MATH662: Numerical linear algebraJanuary 16, 2019

Homework 1

Due date: Jan 30, 2019, 11:55PM.

Bibliography: Trefethen & Bau, Lectures 1-8. Problems 1-4 = 1 pt each, Problem 5 = 4 points.

  1. Exercises 2.3, 2.4, 2.5

    2.3

    Am×m, A=A, Ax=λx, Ax=λx, x0.

    1. λ. Proof: From Ax=λx, take adjoint xA=xA=λx. Multiple by x,x (non-zero)

      Ax=λx xAx=λxx xA=λx xAx=λxx 0=(λ-λ)xx=0λ=λλ.
    2. Ax=λx,Ay=μy,λμ, λ,μ

      Ax=λx yAx=λyx yA=μy yAx=μyx 0=(λ-μ)yx=0yx=0xy.

    2.4

    Am×m, AA=AA=I. Take adjoint of eigenvalue relation AV=ΛV to obtain VA=VΛ. Multiply the two equations to obtain VAAV=VΛΛVV|Λ|2V=VV, hence eigenvalues satisfy |λi|2=1, i.e., lie on the unit circle.

    octave: 

    A=randn(100); [Q,R]=qr(A); L=eig(Q);

    octave: 

    cd('/home/student/courses/MATH662')

    octave: 

    data = [real(L) imag(L)];

    octave: 

    save -ascii hw1fig1.data data

    octave: 

    [min(abs(L)) max(abs(L))]

    ans =

    1.00000 1.00000

    octave: 

    
                            

    GNUplot] 

    cd '/home/student/courses/MATH662';
    set xlabel 're(\lambda)'; set ylabel 'im(\lambda)';
    set grid; set size square;
    plot 'hw1fig1.data' using 1:2 w p

    GNUplot] 

    
                            

    2.5

    Sm×m,S=-S

    1. As in 2.3

      Ax=λx xAx=λxx -xA=λx -xAx=λxx 0=(λ+λ)xx=0λ=-λλ=iα,α.
    2. This is a matrix generalization of |1+iα|>0 for any α. Recall that A singular is equivalent to A having a zero eigenvalue. Ask: can μ=0 be an eigenvalue of I-S? If so (I-S)x=μx=0Sx=1x, implying 1 is an eigenvalue of S, contradicting finding from (a). Or, consider x to be an eigenvector of S, Sx=iαx, and compute

      (I-S)x=x-iαx=(1-iα)x,

      hence 1-iα is an eigenvalue of I-S, and |1-iα|=1+α2>0. Note that the above also implies

      (I-S)-1x=11-iαx,

      hence (1-iα)-1 is an eigenvalue of (I-S)-1.

    3. Per (2.4) eigenvalues of a unitary matrix lie on the unit circle. As above, let x be an eigenvector of S, Sx=iαx,

      Qx=(I-S)-1(I+S)x=(I-S)-1(1+iα)x=(1+iα)(I-S)-1x=1+iα1-iαx=μx,

      and |μ|=|1+iα|/|1-iα|=1, hence Q unitary.

  2. Exercises 3.1-3.6

    3.1

    Wm×m nonsingular, ||x||W=||Wx||. Prove norm properties:

    1. ||x||W0 results from ||Wx||0. Consider ||x||W=0, or ||Wx||=0Wx=0. Since W nonsingular cannot have a zero eigenvalue, it results that x=0.

    2. ||x+y||W=||Wx+Wy||||Wx||+||Wy||=||x||W+||y||W

    3. ||αx||W=||αWx||=|α|||Wx||=|α|||x||W.

    3.2

    Write eigenvalue relation for Am×m, Axi=λixi, and ||Axi||=|λi|||xi||. By definition of induced norm

    ||A||=supxm,x0||Ax||||x||maxi|λi|=ρ(A).
    3.3
    1. ||x||=maxi|xi|(x12++xm2)1/2=||x||2. Equality attained for x=ei, inequality for x=e1+e2.

    2. ||x||2=(x12++xm2)1/2maxi|xi|m=m||x||. Equality for x=(1,1,,1), inequality for x=ei.

    3. From (a) ||Ax||||Ax||2, and from (b) 1/||x||n/||x||2, combine to obtain

      ||Ax||||x||n||Ax||2||x||2

  3. Exercise 5.4. State and solve the analogous problem for skew-symmetric matrices.

  4. Exercises 6.1-3, 6.5

  5. Consider a black and white image represented as a matrix A{0,1}32×256. In each 32×32 block set element values to represent a letter of the words: “absolute”, “computer”, “measures”.

    Read in an image

    octave> 

    chdir('/home/student/courses/MATH662')

    /home/student/courses/MATH662

    octave> 

    load('b.mat');

    octave> 

    [U,S,V]=svd(B);

    'Expression1' undefined near line 1 column 7

    octave> 

    
                      

    1. Guess the rank of the matrices. Then, compute the rank of the matrices.

    2. Obtain a sequence of approximations Aν for ν=2p, p=2,3,4,5, with Aν the successive approximations from truncation of the SVD rank-1 expansions.

    3. Consider B(x1,x2,x3)=x1A1+x2A2+x3A3, with x1+x2+x3=1. Repeat (b) for x1,x2,x3 by sampling points within the tetrahedron. Comment.

    4. Consider H(ξ)=A1+ξ(A2-A1). Repeat (b) for ξ(0,1). Comment.