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Université Pierre et Marie Curie
75252 Paris
France
kaber@ann.jussieu.fr

L. Sirovich
Division of Applied Mathematics
Brown University
Providence, RI 02912
USA

ISBN 978-0-387-34159-0 e-ISBN 978-0-387-68918-0
DOI: 10.1007/978-0-387-68918-0

Library of Congress Control Number: 2007939527

Mathematics Subject Classification (2000): 15-01, 54F05, 65F10, 65F15, 65F35
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Series Preface

Mathematics is playing an ever more important role in the physical and biolog-
ical sciences, provoking a blurring of boundaries between scientific disciplines
and a resurgence of interest in the modern as well as the classical techniques
of applied mathematics. This renewal of interest, both in research and teach-
ing, has led to the establishment of the series Texts in Applied Mathematics
(TAM).

The development of new courses is a natural consequence of a high level
of excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with and
reinforce the traditional methods of applied mathematics. Thus, the purpose
of this textbook series is to meet the current and future needs of these advances
and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman



Preface

The origin of this textbook is a course on numerical linear algebra that we
taught to third-year undergraduate students at Université Pierre et Marie
Curie (Paris 6 University). Numerical linear algebra is the intersection of
numerical analysis and linear algebra and, more precisely, focuses on practical
algorithms for solving on a computer problems of linear algebra.

Indeed, most numerical computations in all fields of applications, such as
physics, mechanics, chemistry, and finance. involve numerical linear algebra.
All in all, these numerical simulations boil down to a series of matrix com-
putations. There are mainly two types of matrix computations: solving linear
systems of equations and computing eigenvalues and eigenvectors of matrices.
Of course, there are other important problems in linear algebra, but these two
are predominant and will be studied in great detail in this book.

From a theoretical point of view, these two questions are by now com-
pletely understood and solved. Necessary and sufficient conditions for the
existence and/or uniqueness of solutions to linear systems are well known, as
well as criteria for diagonalizing matrices. However, the steady and impres-
sive progress of computer power has changed those theoretical questions into
practical issues. An applied mathematician cannot be satisfied by a mere exis-
tence theorem and rather asks for an algorithm, i.e., a method for computing
unknown solutions. Such an algorithm must be efficient: it must not take too
long to run and too much memory on a computer. It must also be stable,
that is, small errors in the data should produce similarly small errors in the
output. Recall that errors cannot be avoided, because of rounding off in the
computer. These two requirements, efficiency and stability, are key issues in
numerical analysis. Many apparently simple algorithms are rejected because
of them.

This book is intended for advanced undergraduate students who have al-
ready been exposed to linear algebra (for instance, [9], [10], [16]). Nevertheless,
to be as self-contained as possible, its second chapter recalls the necessary de-
finitions and results of linear algebra that will be used in the sequel. On the
other hand, our purpose is to be introductory concerning numerical analysis,
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for which we do not ask for any prerequisite. Therefore, we do not pretend to
be exhaustive nor to systematically give the most efficient or recent algorithms
if they are too complicated. We leave this task to other books at the graduate
level, such as [2], [7], [11], [12], [14], [17], [18]. For pedagogical reasons we
satisfy ourselves in giving the simplest and most illustrative algorithms.

Since the inception of computers and, all the more, the development
of simple and user-friendly software such as Maple, Mathematica, Matlab,
Octave, and Scilab, mathematics has become a truly experimental science like
physics or mechanics. It is now possible and very easy to perform numerical
experiments on a computer that help in increasing intuition, checking conjec-
tures or theorems, and quantifying the effectiveness of a method. One original
feature of this book is to follow an experimental approach in all exercises. The
reader should use Matlab for solving these exercises, which are given at the
end of each chapter. For some of them, marked by a (∗), complete solutions,
including Matlab scripts, are given in the last chapter. The solutions of the
other exercises are available in a solution manual available for teachers and
professors on request to Springer. The original french version of this book (see
our web page http://www.ann.jussieu.fr/numalgebra) used Scilab, which
is probably less popular than Matlab but has the advantage of being free
software (see http://www.scilab.org). Finally we thank Karim Trabelsi for
translating a large part of this book from a French previous version of it.

We hope the reader will enjoy more mathematics by seeing it “in practice.”

G.A., S.M.K.
Paris
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1

Introduction

As we said in the preface, linear algebra is everywhere in numerical simu-
lations, often well hidden for the average user, but always crucial in terms
of performance and efficiency. Almost all numerical computations in physics,
mechanics, chemistry, engineering, economics, finance, etc., involve numerical
linear algebra, i.e., computations involving matrices. The purpose of this in-
troduction is to give a few examples of applications of the two main types
of matrix computations: solving linear systems of equations on the one hand,
and computing eigenvalues and eigenvectors on the other hand. The following
examples serve as a motivation for the main notions, methods, and algorithms
discussed in this book.

1.1 Discretization of a Differential Equation

We first give a typical example of a mathematical problem whose solution is
determined by solving a linear system of large size. This example (which can
be generalized to many problems all of which have extremely important appli-
cations) is linked to the approximate numerical solution of partial differential
equations. A partial differential equation is a differential equation in several
variables (hence the use of partial derivatives). However, for simplicity, we
shall confine our exposition to the case of a single space variable x, and to
real-valued functions.

A great number of physical phenomena are modeled by the following equa-
tion, the so-called Laplace, Poisson, or conduction equation (it is also a time-
independent version of the heat or wave equation; for more details, see [3]):

{
−u′′(x) + c(x)u(x) = f(x) for all x ∈ (0, 1) ,
u(0) = α, u(1) = β,

(1.1)

where α, β are two real numbers, c(x) is a nonnegative and continuous func-
tion on [0, 1], and f(x) is a continuous function on [0, 1]. This second-order
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differential equation with its boundary conditions “at both ends” is called a
boundary value problem. We shall admit the existence and uniqueness of a
solution u(x) of class C2 on [0, 1] of the boundary value problem (1.1). If c(x)
is constant, one can find an explicit formula for the solution of (1.1). However,
in higher spatial dimensions or for more complex boundary value problems
(varying c(x), nonlinear equations, system of equations, etc.), there is usually
no explicit solution. Therefore, the only possibility is to approximate the so-
lution numerically. The aim of example (1.1) is precisely to show a method
of discretization and computation of approximate solutions that is called the
method of finite difference. We call discretization of a differential equation the
formulation of an approximate problem for which the unknown is no longer a
function but a finite (discrete) collection of approximate values of this func-
tion. The finite difference method, which is very simple in dimension 1, can
easily be generalized, at least in principle, to a wide class of boundary value
problems.

In order to compute numerically an approximation of the solution of (1.1),
we divide the interval [0, 1] into n equal subintervals (i.e., of size 1/n), where n
is an integer chosen according to the required accuracy (the larger the value of
n, the “closer” the approximate solution will be to the exact one). We denote
by xi the (n + 1) endpoints of these intervals:

xi =
i

n
, 0 ≤ i ≤ n.

We call ci the value of c(xi), fi the value of f(xi), and ui the approximate
value of the solution u(xi). To compute these approximate values (ui)0<i<n,
we substitute the differential equation (1.1) with a system of (n−1) algebraic
equations. The main idea is to write the differential equation at each point xi

and to replace the second derivative by an appropriate linear combination of
the unknowns ui. To do so, we use Taylor’s formula by assuming that u(x) is
four times continuously differentiable:{

u(xi+1) = u(xi) + 1
nu′(xi) + 1

2n2 u′′(xi) + 1
6n3 u′′′(xi) + 1

24n4 u′′′′(xi + θ+

n ),
u(xi−1) = u(xi) − 1

nu′(xi) + 1
2n2 u′′(xi) − 1

6n3 u′′′(xi) + 1
24n4 u′′′′(xi − θ−

n ),

where θ−, θ+ ∈ (0, 1). Adding these two equations, we get

−u′′(xi) =
2u(xi) − u(xi−1) − u(xi+1)

n−2
+ O(n−2).

Neglecting the lowest-order term n−2 yields a “finite difference” formula, or
discrete derivative

−u′′(xi) ≈
2u(xi) − u(xi−1) − u(xi+1)

n−2
.

Substituting −u′′(xi) with its discrete approximation in the partial differential
equation (1.1), we get (n − 1) algebraic equations
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2ui − ui−1 − ui+1

n−2
+ ciui = fi, 1 ≤ i ≤ n − 1,

completed by the two boundary conditions

u0 = α, un = β.

Since the dependence in ui is linear in these equations, we obtain a so-called
linear system (see Chapter 5) of size (n − 1):

Anu(n) = b(n), (1.2)

where u(n) is the vector of entries (u1, . . . , un−1), while b(n) is a vector and
An a matrix defined by

An = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 + c1
n2 −1 0 . . . 0

−1 2 + c2
n2

. . . . . .
...

0
. . . . . . −1 0

...
. . . −1 2 + cn−2

n2 −1
0 . . . 0 −1 2 + cn−1

n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, b(n) =

⎛
⎜⎜⎜⎜⎜⎝

f1 + αn2

f2

...
fn−2

fn−1 + βn2

⎞
⎟⎟⎟⎟⎟⎠

.

The matrix An is said to be tridiagonal, since it has nonzero entries only on
its main diagonal and on its two closest diagonals (the subdiagonal and the
superdiagonal).

One can prove (see Lemma 5.3.2) that the matrix An is invertible, so that
there exists a unique solution u(n) of the linear system (1.2). Even more, it
is possible to prove that the solution of the linear system (1.2) is a correct
approximation of the exact solution of the boundary value problem (1.1).
We said that the previous finite difference method converges as the number
of intervals n increases. This is actually a delicate result (see, e.g., [3] for a
proof), and we content ourselves in stating it without proof.

Theorem 1.1.1. Assume that the solution u(x) of (1.1) is of class C4 on
[0, 1]. Then the finite difference method converges in the sense that

max
0≤i≤n

|u(n)
i − u(xi)| ≤

1
96n2

sup
0≤x≤1

|u′′′′(x)|.

Figure 1.1 shows the exact and approximate (n = 20) solutions of equation
(1.1) on ]0, 1[, where the functions c and f are chosen so that the exact solution
is u(x) = x sin(2πx):

c(x) = 4, f(x) = 4(π2 + 1)u(x) − 4π cos(2πx), α = β = 0.

The problem of solving the differential equation (1.1) has thus been reduced
to solving a linear system. In practice, these linear systems are very large.
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Fig. 1.1. Computation of an approximate solution of (1.1) and comparison with
the exact solution.

Indeed, most physical phenomena are three-dimensional (unlike our simpli-
fied example in one spatial dimension). A numerical simulation requires the
discretization of a three-dimensional domain. For instance, if we decide to
place 100 discretization points in each spatial direction, the total number of
points, or unknowns, is 1 million (1003), and hence the linear system to be
solved is of size 1 million. This is a typical size for such a system even if some
are smaller. . . or larger. In practice, one needs to have at one’s disposal high-
performance algorithms for solving such linear systems, that is, fast algorithms
that require little memory storage and feature the highest accuracy possible.
This last point is a delicate challenge because of the inevitable rounding er-
rors (an issue that will be discussed in Section 5.3.1). Solving linear systems
efficiently is the topic of Chapters 5 to 9.

