbol{A}^{m-1} + \dots + a_m \boldsymbol{A}^0 = \boldsymbol{0}.$$

Replace $A = TBT^{-1}$ and obtain

$$Tp_A(B) T^{-1} = 0 \Rightarrow p_A(B) = 0,$$

hence p_A is also the characteristic polynomial of B.

* Consider $\mathbf{A} \in \mathbb{R}^{m \times m}$ symmetric.

a) Construct an orthogonal matrix Q to carry out the similarity transformation

$$\boldsymbol{Q}\boldsymbol{A}\boldsymbol{Q}^{T} = \left(\begin{array}{cc} \lambda & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B} \end{array} \right).$$

b) Write pseudo-code that would use the above relation to carry out eigenvalue deflation, e.g., during a QR or Lanczos algorithm.

Solution. From the above λ is an eigenvalue of \boldsymbol{A} , and the eigenvector $\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}$, $\|\boldsymbol{x}\| = 1$, is determined by finding a basis vector for the null space $N(\boldsymbol{A} - \lambda \boldsymbol{I})$. Note that $\lambda \boldsymbol{x}^T = (\boldsymbol{A}\boldsymbol{x})^T = \boldsymbol{x}^T \boldsymbol{A}^T = \boldsymbol{x}^T \boldsymbol{A}$. Define \boldsymbol{C} to complete an orthonormal basis set $\boldsymbol{Q}^T = (\boldsymbol{x} \ \boldsymbol{C})$, and compute

$$QAQ^{T} = \begin{pmatrix} x^{T} \\ C^{T} \end{pmatrix} A (x C) = \begin{pmatrix} x^{T} \\ C^{T} \end{pmatrix} (Ax AC) = \begin{pmatrix} x^{T}Ax & x^{T}AC \\ C^{T}Ax & C^{T}AC \end{pmatrix} = \begin{pmatrix} \lambda & \lambda x^{T}C \\ \lambda & C^{T}x & C^{T}AC \end{pmatrix} \Rightarrow$$
$$QAQ^{T} = \begin{pmatrix} \lambda & 0 \\ 0 & B \end{pmatrix}.$$

Let $(\lambda, \mathbf{X}) = \operatorname{eig1}(\mathbf{A})$ be some eigenvalue algorithm, returning an eigenvalue λ and associated orthonormal basis \mathbf{X} for $N(\mathbf{A} - \lambda \mathbf{I})$. Let $\operatorname{comp}(\mathbf{X})$ denote a procedure to return the orthogonal completion of basis set \mathbf{X} . A recursive algorithm $\operatorname{eig}(\mathbf{A})$ to find all eigenvalues using deflation would be carried out as

Input: $\boldsymbol{A} \in \mathbb{R}^{m \times m}$ Output: $\boldsymbol{\lambda} \in \mathbb{R}^m, \ \boldsymbol{Q} \in \mathbb{R}^{m \times m}$

 $\operatorname{eig}(\boldsymbol{A})$

if dim $(\mathbf{A}) \ge 1$ $(\lambda, \mathbf{X}) = \operatorname{eig}(\mathbf{A}); \mathbf{C} = \operatorname{comp}(\mathbf{X})$ return $((\lambda, \mathbf{X}), \operatorname{eig}(\mathbf{C}^T \mathbf{A} \mathbf{C}))$