1.2 Least Squares Fitting

We now consider a data analysis problem. Assume that during a physical
experiment, we measure a magnitude or quantity y that depends on a real
parameter t. We carry out m experiments and different measurements by
varying the parameter t. The problem is to find a way of deducing from
these m measurements a very simple experimental law that enables one to
approximate as well as possible the studied quantity as an (n − 1)th-degree
polynomial (at most) of the parameter. Let us remark that the form of the
experimental law is imposed (it is polynomial); but the coefficients of this
polynomial are unknown. In general, the number of measurements m is very
large with respect to the degree n of the sought-after polynomial. In other
words, given m values of the parameter (ti)m

i=1 and m corresponding values of
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the measures (yi)m
i=1, we look for a polynomial p ∈ Pn−1, the set of polynomials

of one variable t of degree less than or equal to n−1, that minimizes the error
between the experimental value yi and the predicted theoretical value p(ti).
Here, the error is measured in the sense of “least squares fitting,” that is, we
minimize the sum of the squares of the individual errors, namely

E =
m∑

i=1

|yi − p(ti)|2. (1.3)

We write p in a basis (ϕj)n−1
j=0 of Pn−1:

p(t) =
n−1∑
j=0

ajϕj(t). (1.4)

The quantity E defined by (1.3) is a quadratic function of the n coefficients
ai, since p(ti) depends linearly on these coefficients. In conclusion, we have to
minimize the function E with respect to the n variables (a0, a1, . . . , an−1).

Linear regression. Let us first study the case n = 2, which comes down to
looking for a straight line to approximate the experimental values. This line is
called the “least squares fitting” line, or linear regression line. In this case, we
choose a basis ϕ0(t) = 1, ϕ1(t) = t, and we set p(t) = a0 + a1t. The quantity
to minimize is reduced to

E(a0, a1) =
m∑

i=1

|yi − (a0 + a1ti)|2

= Aa2
1 + Ba2

0 + 2Ca0a1 + 2Da1 + 2Ea0 + F

with

A =
m∑

i=1

t2i , B = m, C =
m∑

i=1

ti,

D = −
m∑

i=1

tiyi, E = −
m∑

i=1

yi, F =
m∑

i=1

y2
i .

Noting that A > 0, we can factor E(a0, a1) as

E(a0, a1) = A

(
a1 +

C

A
a0 +

D

A

)2

+
(

B − C2

A

)
a2
0+2

(
E − CD

A

)
a0+F−D2

A
.

The coefficient of a2
0 is also positive if the values of the parameter ti are not

all equal, which is assumed henceforth:

AB − C2 = m

(
m∑

i=1

t2i

)
−
(

m∑
i=1

ti

)2

= m
m∑

i=1

⎛
⎝ti −

1
m

m∑
j=1

tj

⎞
⎠

2

.
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We can thus rewrite E(a0, a1) as follows:

E(a0, a1) = A

(
a1 +

C

A
a0 +

D

A

)2

+ ∆

(
a0 +

E − CD
A

∆

)2

+ G, (1.5)

where ∆ = B − C2

A and G = F − D2

A − (E−CD
A )2

∆ . The function E has then a
unique minimum point given by

a0 = −
E − CD

A

∆
, a1 = −C

A
a0 −

D

A
.

Example 1.2.1. Table 1.1 (source I.N.S.E.E.) gives data on the evolution of
the cost construction index taken in the first trimester of every year, from
1990 to 2000.

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

939 972 1006 1022 1016 1011 1038 1047 1058 1071 1083

Table 1.1. Evolution of the cost construction index.

Figure 1.2 displays the least squares fitting line of best approximation for
Table 1.1, that is, a line “deviating the least” from the cloud of given points.
This example (n = 2) is simple enough that we can solve it exactly “by hand.”

1990 1992 1994 1996 1998 2000
900

950

1000

1050

1100

Fig. 1.2. Approximation of the data of Table 1.1 by a line.

Polynomial regression. We return now to the general case n > 2. We denote
by b ∈ R

m the vector of measurements, by c ∈ R
m that of parameters, by
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x ∈ R
n that of unknowns, and by q(t) ∈ R

m that of the predictions by the
polynomial p:

b =

⎛
⎜⎜⎝

y1

y2
...

ym

⎞
⎟⎟⎠ , c =

⎛
⎜⎜⎝

t1
t2
...

tm

⎞
⎟⎟⎠ , x =

⎛
⎜⎜⎝

a0

a1
...

an−1

⎞
⎟⎟⎠ , q(t) =

⎛
⎜⎜⎝

p(t1)
p(t2)

...
p(tm)

⎞
⎟⎟⎠ .

As already observed, the polynomial p, and accordingly the vector q(t), depend
linearly on x (its coefficients in the basis of ϕi(t)). Namely q(t) = Ax and
E = ‖Ax − b‖2 with

A =

⎛
⎜⎜⎝

ϕ0(t1) ϕ1(t1) . . . ϕn−1(t1)
ϕ0(t2) ϕ1(t2) . . . ϕn−1(t2)

...
...

...
ϕ0(tm) ϕ1(tm) . . . ϕn−1(tm)

⎞
⎟⎟⎠ ∈ Mm,n(R),

where ‖.‖ denotes here the Euclidean norm of R
m. The least squares fitting

problem reads then, find x ∈ R
n such that

‖Ax − b‖ = inf
u∈Rn

‖Au − b‖. (1.6)

We shall prove (see Chapter 7) that x ∈ R
n is a solution of the minimization

problem (1.6) if and only if x is solution of the so-called normal equations

AtAx = Atb. (1.7)

The solutions of the least squares fitting problem are therefore given by solving
either the linear system (1.7) or the minimization problem (1.6). Figure 1.3
shows the solution of this equation for m = 11, n = 5, and the data yi of
Table 1.1.

1990 1992 1994 1996 1998 2000
900

950

1000

1050

1100

Fig. 1.3. Approximation of the data of Table 1.1 by a fourth-degree polynomial.



8 Introduction

Multiple variables regression. So far we have assumed that the measured
physical quantity y depended on a single real parameter t. We now consider
the case that the experiments and the measured quantity depends on n pa-
rameters. We still have m experiments and each of them yields a possibly
different measure. The goal is to deduce from these m measurements a very
simple experimental law that approximates the physical quantity as a linear
combination of the n parameters. Note that the form of this experimental
law is imposed (it is linear), whereas the coefficients of this linear form are
unknown.

In other words, let ai ∈ R
n be a vector, the entries of which are the

values of the parameters for the ith experiment, and let f(a) be the unknown
function from R

n into R that gives the measured quantity in terms of the
parameters. The linear regression problem consists in finding a vector x ∈ R

n

(the entries of which are the coefficients of this experimental law or linear
regression) satisfying

m∑
i=1

|f(ai) − 〈ai, x〉n|2 = min
y∈Rn

m∑
i=1

|f(ai) − 〈ai, y〉n|2,

where 〈., .〉n denotes the scalar product in R
n. Hence, we attempt to best

approximate the unknown function f by a linear form. Here “best” means “in
the least squares sense,” that is, we minimize the error in the Euclidean norm
of R

m. Once again this problem is equivalent to solving the so-called normal
equations (1.7), where b is the vector of R

n whose entries are the f(ai) and
A is the matrix of Mm,n(R) whose m rows are the vectors ai. The solution
x ∈ R

n of (1.7) is the coefficients of the experimental law.
Least squares problems are discussed at length in Chapter 7.

1.3 Vibrations of a Mechanical System

The computation of the eigenvalues and eigenvectors of a matrix is a fun-
damental mathematical tool for the study of the vibrations of mechanical
structures. In this context, the eigenvalues are the squares of the frequencies,
and the eigenvectors are the modes of vibration of the studied system. Con-
sider, for instance, the computation of the vibration frequencies of a building,
which is an important problem in order to determine its strength, for example,
against earthquakes. To simplify the exposition we focus on a toy model, but
the main ideas are the same for more complex and more realistic models.

We consider a two-story building whose sufficiently rigid ceilings are as-
sumed to be point masses m1,m2,m3. The walls are of negligible mass but
their elasticity is modeled, as that of a spring, by stiffness coefficients k1, k2, k3

(the larger is ki, the more rigid or “stiff” is the wall). The horizontal displace-
ments of the ceilings are denoted by y1, y2, y3, whereas the base of the building
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Fig. 1.4. A two-story building model.

is clamped on the ground; see Figure 1.4. In other words, this two-story build-
ing is represented as a system of three masses linked by springs to a fixed
support; see Figure 1.5. We write the fundamental equation of mechanics,
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y y y
1 2 3

Fig. 1.5. System of three masses linked by springs to a support.

which asserts that mass multiplied by acceleration is equal to the sum of the
applied forces. The only forces here are return forces exerted by the springs.
They are equal to the product of stiffness and elongation of the spring. The
displacements y1, y2, y3 (with respect to the equilibrium) are functions of time
t. Their first derivatives, denoted by ẏ1, ẏ2, ẏ3, are velocities, and their second
derivatives ÿ1, ÿ2, ÿ3 are accelerations of the masses m1,m2,m3, respectively.
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Thus, we deduce the following three equations:⎧⎨
⎩

m1ÿ1 + k1y1 + k2(y1 − y2) = 0,
m2ÿ2 + k2(y2 − y1) + k3(y2 − y3) = 0,

m3ÿ3 + k3(y3 − y2) = 0,
(1.8)

which read, in matrix form,

Mÿ + Ky = 0, (1.9)

where

y =

⎛
⎝ y1

y2

y3

⎞
⎠ , M =

⎛
⎝m1 0 0

0 m2 0
0 0 m3

⎞
⎠ , K =

⎛
⎝k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

⎞
⎠ .

The matrix M is called the mass matrix, while K is called the stiffness matrix.
They are both symmetric. We look for particular solutions of equations (1.8)
that are periodic (or harmonic) in time in order to represent the vibrations of
the system. Accordingly, we set

y(t) = y0eiωt,

where i is the basis of imaginary numbers, and ω is the vibration frequency of
the solution. A simple computation shows that in this case, the acceleration
is ÿ(t) = −ω2y(t), and that (1.9) simplifies to

Ky0 = ω2My0. (1.10)

If all masses are equal to 1, then M is the identity matrix, and (1.10) is a
standard eigenvalue problem for the matrix K, that is, y0 is an eigenvector of
K corresponding to the eigenvalue ω2. If the masses take any values, (1.10)
is a “generalized” eigenvalue problem, that is, ω2 is an eigenvalue of the ma-
trix M−1/2KM−1/2 (on this topic, see Theorem 2.5.3 on the simultaneous
reduction of a scalar product and a quadratic form).

Of course, had we considered a building with n floors, we would have
obtained a similar matrix problem of size n + 1, the matrix M being always
diagonal, and K tridiagonal. In Chapter 10, several algorithms for the efficient
computation of eigenvalues and eigenvectors will be discussed.

1.4 The Vibrating String

We generalize the example of Section 1.3 to the case of an infinite number of
masses and springs. More precisely, we pass from a discrete model to a contin-
uous one. We consider the vibrating string equation that is the generalization
of (1.8) to an infinite number of masses; for more details, see [3]. This equa-
tion is again a partial differential equation, very similar to that introduced in
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Section 1.1. Upon discretization by finite differences, an approximate solution
of the vibrating string equation is obtained by solving an eigenvalue problem
for a large matrix.

The curvilinear abscissa along the string is denoted by x, and time is t.
The deflection of the string with respect to its horizontal equilibrium position
is therefore a real-valued function u(t, x). We call ü(t, x) its second derivative
with respect to time t, and u′′(t, x) its second derivative with respect to x.
With no exterior forces, the vibrating string equation reads

{
mü(t, x) − ku′′(t, x) = 0, for all x ∈ (0, 1) , t > 0,
u(t, 0) = 0, u(t, 1) = 0, (1.11)

where m and k are the mass and stiffness per unit length of the string. The
boundary conditions “at both ends” u(t, 0) = u(t, 1) = 0 specify that at any
time t, the string is fixed at its endpoints; see Figure 1.6. We look for special

0 x 1

�
�

u(x)

Fig. 1.6. Vibrating string problem.

“vibrating” solutions of (1.11) that are periodic in time and of the form

u(t, x) = v(x)eiωt,

where ω is the vibration frequency of the string. A simple computation shows
that v(x) is a solution to

{
−v′′(x) = mω2

k v(x), for all x ∈ (0, 1) ,
v(0) = 0, v(1) = 0.

(1.12)

We say that mω2/k is an eigenvalue, and v(x) is an eigenfunction of problem
(1.12). In the particular case studied here, solutions of (1.12) can be computed
explicitly; they are sine functions of period linked to the eigenvalue. However,
in higher space dimensions, or if the linear mass or the stiffness varies with
the point x, there is in general no explicit solution of this boundary value
problem, in which case solutions (ω, v(x)) must be determined numerically.

As in Section 1.1, we compute approximate solutions by a finite difference
method. Let us recall that this method consists in dividing the interval [0, 1]
into n subintervals of equal size 1/n, where n is an integer chosen according to
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the desired accuracy (the larger n is, the closer the approximate solution will
be to the exact solution). We denote by xi = i/n, 0 ≤ i ≤ n, the n + 1 limit
points of the intervals. We call vi the approximated value of the solution v(x)
at point xi, and λ an approximation of mω2/k. The idea is to write equation
(1.12) at each point xi, and substitute the second derivative by an appropriate
linear combination of the unknowns vi using Taylor’s formula:

−v′′(xi) =
2v(xi) − v(xi−1) − v(xi+1)

n−2
+ O(n−2).

Hence, we obtain a system of (n − 1) equations

2vi − vi−1 − vi+1

n−2
= λvi, 1 ≤ i ≤ n − 1,

supplemented by the two boundary conditions v0 = vn = 0. We can rewrite
the system in matrix form:

Anv = λv, (1.13)

where v is the vector whose entries are (v1, . . . , vn−1), and

An = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0

−1 2
. . . . . .

...

0
. . . . . . −1 0

...
. . . −1 2 −1

0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In other words, the pair (λ, v) are an eigenvalue and eigenvector of the tridiag-
onal symmetric matrix An. Since An is real symmetric, it is diagonalizable (see
Theorem 2.5.2), so (1.13) admits n− 1 linearly independent solutions. There-
fore, it is possible to approximately compute the vibrating motion of a string
by solving a matrix eigenvalue problem. In the case at hand, we can compute
explicitly the eigenvalues and eigenvectors of matrix An; see Exercise 5.16.
More generally, one has to resort to numerical algorithms for approximating
eigenvalues and eigenvectors of a matrix; see Chapter 10.

1.5 Image Compression by the SVD Factorization

A black-and-white image can be identified with a rectangular matrix A the
size of which is equal to the number of pixels of the image and with entries ai,j

belonging to the range [0, 1], where 0 corresponds to a white pixel and 1 to a
black pixel. Intermediate values 0 < ai,j < 1 correspond to different levels of
gray. We assume that the size of the image is very large, so it cannot reasonably
be stored on a computer (not enough disk space) or sent by email (network
saturation risk). Let us show how the SVD (singular value decomposition) is
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useful for the compression of images, i.e., for minimizing the storage size of
an image by replacing it by an approximation that is visually equivalent.

As we shall see in Section 2.7 the SVD factorization of a matrix A ∈
Mm,n(C) of rank r is

A = V Σ̃U∗ and Σ̃ =
(

Σ 0
0 0

)
,

where U ∈ Mn(C) and V ∈ Mm(C) are two unitary matrices and Σ is the
diagonal matrix equal to diag (µ1, . . . , µr), where µ1 ≥ µ2 ≥ · · · ≥ µr > 0
are the positive square roots of the eigenvalues of A∗A (where A∗ denotes the
adjoint matrix of A), called the “singular values” of A. Therefore, computing
the SVD factorization is a type of eigenvalue problem. Denoting by ui and vi

the columns of U and V , the SVD factorization of A can also be written

A = V Σ̃U∗ =
r∑

i=1

µiviu
∗
i . (1.14)

Since the singular values µ1 ≥ · · · ≥ µr > 0 are arranged in decreasing order,
an approximation of A can easily be obtained by keeping only the k ≤ r first
terms in (1.14),

Ak =
k∑

i=1

µiviu
∗
i .

Actually, Proposition 3.2.1 will prove that Ak is the best approximation (in
some sense) of A among matrices of rank k. Of course, if k is much smaller
than r (which is less than n and m), approximating A by Ak yields a big
saving in terms of memory requirement.

Indeed, the storage of the whole matrix A ∈ Mm,n(R) requires a priori m×
n scalars. To store the approximation Ak, it suffices, after having performed
the SVD factorization of A, to store k vectors µivi ∈ C

m and k vectors
ui ∈ C

n, i.e., a total of k(m + n) scalars. This is worthwhile if k is small
and if we are satisfied with such an approximation of A. In Figure 1.7, the
original image is a grid of 500 × 752 pixels, the corresponding matrix A is
thus of size 500 × 752. We display the original image as well as three images
corresponding to three approximations Ak of A. For k = 10, the image is very
blurred, but for k = 20, the subject is recognizable. There does not seem to
be any differences between the image obtained with k = 60 and the original
image, even though the storage space is divided by 5:

k(m + n)
mn

=
60(500 + 752)

500 × 752
≈ 20%.

The main computational cost of this method of image compression is the SVD
factorization of the matrix A. Recall that the singular values of A are the
positive square roots of the eigenvalues of A∗A. Thus, the SVD factorization
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k=10 k=20

k=60 Original image

Fig. 1.7. An application of the SVD factorization: image compression.

is a variant of the problem of determining the eigenvalues and eigenvectors of
a matrix which, we shall study in Chapter 10.

Finally, let us mention that there exist other algorithms that are more
efficient and cheaper than the SVD factorization for image processing. Their
analysis is beyond the scope of this course.



2

Definition and Properties of Matrices

Throughout this book we consider matrices with real or complex entries. Most
of the results are valid for real and complex matrices (but not all of them!).
That is, in order to avoid tedious repetition, we denote by K a field that is
either the field of all real numbers R or the field of all complex numbers C,
i.e., K = R, C.

The goal of this chapter is to recall basic results and definitions that are
useful in the sequel. Therefore, many statements are given without proofs. We
refer to classical courses on linear algebra for further details (see, e.g., [10],
[16]).

2.1 Gram–Schmidt Orthonormalization Process

We consider the vector space K
d with the scalar product 〈x, y〉 =

∑n
i=1 xiyi

if K = R, or the Hermitian product 〈x, y〉 =
∑n

i=1 xiyi if K = C. We describe
a constructive process for building an orthonormal family out of a family of
linearly independent vectors in K

d, known as the Gram–Schmidt orthonor-
malization process. This algorithm is often used in numerical linear algebra.
In the sequel, the notation span {. . .} is used for the subspace spanned by the
vectors between parentheses.

Theorem 2.1.1 (Gram–Schmidt). Let (x1, . . . , xn) be a linearly indepen-
dent family in K

d. There exists an orthonormal family (y1, . . . , yn) such that

span {y1, . . . , yp} = span {x1, . . . , xp} , for any index p in the range 1 ≤ p ≤ n.

If K = R, this family is unique up to a change of sign of each vector yp. If
K = C, this family is unique up to a multiplicative factor of unit modulus for
each vector yp.

Proof. We proceed by induction on n. For n = 1, we define
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�x1�
y1

�
x2

�y2

�
ỹ2

unit circle

Fig. 2.1. Gram–Schmidt orthonormalization: x1 and x2 are linearly independent
vectors, y1 and y2 are orthonormal.

y1 =
x1

‖x1‖
,

which is the unique vector (up to a change of sign in the real case, and to
multiplication by a complex number of unit modulus in the complex case) to
satisfy the desired property. Assume that the result holds up to order n − 1.
Let (y1, . . . , yn−1) be the unique orthonormal family such that

span {y1, . . . , yp} = span {x1, . . . , xp} ,

for each index p in the range 1 ≤ p ≤ n − 1. If yn together with the previous
(y1, . . . , yn−1) satisfy the recurrence property, then, since span {y1, . . . , yn} =
span {x1, . . . , xn}, we necessarily have

yn =
n∑

i=1

αixi,

where the αi coefficients belong to K. By assumption at order n − 1, we
have span {y1, . . . , yn−1} = span {x1, . . . , xn−1}, so the linear combination of
(x1, . . . , xn−1) can be replaced by that of (y1, . . . , yn−1) to yield

yn = αnxn +
n−1∑
i=1

βiyi

with some other coefficients βi. Since yn must be orthogonal to all previous
yi for 1 ≤ i ≤ n − 1, we deduce

〈yn, yi〉 = 0 = αn〈xn, yi〉 + βi,

which implies
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yn = αnỹn with ỹn = xn −
n−1∑
i=1

〈xn, yi〉yi.

Since the family (x1, . . . , xn) is linearly independent and span {y1, . . . , yn−1} =
span {x1, . . . , xn−1}, ỹn cannot vanish; see Figure 2.1. Now, yn must have a
unit norm, it yields

|αn| =
1

‖ỹn‖
.

In the real case, we deduce αn = ±1/‖ỹn‖. In the complex case, αn is equal to
1/‖ỹn‖ up to a multiplicative factor that is a complex number of modulus 1.
Such a choice of yn clearly satisfies the recurrence property which concludes
the proof. �

Remark 2.1.1. If the family (x1, . . . , xn) is not linearly independent, and
rather generates a linear subspace of dimension r < n, then the Gram–Schmidt
orthonormalization process yields an orthonormal family (y1, . . . , yr) of only
r vectors.

2.2 Matrices

Definitions

Definition 2.2.1. A matrix A is a rectangular array (ai,j)1≤i≤n, 1≤j≤p, where
ai,j ∈ K is the entry in row i and column j, i.e.,

A =

⎛
⎜⎝

a1,1 . . . a1,p

...
...

an,1 . . . an,p

⎞
⎟⎠ .

The set of all matrices of size n × p (n rows and p columns) is denoted by
Mn,p(K).

Definition 2.2.2. Let A and B be two matrices in Mn,p(K) defined by

A = (ai,j)1≤i≤n, 1≤j≤p and B = (bi,j)1≤i≤n, 1≤j≤p.

The sum A + B is the matrix in Mn,p(K) defined by

A + B = (ai,j + bi,j)1≤i≤n, 1≤j≤p.

Let λ ∈ K. The scalar multiplication of A by λ is defined by

λA = (λai,j)1≤i≤n, 1≤j≤p.
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Definition 2.2.3. The product of two matrices A ∈ Mn,p(K) and B ∈
Mp,q(K), defined by

A = (ai,j)1≤i≤n, 1≤j≤p and B = (bi,j)1≤i≤p, 1≤j≤q,

is a matrix C = AB in Mn,q(K) defined by

C =

(
ci,j =

p∑
k=1

ai,kbk,j

)

1≤i≤n, 1≤j≤q

.

Remark 2.2.1. The number of columns of A and that of rows of B must be
equal in order to define their product AB. Otherwise, they need not have the
same dimensions and belong to the same matrix space. It is an easy exercise to
check that the matrix multiplication is associative, i.e., (MN)P = M(NP ).
However, even for n = p = q, the multiplication is usually not commutative,
i.e., AB 	= BA.

Definition 2.2.4. For any matrix A = (ai,j)1≤i≤n, 1≤j≤p ∈ Mn,p(K), its
transpose matrix At ∈ Mp,n(K) is defined by

At = (aj,i)1≤j≤p, 1≤i≤n.

In other words, the rows of At are the columns of A, and the columns of At

are the rows of A:

A =

⎛
⎜⎝

a1,1 . . . a1,p

...
...

an,1 . . . an,p

⎞
⎟⎠ , At =

⎛
⎜⎝

a1,1 . . . an,1

...
...

a1,p . . . an,p

⎞
⎟⎠ .

If At = A (which can happen only if A is a square matrix, i.e., if n = p), then
A is said to be symmetric.

The notation At for the transpose matrix of A is not universal. Some authors
prefer to denote it by AT , or put the exponent t before the matrix, as in tA.

When the number of rows is equal to the number of columns, the matrix is
said to be a square matrix, the set of which is denoted by Mn(K) ≡ Mn,n(K),
where n is the size of the matrix. The set Mn(K) is thus a noncommutative
algebra for the multiplication. Its neutral element is the identity matrix, de-
noted by I (or In if one wants to give a precise indication of the dimension)
and defined by its entries (δi,j)1≤i,j≤n, where δi,j is the Kronecker symbol
taking the values δi,i = 1 and δi,j = 0 if i 	= j.

Definition 2.2.5. A matrix A ∈ Mn(K) is said to be invertible (or nonsin-
gular) if there exists a matrix B ∈ Mn(K) such that AB = BA = In. This
matrix B is denoted by A−1 and is called the inverse matrix of A.
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A noninvertible matrix is said to be singular. The kernel, or null space, of a
matrix A ∈ Mn,p(K) is the set of vectors x ∈ K

p such that Ax = 0; it is
denoted by KerA. The image, or range, of A is the set of vectors y ∈ K

n such
that y = Ax, with x ∈ K

p; it is denoted by ImA. The dimension of the linear
space Im A is called the rank of A; it is denoted by rkA.

Lemma 2.2.1. For any A ∈ Mn(K) the following statements are equivalent:

1. A is invertible;
2. Ker A = {0};
3. Im A = K

n;
4. there exists B ∈ Mn(K) such that AB = In;
5. there exists B ∈ Mn(K) such that BA = In.

In the last two cases, the matrix B is precisely equal to the inverse A−1.

Lemma 2.2.2. Let A and B be two invertible matrices in Mn(K). Then

(AB)−1 = B−1A−1.

2.2.1 Trace and Determinant

In this section we consider only square matrices in Mn(K).

Definition 2.2.6. The trace of a matrix A = (ai,j)1≤i,j≤n is the sum of its
diagonal elements

trA =
n∑

i=1

ai,i.

Lemma 2.2.3. If A and B are two matrices in Mn(K), then

tr (AB) = tr (BA).

Definition 2.2.7. A permutation of order n is a one-to-one mapping from
the set {1, 2, . . ., n} into itself. We denote by Sn the set of all permutations
of order n. The signature of a permutation σ is the number ε(σ), equal to +1
or −1, defined by

ε(σ) = (−1)p(σ) with p(σ) =
∑

1≤i≤j≤n

Invσ(i, j),

where the number Invσ(i, j) indicates whether the order between i and j is
inverted or not by the permutation σ, and is defined, for i ≤ j, by

Invσ(i, j) =
{

0 if σ(i) ≤ σ(j),
1 if σ(i) > σ(j).
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Definition 2.2.8. The determinant of a square matrix A = (ai,j)1≤i,j≤n ∈
Mn(K) is

det A =
∑

σ∈Sn

ε(σ)
n∏

i=1

ai,σ(i).

Lemma 2.2.4. Let A and B be two square matrices in Mn(K). Then

1. det (AB) = ( det A)( det B) = det (BA);
2. det (At) = det (A);
3. A is invertible if and only if det A 	= 0.

2.2.2 Special Matrices

Definition 2.2.9. A matrix A = (ai,j)1≤i,j≤n ∈ Mn(K) is said to be diagonal
if its entries satisfy ai,j = 0 for i 	= j. A diagonal matrix is often denoted by
A = diag (a1,1, . . . , an,n).

Definition 2.2.10. Let T = (ti,j)1≤i≤n, 1≤j≤p be a matrix in Mn,p(K). It is
said to be an upper triangular matrix if ti,j = 0 for all indices (i, j) such that
i > j. It is said to be a lower triangular matrix if ti,j = 0 for all indices (i, j)
such that i < j.

Lemma 2.2.5. Let T be a lower triangular matrix (respectively, upper tri-
angular) in Mn(K). Its inverse (when it exists) is also a lower triangular
matrix (respectively, upper triangular) with diagonal entries equal to the in-
verse of the diagonal entries of T . Let T ′ be another lower triangular matrix
(respectively, upper triangular) in Mn(K). The product TT ′ is also a lower
triangular matrix (respectively, upper triangular) with diagonal entries equal
to the product of the diagonal entries of T and T ′.

Definition 2.2.11. Let A = (ai,j)1≤i,j≤n be a complex square matrix in
Mn(C). The matrix A∗ ∈ Mn(C), defined by A∗ = A

t
= (aj,i)1≤i,j≤n, is

the adjoint matrix of A.

Definition 2.2.12. Let A be a complex square matrix in Mn(C).

1. A is self-adjoint or Hermitian if A = A∗;
2. A is unitary if A−1 = A∗;
3. A is normal if AA∗ = A∗A.

Definition 2.2.13. Let A be a real square matrix in Mn(R).

1. A is symmetric or self-adjoint if A = At (or equivalently A = A∗);
2. A is orthogonal or unitary if A−1 = At (or equivalently A−1 = A∗);
3. A is normal if AAt = AtA (or equivalently AA∗ = A∗A).
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2.2.3 Rows and Columns

A matrix A ∈ Mn,p(C) may be defined by its columns cj ∈ C
n as

A = [c1| . . . |cp]

or by its rows 
i ∈ M1,p(C) as

A =

⎡
⎢⎢⎢⎢⎢⎣


1

...


n

⎤
⎥⎥⎥⎥⎥⎦

.

Recalling that c∗j ∈ M1,n(C) (the adjoint of cj) is a row vector and 
∗i ∈ C
p

(the adjoint of 
i) is a column vector, we have

A∗ =

⎡
⎢⎢⎢⎢⎢⎣

c∗1

...

c∗p

⎤
⎥⎥⎥⎥⎥⎦

= [
∗1| . . . |
∗n] ,

and for any x ∈ C
p,

Ax =

⎡
⎢⎢⎢⎢⎢⎣


1x

...


nx

⎤
⎥⎥⎥⎥⎥⎦

=
p∑

i=1

xici.

For X ∈ Mm,n(C), we have

XA = X [c1| . . . |cp] = [Xc1| . . . |Xcp] .

Similarly for X ∈ Mp,m(C), we have

AX =

⎡
⎢⎢⎢⎢⎢⎣


1

...


n

⎤
⎥⎥⎥⎥⎥⎦

X =

⎡
⎢⎢⎢⎢⎢⎣


1X

...


nX

⎤
⎥⎥⎥⎥⎥⎦

.

By the same token, given u1, . . . , um, vectors in C
n, and v1, . . . , vm, vectors

in C
p, one can define a product matrix in Mn,p(C) by
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m∑
i=1

uiv
∗
i = [u1| . . . |um]

⎡
⎢⎢⎢⎢⎢⎣

v∗
1

...

v∗
m

⎤
⎥⎥⎥⎥⎥⎦

.

2.2.4 Row and Column Permutation

Let A be a matrix in Mn,p(K). We interpret some usual operations on A as
multiplying A by some other matrices.

� Multiplying each row i of A by a scalar αi ∈ K is done by left-multiplying
the matrix A by a diagonal matrix, diag (α1, . . . , αn)A.

� Multiplying each column j of A by βj ∈ K is done by right-multiplying
the matrix A by a diagonal matrix, Adiag (β1, . . . , βp).

� To exchange rows l1 and l2 	= l1, we multiply A on the left by an ele-
mentary permutation matrix P (l1, l2), which is a square matrix of size n
defined by its entries:

pi,i =
{

0 if i ∈ {l1, l2},
1 otherwise;

and for i 	= j,

pi,j =
{

1 if (i, j) ∈ {(l1, l2), (l2, l1)},
0 otherwise.

The matrix P (l1, l2) is nothing but the identity matrix whose rows l1 and
l2 are permuted. The resulting matrix P (l1, l2)A has exchanged rows l1
and l2 of the initial matrix A.

� To exchange columns c1 and c2, we multiply A on the right by an elemen-
tary permutation matrix P (c1, c2) of size p.

� A general permutation matrix is any matrix obtained from the identity
matrix by permuting its rows (not necessarily only two). Such a permu-
tation matrix is actually a product of elementary permutation matrices,
and its inverse is just its transpose. Therefore its determinant is equal to
±1.

2.2.5 Block Matrices

So far, we have discussed matrices with entries belonging to a field K equal to
R or C. Actually, one can define matrices with entries in a noncommutative
ring and still keep the same matrix addition and multiplication as introduced
in Definitions 2.2.2 and 2.2.3. This is of particular interest for the so-called
“block matrices” that we now describe.
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Let A be a square matrix in Mn(C). Let (nI)1≤I≤p be a family of positive
integers such that

∑p
I=1 nI = n. Let (e1, . . . , en) be the canonical basis of

C
n. We call V1 the subspace of C

n spanned by the first n1 basis vectors, V2

the subspace of C
n spanned by the next n2 basis vectors, and so on up to Vp

spanned by the last np basis vectors. The dimension of each VI is nI . Let AI,J

be the submatrix (or block) of size nI × nJ defined as the restriction of A on
the domain space VJ into the target space VI . We write

A =

⎛
⎜⎝

A1,1 . . . A1,p

...
. . .

...
Ap,1 . . . Ap,p

⎞
⎟⎠ .

In other words, A has been partitioned into p horizontal and vertical strips
of unequal sizes (nI)1≤I≤p. The diagonal blocks AI,I are square matrices, but
usually not the off-diagonal blocks AI,J , I 	= J .

Lemma 2.2.6. Let A = (AI,J )1≤I,J≤p and B = (BI,J )1≤I,J≤p be two block
matrices with entries AI,J and BI,J belonging to MnI ,nJ

(K). Let C = AB be
the usual matrix product of A and B. Then C can also be written as a block
matrix with entries C = (CI,J )1≤I,J≤p given by the following block multipli-
cation rule:

CI,J =
p∑

K=1

AI,KBK,J , for all 1 ≤ I, J ≤ p,

where CI,J has the same size as AI,J and BI,J .

It is essential that A and B share the same block partitioning, i.e., AI,J and
BI,J have equal sizes, in order to correctly define the product AI,K times
BK,J in the above lemma. One must also keep in mind that the matrix multi-
plication is not commutative, so the order of multiplication in the above block
multiplication rule is important. Although block matrices are very handy (and
we shall use them frequently in the sequel), not all matrix operations can be
generalized to block matrices. In particular, there is no block determinant
rule.

2.3 Spectral Theory of Matrices

In the sequel and unless mentioned otherwise, we assume that all matrices are
square and complex (which encompasses the real case as well).

Definition 2.3.1. Let A ∈ Mn(C). The characteristic polynomial of A is the
polynomial PA(λ) defined on C by

PA(λ) = det (A − λI).
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It is a polynomial of degree equal to n. It has thus n roots in C (for a proof,
see for instance [10]), which we call the eigenvalues of A. The algebraic mul-
tiplicity of an eigenvalue is its multiplicity as a root of PA(λ). An eigenvalue
whose algebraic multiplicity is equal to one is said to be a simple eigenvalue,
otherwise, it is called a multiple eigenvalue.

We call a nonzero vector x ∈ C
n such that Ax = λx the eigenvector of A

associated with the eigenvalue λ.

We shall sometimes denote by λ(A) an eigenvalue of A. The set of eigenvalues
of a matrix A is called spectrum of A and is denoted by σ(A).

Definition 2.3.2. We call the maximum of the moduli of the eigenvalues of
a matrix A ∈ Mn(C) the spectral radius of A, and we denote it by �(A).

Let us make some remarks.

1. If λ is an eigenvalue of A, then there always exists a corresponding eigen-
vector x, namely a vector x 	= 0 in C

n such that Ax = λx (x is not
unique). Indeed, PA(λ) = 0 implies that the matrix (A − λI) is singular.
In particular, its kernel is not reduced to the zero vector. Conversely, if
there exists x 	= 0 such that Ax = λx, then λ is an eigenvalue of A.

2. If A is real, there may exist complex eigenvalues of A.
3. The characteristic polynomial (and accordingly the eigenvalues) is invari-

ant under basis change, since

det
(
Q−1AQ − λI

)
= det (A − λI),

for any invertible matrix Q.
4. There exist two distinct ways of enumerating the eigenvalues of a matrix

of size n. Either they are denoted by (λ1, . . . , λn) (i.e., we list the roots
of the characteristic polynomial repeating a root as many times as its
multiplicity) and we say “eigenvalues repeated with multiplicity,” or we
denote them by (λ1, . . . , λp) with 1 ≤ p ≤ n keeping only the distinct
roots of the characteristic polynomial (i.e., an eigenvalue appears only
once in this list no matter its algebraic multiplicity) and we say “distinct
eigenvalues.”

Remark 2.3.1. The eigenvalues of a Hermitian matrix are real. Actually, if λ is
an eigenvalue of a Hermitian matrix A, and u 	= 0 a corresponding eigenvector,
we have

λ‖u‖2 = 〈λu, u〉 = 〈Au, u〉 = 〈u,A∗u〉 = 〈u,Au〉 = 〈u, λu〉 = λ̄‖u‖2,

which shows that λ = λ̄, i.e., λ ∈ R.

Definition 2.3.3. Let λ be an eigenvalue of A. We call the vector subspace
defined by

Eλ = Ker (A − λI)
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the eigensubspace associated with the eigenvalue λ. We call the vector subspace
defined by

Fλ =
⋃
k≥1

Ker (A − λI)k

the generalized eigenspace associated with λ.

Remark 2.3.2. In the definition of the generalized eigenspace Fλ, the union of
the kernels of (A − λI)k is finite, i.e., there exists an integer k0 such that

Fλ =
⋃

1≤k≤k0

Ker (A − λI)k.

Indeed, the sequence of vector subspaces Ker (A−λI)k is an increasing nested
sequence in a space of finite dimension. For k larger than an integer k0 the
sequence of dimensions is stationary; otherwise, this would contradict the
finiteness of the dimension of the space C

n. Consequently, for k ≥ k0, all
spaces Ker (A − λI)k are equal to Ker (A − λI)k0 .

Definition 2.3.4. Let P (X) =
∑d

i=0 aiX
i be a polynomial on C and A a

matrix of Mn(C). The corresponding matrix polynomial P (A) is defined as
P (A) =

∑d
i=0 aiA

i.

Lemma 2.3.1. If Ax = λx with x 	= 0, then P (A)x = P (λ)x for all poly-
nomials P (X). In other words, if λ is an eigenvalue of A, then P (λ) is an
eigenvalue of P (A).

Theorem 2.3.1 (Cayley–Hamilton). Let PA(λ) = det (A − λI) be the
characteristic polynomial of A. We have

PA(A) = 0.

Remark 2.3.3. The Cayley–Hamilton theorem shows that the smallest-degree
possible for a polynomial that vanishes at A is less than or equal to n. This
smallest degree may be strictly less than n. We call the smallest-degree poly-
nomial that vanishes at A and whose highest-degree term has coefficient 1 the
minimal polynomial of A

Theorem 2.3.2 (Spectral decomposition). Consider amatrixA ∈ Mn(C)
that has p distinct eigenvalues (λ1, . . . , λp), with 1 ≤ p ≤ n, of algebraic
multiplicity n1, . . . , np with 1 ≤ ni ≤ n and

∑p
i=1 ni = n. Then its generalized

eigenspaces satisfy

C
n = ⊕p

i=1Fλi
, Fλi

= Ker (A − λiI)ni , and dim Fλi
= ni.

We recall that ⊕ denotes the direct sum of subspaces. More precisely,
C

n = ⊕p
i=1Fλi

means that any vector x ∈ C
n can be uniquely decomposed as

x =
∑p

i=1 xi with xi ∈ Fλi
.
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Remark 2.3.4. Theorem 2.3.2 can be interpreted as follows. Let Bi be a basis
of the generalized eigenspace Fλi

. The union of all (Bi)1≤i≤p form a basis B
of C

n. Let P be the change of basis matrix from the canonical basis to B.
Since each Fλi

is stable by A, we obtain a new matrix that is diagonal by
blocks in the basis B, that is,

P−1AP =

⎛
⎜⎝

A1 0
. . .

0 Ap

⎞
⎟⎠ ,

where each Ai is a square matrix of size ni. We shall see in the next section
that by a suitable choice of the basis Bi, each block Ai can be written as an
upper triangular matrix with the eigenvalue λi on its diagonal. The Jordan
form (cf. [9], [10]) allows us to simplify further the structure of this triangular
matrix.

2.4 Matrix Triangularization

There exist classes of particularly simple matrices. For instance, diagonal ma-
trices are matrices A = (ai,j)1≤i,j≤n such that ai,j = 0 if i 	= j, and upper
(respectively, lower) triangular matrices are matrices such that ai,j = 0 if
i > j (respectively, if i < j). Reducing a matrix is the process of transforming
it by a change of basis into one of these particular forms.

Definition 2.4.1. A matrix A ∈ Mn(C) can be reduced to triangular form
(respectively, to diagonal form) if there exists a nonsingular matrix P and a
triangular matrix T (respectively, diagonal matrix D) such that

A = PTP−1 (respectively, A = PDP−1).

Remark 2.4.1. The matrices A and T (or D) are similar: they correspond to
the same linear transformation expressed in two different bases, and P is the
matrix of this change of basis. More precisely, if this linear transformation
has A for its matrix in the basis B = (ei)1≤i≤n, and T (or D) in the basis
B′ = (fi)1≤i≤n, then P is the matrix for passing from B to B′, and we have
P = (pi,j)1≤i,j≤n with pi,j = f∗

j ei. Furthermore, when A can be diagonalized,
the column vectors of P are eigenvectors of A.

If A can be reduced to diagonal or triangular form, then the eigenvalues
of A, repeated with their algebraic multiplicities (λ1, . . . , λn), appear on the
diagonal of D, or of T . In other words, we have

D =

⎛
⎜⎝

λ1 0
. . .

0 λn

⎞
⎟⎠ or T =

⎛
⎜⎝

λ1 . . . x
. . .

...
0 λn

⎞
⎟⎠ .
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In all cases, the characteristic polynomial of A is

P (λ) = det (A − λI) =
n∏

i=1

(λi − λ).

Proposition 2.4.1. Any matrix A ∈ Mn(C) can be reduced to triangular
form.

Proof. We proceed by induction on the dimension n. The proposition is
obviously true for n = 1. We assume that it holds up to order n − 1. For
A ∈ Mn(C), its characteristic polynomial det (A − λI) has at least one root
λ1 ∈ C with a corresponding eigenvector e1 	= 0 such that Ae1 = λ1e1. We
complement e1 with other vectors (e2, . . . , en) to obtain a basis of C

n. For
2 ≤ j ≤ n, there exist coefficients αj and bi,j such that

Aej = αje1 +
n∑

i=2

bi,jei. (2.1)

We denote by B the matrix of size n − 1 defined by its entries (bi,j)2≤i,j≤n.
Introducing the change of basis matrix P1 for passing from the canonical basis
to (e1, . . . , en), identity (2.1) is equivalent to

P−1
1 AP1 =

⎛
⎜⎜⎜⎝

λ1 α2 . . . αn

0
... B
0

⎞
⎟⎟⎟⎠ .

Applying the induction assumption, there exists a nonsingular matrix P2 of
size n− 1 such that P−1

2 BP2 = T2, where T2 is an upper triangular matrix of
order n − 1. From P2 we create a matrix P3 of size n defined by

P3 =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0
... P2

0

⎞
⎟⎟⎟⎠ .

Then, setting P = P1P3 yields

P−1AP =

⎛
⎜⎜⎜⎝

λ1 β2 . . . βn

0
... P−1

2 BP2

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

λ1 β2 . . . βn

0
... T2

0

⎞
⎟⎟⎟⎠ = T,

where T is an upper triangular matrix and (β2, . . . , βn) = (α2, . . . , αn)P2. �
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Remark 2.4.2. If A is real, the result still applies, but T and P may be com-
plex! For instance, the matrix

A =
(

0 −1
1 0

)

has complex eigenvalues and eigenvectors.

We already know that all matrices can be reduced to triangular form.
The purpose of the next theorem is to prove furthermore that this may be
performed through a change of orthonormal basis.

Theorem 2.4.1 (Schur Factorization). For any matrix A ∈ Mn(C) there
exists a unitary matrix U (i.e., U−1 = U∗) such that U−1AU is triangular.

Proof. Let (ei)n
i=1 be the canonical basis and let (fi)n

i=1 be the basis in which
A is triangular. We call P the corresponding change of basis matrix, that is,
the matrix whose columns are the vectors (fi)n

i=1. Proposition 2.4.1 tells us
that A = PTP−1. We apply the Gram–Schmidt orthonormalization process
(see Theorem 2.1.1) to the basis (fi)n

i=1, which yields an orthonormal basis
(gi)n

i=1 such that for any 1 ≤ i ≤ n,

span {g1, . . . , gi} = span {f1, . . . , fi} .

Since AP = PT with T upper triangular, keeping only the first i columns of
this equality gives

span {Af1, . . . , Afi} ⊂ span {f1, . . . , fi} , for all 1 ≤ i ≤ n. (2.2)

Thus, we deduce that

span {Ag1, . . . , Agi} ⊂ span {g1, . . . , gi} . (2.3)

Conversely, (2.3) implies that there exists an upper triangular matrix R such
that AU = UR, where U is the unitary matrix whose columns are the ortho-
normal vectors (gi)n

i=1. �

2.5 Matrix Diagonalization

Proposition 2.5.1. Let A ∈ Mn(C) with distinct eigenvalues (λ1, . . . , λp),
1 ≤ p ≤ n. The matrix A is diagonalizable if and only if

C
n =

p
⊕

i=1
Eλi

,

or, equivalently, if and only if Fλi
= Eλi

for any 1 ≤ i ≤ p.
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Proof. If C
n = ⊕p

i=1Eλi
, then A is diagonal in a basis obtained as the union

of bases for the subspaces Eλi
. Conversely, if there exists a nonsingular matrix

P such that P−1AP is diagonal, it is clear that C
n = ⊕p

i=1Eλi
.

What is more, we always have Eλi
⊂ Fλi

and C
n = ⊕p

i=1Fλi
by virtue of

Theorem 2.3.2. Hence, the identities Fλi
= Eλi

for all 1 ≤ i ≤ p are equivalent
to requiring that A be diagonalizable. �

In general, not every matrix is diagonalizable. Moreover, there is no simple
characterization of the set of diagonalizable matrices. However, if we restrict
ourselves to matrices that are diagonalizable in an orthonormal basis of eigen-
vectors, then such matrices have an elementary characterization. Namely, the
set of diagonalizable matrices in an orthonormal basis coincides with the set
of normal matrices, i.e., satisfying AA∗ = A∗A.

Theorem 2.5.1 (Diagonalization). A matrix A ∈ Mn(C) is normal (i.e.,
AA∗ = A∗A) if and only if there exists a unitary matrix U such that

A = U diag (λ1, . . . , λn)U−1,

where (λ1, . . . , λn) are the eigenvalues of A.

Remark 2.5.1. There are diagonalizable matrices in a nonorthonormal basis
that are not normal. For instance, the matrix

A =
(
−1 2
0 1

)

is not normal, because

AAt =
(

5 2
2 1

)
	= AtA =

(
1 −2
−2 5

)
.

Nevertheless A is diagonalizable in a basis of eigenvectors, but these vectors
are not orthogonal:

A = PDP−1 ≡
(

1 1/
√

2
0 1/

√
2

)(
−1 0
0 1

)(
1 −1
0

√
2

)
.

Proof of Theorem 2.5.1. Clearly, a matrix A = UDU∗, with U unitary and
D diagonal, is normal. Conversely, we already know by Theorem 2.4.1 that
any matrix A can be reduced to triangular form in an orthonormal basis. In
other words, there exists a unitary matrix U and an upper triangular matrix
T such that A = UTU∗. Now, AA∗ = A∗A implies that TT ∗ = T ∗T , i.e., the
matrix T is normal. Let us show that a matrix that is both triangular and
normal is diagonal. By definition we have T = (ti,j)1≤i,j≤n with ti,j = 0 if
i > j. Identifying the entry in the first row and first column of the product
T ∗T = TT ∗, we deduce that
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|t1,1|2 =
n∑

k=1

|t1,k|2,

which yields t1,k = 0 for all 2 ≤ k ≤ n, i.e., the first row of T has only zero
entries, except for the diagonal entry. By induction, we assume that the first
(i − 1) rows of T have only zeros, except for the diagonal entries. Identifying
the entry in the ith row and ith column of the product T ∗T = TT ∗ yields

|ti,i|2 =
n∑

k=i

|ti,k|2,

so that ti,k = 0 for all i + 1 ≤ k ≤ n, which means that the ith row of T also
has only zeros off the diagonal. Hence T is diagonal. �

Remark 2.5.2. Take a matrix A ∈ Mn(C) that is diagonalizable in an ortho-
normal basis, i.e., A = U diag (λ1, . . . , λn)U∗ with U unitary. Another way
of writing A is to introduce the columns (ui)1≤i≤n of U (which are also the
eigenvectors of A), and to decompose A =

∑n
i=1 λiuiu

∗
i .

Theorem 2.5.2. A matrix A ∈ Mn(C) is self-adjoint (or Hermitian, i.e.,
A = A∗) if and only if it is diagonalizable in an orthonormal basis with real
eigenvalues, in other words, if there exists a unitary matrix U such that

A = U diag (λ1, . . . , λn)U−1 with λi ∈ R.

Proof. If A = U diag (λ1, . . . , λn)U−1, then

A∗ = (U−1)∗ diag (λ1, . . . , λn)U∗,

and since U is unitary and the eigenvalues are real, we have A = A∗. Recipro-
cally, we assume that A = A∗. In particular, A is normal, hence diagonalizable
in an orthonormal basis of eigenvectors. Then, according to Remark 2.3.1, its
eigenvalues are real. �

We can improve the previous theorem in the case of a real symmetric
matrix A (which is a special case of a self-adjoint matrix) by asserting that
the unitary matrix U is also real.

Corollary 2.5.1. A matrix A ∈ Mn(R) is real symmetric if and only if there
exist a real unitary matrix Q (also called orthogonal, Q−1 = Qt) and real
eigenvalues λ1, . . . , λn ∈ R such that

A = Qdiag (λ1, . . . , λn)Q−1.

A self-adjoint matrix A ∈ Mn(C) (i.e., A∗ = A) is said to be positive
definite if all of its eigenvalues are strictly positive. It is said to be nonnegative
definite (or positive semidefinite) if all of its eigenvalues are nonnegative.
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Theorem 2.5.3. Let A be a self-adjoint matrix and B a positive definite self-
adjoint matrix in Mn(C). There exists a basis of C

n that is both orthonormal
for the Hermitian product ytBx and orthogonal for the Hermitian form xtAx.
In other words, there exists a nonsingular matrix M such that

B = M∗M and A = M∗ diag (µ1, . . . , µn)M

with µi ∈ R.

2.6 Min–Max Principle

We establish a variational principle, known as the min–max principle, or the
Courant–Fisher principle, which gives the eigenvalues of a Hermitian matrix
as the result of a simple optimization process.

Definition 2.6.1. Let A be a self-adjoint or Hermitian matrix in Mn(C),
i.e., A∗ = A. The function from C

n \ {0} into R defined by

RA(x) =
〈Ax, x〉
〈x, x〉

is called the Rayleigh quotient of A.

By virtue of Remark 2.3.1, the Rayleigh quotient of a Hermitian matrix
is always real. Indeed, for any vector x ∈ C

n, we have 〈Ax, x〉 = 〈x,A∗x〉 =
〈x,Ax〉 = 〈Ax, x〉, which thus belongs to R.

Theorem 2.6.1. Let A be a Hermitian matrix of Mn(C). Its smallest eigen-
value, denoted by λ1, satisfies

λ1 = min
x∈Cn,x �=0

RA(x) = min
x∈Cn, ‖x‖=1

〈Ax, x〉,

and both minima are attained for at least one eigenvector e1 	= 0 satisfying
Ae1 = λ1e1.

Remark 2.6.1. The same kind of result is true for the largest eigenvalue λn of
A, namely,

λn = max
x∈Cn,x �=0

RA(x) = max
x∈Cn, ‖x‖=1

〈Ax, x〉,

and both maxima are attained for at least one eigenvector en 	= 0 satisfying
Aen = λnen.

Proof of Theorem 2.6.1. Since A is Hermitian, it is diagonalizable in an
orthonormal basis of eigenvectors (e1, . . . , en). We call λ1 ≤ · · · ≤ λn its real
eigenvalues (see Remark 2.3.1) sorted in increasing order. Let (x1, . . . , xn) be
the coordinates of the vector x in this basis. We have



32 2 Definition and Properties of Matrices

〈Ax, x〉 =
n∑

i=1

λi|xi|2 ≥ λ1

n∑
i=1

|xi|2 = λ1〈x, x〉.

As a consequence, both minima are larger than λ1. Moreover, we have Ae1 =
λ1e1 and ‖e1‖ = 1, by definition. Therefore, we get

〈Ae1, e1〉 = λ1〈e1, e1〉,

so both minima are attained at this vector e1. �
Theorem 2.6.1 and Remark 2.6.1 can be generalized to all other interme-

diate eigenvalues as follows.

Proposition 2.6.1. Let A be a Hermitian matrix with eigenvalues λ1 ≤ · · · ≤
λn. For each index i ∈ {1, . . . , n}, we have

λi = min
x⊥span{e1,...,ei−1}

RA(x) = max
x⊥span{ei+1,...,en}

RA(x), (2.4)

where (e1, . . . , en) are the eigenvectors of A associated with (λ1, . . . , λn).

Remark 2.6.2. In formula (2.4), it should be understood that for i = 1, the
minimization is carried without any orthogonality constraint on the vector x,
so we recover the statement of Theorem 2.6.1. Similarly, it should be under-
stood that for i = n, the maximization is carried without any orthogonality
constraint on the vector x.

Proof of Proposition 2.6.1. With the previous notation, we have x =∑n
i=1 xiei. Consequently, x⊥span {e1, . . . , ei−1} implies that x =

∑n
j=i xjej ,

hence
〈Ax, x〉
〈x, x〉 ≥ λi and

〈Aei, ei〉
〈ei, ei〉

= λi,

which completes the proof for the minimization (same argument for the max-
imum). �

Now we can prove the main result of this section, namely the “min–max”
principle, also called Courant–Fisher theorem.

Theorem 2.6.2 (Courant–Fisher or min–max). Let A be a Hermitian
matrix with eigenvalues λ1 ≤ · · · ≤ λn. For each index i ∈ {1, . . . , n}, we have

λi = min
(a1,...,an−i)∈Cn

max
x⊥span{a1,...,an−i}

RA(x) (2.5)

= max
(a1,...,ai−1)∈Cn

min
x⊥span{a1,...,ai−1}

RA(x). (2.6)

Remark 2.6.3. In the “min–max” formula of (2.5), we first start by carrying
out, for some fixed family of vectors (a1, . . . , an−i) of C

n, the maximization of
the Rayleigh quotient on the subspace orthogonal to span {a1, . . . , an−i}. The
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next stage consists in minimizing the latter result as the family (a1, . . . , an−i)
varies in C

n. The “max–min” formula is interpreted in a similar fashion. As
already mentioned in Remark 2.6.2, in the “max–min” formula, for i = 1,
minimization in x is done all over C

n \ {0}, and there is no maximization on
the (empty) family (a1, . . . , ai−1). Hence we retrieve Theorem 2.6.1. The same
remark applies to the “min–max” formula for i = n too.

Proof of the Courant–Fisher theorem. We prove only the max–min formula
(the min–max formula is proved in the same way). First of all, for the partic-
ular choice of the family (e1, . . . , ei−1), we have

max
(a1,...,ai−1)∈Cn

min
x⊥span{a1,...,ai−1}

RA(x) ≥ min
x⊥span{e1,...,ei−1}

RA(x) = λi.

Furthermore, for all choices of (a1, . . . , ai−1), we have

dim span {a1, . . . , ai−1}⊥ ≥ n − i + 1.

On the other hand, dim span {e1, . . . , ei} = i, so the subspace

span {a1, . . . , ai−1}⊥ ∩ span {e1, . . . , ei}

is nonempty since its dimension is necessarily larger than 1. Therefore, we can
restrict the minimization space to obtain an upper bound:

min
x⊥span{a1,...,ai−1}

RA(x) ≤ min
x∈span{a1,...,ai−1}⊥∩span{e1,...,ei}

RA(x)

≤ max
x∈span{a1,...,ai−1}⊥∩span{e1,...,ei}

RA(x)

≤ max
x∈span{e1,...,ei}

RA(x) = λi,

where the last inequality is a consequence of the fact that enlarging the max-
imization space does not decrease the value of the maximum. Taking the
maximum with respect to all families (a1, . . . , ai−1) in the above equation, we
conclude that

max
(a1,...,ai−1)∈Cn

min
x⊥span{a1,...,ai−1}

RA(x) ≤ λi,

which ends the proof. �

2.7 Singular Values of a Matrix

Throughout this section, we consider matrices in Mm,n(C) that are not nec-
essarily square. To define the singular values of a matrix, we first need a
technical lemma.
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Lemma 2.7.1. For any A ∈ Mm,n(C), the matrix A∗A is Hermitian and has
real, nonnegative eigenvalues.

Proof. Obviously A∗A is a square Hermitian matrix of size n. We deduce
from Remark 2.3.1 that its eigenvalues are real. It remains to show that they
are nonnegative. Let λ be an eigenvalue of A∗A, and let x 	= 0 be a corre-
sponding eigenvector such that A∗Ax = λx. Taking the Hermitian product of
this equality with x, we obtain

λ =
〈A∗Ax, x〉
〈x, x〉 =

〈Ax,Ax〉
〈x, x〉 =

‖Ax‖2

‖x‖2
∈ R

+,

and the result is proved. �

Definition 2.7.1. The singular values of a matrix A ∈ Mm,n(C) are the
nonnegative square roots of the n eigenvalues of A∗A.

This definition makes sense thanks to Lemma 2.7.1, which proves that the
eigenvalues of A∗A are real nonnegative, so their square roots are real. The
next lemma shows that the singular values of A could equally be defined as
the nonnegative square roots of the m eigenvalues of AA∗, since both matrices
A∗A and AA∗ share the same nonzero eigenvalues.

Lemma 2.7.2. Let A ∈ Mm,n(C) and B ∈ Mn,m(C). The nonzero eigenval-
ues of the matrices AB and BA are the same.

Proof. Take λ an eigenvalue of AB, and u ∈ C
m a corresponding nonzero

eigenvector such that ABu = λu. If u ∈ Ker (B), we deduce that λu = 0, and
since u 	= 0, λ = 0. Consequently, if λ 	= 0, u does not belong to Ker (B).
Multiplying the equality by B, we obtain BA(Bu) = λ(Bu), where Bu 	= 0,
which proves that λ is also an eigenvalue of BA. �

Remark 2.7.1. A square matrix is nonsingular if and only if its singular values
are positive. Clearly, if A is nonsingular, so is A∗A, and thus its eigenvalues
(the squared singular values of A) are nonzero. Reciprocally, if A is singular,
there exists a nonzero vector u such that Au = 0. For this same vector, we
have A∗Au = 0, and therefore A∗A is singular too.

Owing to Theorem 2.5.1, we can characterize the singular values of a nor-
mal matrix.

Proposition 2.7.1. The singular values of a normal matrix are the moduli
of its eigenvalues.

Proof. Indeed, if a matrix A is normal, there exists a unitary matrix U such
that A = U∗DU with D = diag (λi), and so A∗A = (U∗DU)∗(U∗DU) =
U∗(D∗D)U . We deduce that the matrices A∗A and D∗D = diag (|λi|2) are
similar, and have accordingly the same eigenvalues. �
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Remark 2.7.2. As a consequence of Proposition 2.7.1, the spectral radius of a
normal matrix is equal to its largest singular value.

We finish this chapter by introducing the “singular value decomposition”
of a matrix, in short the SVD factorization.

Theorem 2.7.1 (SVD factorization). Let A ∈ Mm,n(C) be a matrix hav-
ing r positive singular values. There exist two unitary matrices U ∈ Mn(C),
V ∈ Mm(C), and a diagonal matrix Σ̃ ∈ Mm,n(R) such that

A = V Σ̃U∗ and Σ̃ =
(

Σ 0
0 0

)
, (2.7)

where Σ = diag (µ1, . . . , µr), and µ1 ≥ µ2 ≥ · · · ≥ µr > 0 are the positive
singular values of A.

Before proving this result, let us make some remarks. Without loss of gener-
ality we shall assume that m ≥ n, since for m < n we can apply the SVD
factorization to the matrix A∗ and deduce the result for A by taking the
adjoint of (2.7).

Remark 2.7.3. For n = m, the SVD factorization of Theorem 2.7.1 has nothing
to do with the usual diagonalization of a matrix because, in general, V is
different from U so U∗ is different from V −1 (see Definition 2.4.1). In other
words, Theorem 2.7.1 involves two unitary changes of basis (associated with
U and V ) while Definition 2.4.1 relies on a single change of basis.

Remark 2.7.4. As a byproduct of Theorem 2.7.1, we obtain that the rank of
A is equal to r, i.e., the number of nonzero singular values of A. In particular,
it satisfies r ≤ min(m,n).

Remark 2.7.5. We have A∗A = UΣ̃tΣ̃U∗. The columns of matrix U are thus
the eigenvectors of the Hermitian matrix A∗A, and the diagonal entries of
Σ̃tΣ̃ ∈ Mn(R) are the eigenvalues of A∗A, i.e., the squares of the singular
values of A. On the other hand, AA∗ = V Σ̃Σ̃tV ∗, so the columns of V are
the eigenvectors of the other Hermitian matrix AA∗ and the diagonal entries
of Σ̃Σ̃t ∈ Mm(R) are the eigenvalues of AA∗ too.

Remark 2.7.6. Theorem 2.7.1 can be refined in the case of a real matrix A, by
showing that both matrices U and V are real too.

Proof of Theorem 2.7.1. We denote by ui the eigenvectors of A∗A corre-
sponding to the eigenvalues µ2

i (see Lemma 2.7.1), A∗Aui = µ2
i ui, and U is

the unitary matrix defined by U = [u1| . . . |un]. We have

A∗AU = [A∗Au1| . . . |A∗Aun] =
[
µ2

1u1| . . . |µ2
nun

]
= U diag (µ2

1, . . . , µ
2
n),

so U∗A∗AU = Σ̃tΣ̃, setting
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Σ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1 0 . . . 0

0 µ2

...
...

. . . 0
... µn
... 0
...

...
0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mm,n(R).

We arrange in decreasing order the singular values µ1 ≥ · · · ≥ µr > µr+1 =
· · · = µn = 0, of which only the first r are nonzero. We also notice that

(Aui, Auj) = (A∗Aui, uj) = µ2
i (ui, uj) = µ2

i δi,j ,

and in particular, Aui = 0 if r < i ≤ n. For 1 ≤ i ≤ r, µi 	= 0, so we can define
unit vectors vi ∈ C

m by vi = Aui/µi. These vectors, complemented in order to
obtain an orthonormal basis v1, . . . , vm of C

m, yield a matrix V = [v1| . . . |vm].
Let us check equality (2.7):

V Σ̃U∗ = [v1| . . . |vm]Σ̃U∗ = [µ1v1| . . . |µnvn]U∗ = [Au1| . . . |Aur|0| . . . |0]U∗.

Since Aui = 0 for r < i ≤ n, we deduce V Σ̃U∗ = AUU∗ = A. �

Geometrical interpretation. The SVD factorization shows that the image
of the unit sphere Sn−1 by a nonsingular matrix A is an ellipsoid. For instance,
Figure 2.2 displays the image of the unit circle of R

2 by the 2 × 2 matrix of
Exercise 2.25. We recall that Sn−1 = {(x1, . . . , xn)t ∈ R

n,
∑

i x2
i = 1}.

Let A be a nonsingular matrix of Mn(R) whose SVD factorization is A =
V ΣU t. We wish to characterize the set V ΣU tSn−1. Since the matrix U t

is orthogonal, it transforms any orthonormal basis into another orthonormal
basis. Hence U tSn−1 = Sn−1. Then we clearly have ΣSn−1 = {(x′

1, . . . , x
′
n)t ∈

R
n,

∑
i(x

′
i/µi)2 = 1}, which is precisely the definition of an ellipsoid En−1

of semiaxes µiei. Finally, since V is still a matrix of change of orthonormal
basis, ASn−1 = V En−1 is just a rotation of En−1. To sum up, ASn−1 is an
ellipsoid, of semiaxes µivi, where vi is the ith column of V .

Pseudoinverse. The SVD factorization allows us to introduce the so-called
pseudoinverse of a matrix, which generalizes the notion of inverse for rectan-
gular matrices or square matrices that are singular.

Definition 2.7.2. Let A = V Σ̃U∗ be the SVD factorization of some matrix
A ∈ Mm,n(C) having r nonzero singular values. We call the matrix A† ∈
Mn,m(C) defined by A† = UΣ̃†V ∗ with

Σ̃† =
(

Σ−1 0
0 0

)
∈ Mn,m(R)

the pseudoinverse matrix of A.
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−2 −1 0 1 2
−2

−1

0

1

2

Fig. 2.2. Image of the unit circle of the plane by the matrix defined in Exercise
2.25.

The reader will easily check the following relations:

A†A = UΣ̃†Σ̃U∗ = U

(
Ir 0
0 0

)
U∗ =

r∑
i=1

uiu
∗
i , (2.8)

AA† = V Σ̃Σ̃†V ∗ = V

(
Ir 0
0 0

)
V ∗ =

r∑
i=1

viv
∗
i , (2.9)

A =
r∑

i=1

µiviu
∗
i , and A† =

r∑
i=1

1
µi

uiv
∗
i . (2.10)

In addition, if A has maximal rank (r = n ≤ m), its pseudoinverse is given by

A† = (A∗A)−1A∗.

In particular, if A is a nonsingular square matrix (r = n = m), we obtain
A†A = AA† = In. Thus A† = A−1. In this sense, the pseudoinverse is indeed
the generalization of the inverse.

Remark 2.7.7. It can be shown that the pseudoinverse matrix is the only ma-
trix X satisfying the following conditions (known as the Moore–Penrose con-
ditions):

AXA = A, XAX = X, XA = (XA)∗, AX = (AX)∗.
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2.8 Exercises

2.1 (∗). We fix the dimension n ≥ 2.

1. What is the vector u in terms of the matrix a defined by the instructions
a=eye(n,n);u=a(:,i) for an integer i between 1 and n?

2. We recall that the Matlab instruction rand(m,n) returns a matrix of size
m × n whose entries are random real numbers in the range [0, 1]. For
n fixed, we define two vectors u=rand(n,1) and v=rand(n,1). Compute
using Matlab the vector w = v − 〈v,u〉

‖u‖2
2
u and the scalar product 〈w, u〉.

3. Let A be a real square matrix (initialized by rand), and define two matrices
B and C by B=0.5*(A+A’) and C=0.5*(A-A’)
(a) Compute the scalar product 〈Cx, x〉 for various vectors x. Justify the

observed result.
(b) Compute the scalar product 〈Bx, x〉 for various vectors x. Check that

it is equal to 〈Ax, x〉 and explain why.

2.2 (∗). The goal of this exercise is to define Matlab functions returning ma-
trices having special properties that we shall exploit in the upcoming exercises.
All variables will be initialized by rand. Note that there are several possible
answers, as it is often the case for computer programs.

1. Write a function (called SymmetricMat(n)) returning a real symmetric
matrix of size n × n.

2. Write a function (called NonsingularMat(n)) returning a real nonsingular
matrix of size n × n.

3. Write a function (called LowNonsingularMat(n)) returning a real nonsin-
gular lower triangular matrix of size n × n.

4. Write a function (called UpNonsingularMat(n)) returning a real nonsin-
gular upper triangular matrix of size n × n.

5. Write a function (called ChanceMat(m,n,p)) returning a real matrix of
size m× n whose entries are chosen randomly between the values −p and
p.

6. Write a function (called BinChanceMat(m,n)) returning a real matrix of
size m × n whose entries are chosen randomly equal to 0 or 1.

7. Write a function (called HilbertMat(m,n)) returning the so-called Hilbert
matrix H ∈ Mm,n(R) defined by its entries:

Hi,j =
1

i + j − 1
.

2.3. Define a matrix A by the Matlab instructions
p=NonsingularMat(n);A=p*diag([ones(n-1,1); e])*inv(p),

where e is a real number. What is the determinant of A? (Do not use Matlab
to answer.) Take e = 10−20, n = 5, and compute by Matlab the determinant
of A. What do you notice?
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2.4. Set A=[1:3; 4:6; 7:9; 10:12; 13:15]. What is the rank of A? (use
the function rank). Let B and C be two nonsingular matrices respectively
of size 3 × 3 and 5 × 5 given by the function NonsingularMat defined in
Exercise 2.2. Compare the ranks of the products CA and AB. Justify your
experimental results.

2.5. Vary n from 1 to 10 and

1. determine the rank of a matrix A defined by A=rand(8,n)*rand(n,6).
What is going on?

2. Same question for A=BinChanceMat(8,n)*BinChanceMat(n,6).
3. Justify your observations.

2.6. We fix the dimension n = 5.

1. For any integer r between 1 and 5, initialize (with rand) r vectors ui and
define a square matrix A =

∑r
i=1 uiu

t
i. Compare the rank of A with r.

2. Same question for vectors generated by BinChanceMat.
3. Justify your observations.

2.7 (∗). Write a function (called MatRank(m,n,r)) returning a real matrix of
size m × n and of fixed rank r.

2.8. Define rectangular matrices
A=[1:3;4:6;7:9;10:12] and B=[-1 2 3;4:6;7:9;10:12].

1. Are the square matrices AtA and BtB nonsingular?
2. Determine the rank of each of the two matrices.
3. Justify the answers to the first question.
4. Same questions for At and Bt.

2.9. Let A be a matrix defined by A=MatRank(n,n,r) with r ≤ n and Q a
matrix defined by Q=null(A’), that is, a matrix whose columns form a basis
of the null space of At. Let u be a column of Q, compute the rank of A+uut.
Prove the observed result.

2.10 (∗). Let a1, . . . , an be a family of n vectors of R
m, and A ∈ Mm,n(R) the

matrix whose columns are the vectors (aj)1≤j≤n. We denote by r the rank of A.
The goal is to write a program that delivers an orthonormal family of r vectors
u1, . . . , ur of R

m by applying the Gram–Schmidt orthogonalization procedure
to A. We consider the following algorithm, written here in pseudolanguage
(see Chapter 4):

For p = 1 ↗ n
s = 0
For k = 1 ↗ p − 1

s = s + 〈ap, uk〉uk

End
s = ap − s
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If ‖s‖ 	= 0 then
up = s/‖s‖

Else
up = 0

End
End
Gram-Schmidt Algorithm.

1. Determine the computational complexity (number of multiplications and
divisions for n large) of this algorithm.

2. Write a program GramSchmidt whose input argument is A and whose
output argument is a matrix the pth column of which is the vector up,
if it exists, and zero otherwise. Test this program with A ∈ M10,5(R)
defined by
n=5;u=1:n; u=u’; c2=cos(2*u); c=cos(u); s=sin(u);
A=[u c2 ones(n,1) rand()*c.*c exp(u) s.*s];
We denote by U the matrix obtained by applying the orthonormalization
procedure to A.
(a) Compute UU t and U tU . Comment.
(b) Apply the GramSchmidt algorithm to U . What do you notice?

3. Change the program GramSchmidt into a program GramSchmidt1 that
returns a matrix whose first r columns are the r vectors uk, and whose
last n − r columns are zero.

2.11 (∗). The goal of this exercise is to study a modified Gram–Schmidt
algorithm. With the notation of the previous exercise, each time a new vector
up is found, we may subtract from each ak (k > p) its component along up.
Assume now that the vectors ak are linearly independent in R

m.

• Set u1 = a1/‖a1‖ and replace each ak with ak − 〈u1, ak〉u1 for all k > 1.
• If the first p − 1 vectors u1, . . . , up−1 are known, set up = ap/‖ap‖ and

replace each ak with ak − 〈up, ak〉up for all k > p.

1. Write a function MGramSchmidt coding this algorithm.
2. Fix m = n = 10. Compare both the Gram–Schmidt and modified Gram–

Schmidt algorithms (by checking the orthonormality of the vectors) for a
matrix whose entries are chosen by the function rand, then for a Hilbert
matrix H ∈ Mm,n(R).

3. If we have at our disposal only the Gram–Schmidt algorithm, explain how
to improve the computation of up.

2.12 (∗). The goal of the following exercises is to compare different definitions
of matrices. We use the Matlab functions tic and toc to estimate the running
time of Matlab. The function toc returns the time elapsed since the last call
tic. Run the following instructions plus2pt
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n=400;tic;
for j=1:n for i=1:n,a(i,j)=cos(i)*sin(j);end;end;t1=toc;clear a;

tic;a=zeros(n,n);
for~j=1:n~fori=1:n,~a(i,j)=cos(i)*sin(j);end;end;t2=toc;clear~a;

tic;a=zeros(n,n);
for~i=1:n~for j=1:n,~a(i,j)=cos(i)*sin(j);end;end;t3=toc;clear a;

tica=zeros(n,n);a=cos(1:n)’*sin(1:n);t4=toc;

Display the variables t1, t2, t3, and t4. Explain.

2.13. Define a matrix A of size n × n (vary n) by the instructions
A=rand(n,n);A=triu(A)-diag(diag(A)). What is the purpose of triu?
Compute the powers of A. Justify the observed result.

2.14. Let H be the Hilbert matrix of size 6 × 6.

1. Compute the eigenvalues λ of H (use the function eig).
2. Compute the eigenvectors u of H.
3. Verify the relations Hu = λu.

2.15. Define a matrix A by the instructions
P=[1 2 2 1; 2 3 3 2; -1 1 2 -2; 1 3 2 1];
D=[2 1 0 0; 0 2 1 0; 0 0 3 0; 0 0 0 4];
A=P*D*inv(P);

1. Without using Matlab, give the eigenvalues of A.
2. Compute the eigenvalues by Matlab. What do you notice?
3. For n = 3 and n = 10, compute the eigenvalues of An with Matlab, and

compare with their exact values. What do you observe?
4. Diagonalize A using the function eig. Comment.

2.16. For various values of n, compare the spectra of the matrices A and At

with A=rand(n,n). Justify the answer.

2.17. Fix the dimension n. For u and v two vectors of R
n chosen randomly

by rand, determine the spectrum of In + uvt. What are your experimental
observations? Rigorously prove the observed result.

2.18 (∗). Define a matrix A=[10 2;2 4]. Plot the curve of the Rayleigh quo-
tient x �→ xtAx, where x spans the unit circle of the plane. What are the
maximal and minimal attained values? Compare with the eigenvalues of the
matrix A. Explain.
Hint: use the Matlab function plot3.

2.19. For various values of the integers m and n, compare the spectra of AAt

and AtA, where A=rand(n,m). Justify the observations.
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2.20 (∗). Show that the following function PdSMat returns a positive definite
symmetric matrix of size n × n

function A=PdSMat(n)
A=SymmetricMat(n); // defined in Exercise 2.2
[P,D]=eig(A);D=abs(D);
D=D+norm(D)*eye(size(D));
A=P*D*inv(P);

1. For different values of n, compute the determinant of A=PdSMat(n). What
do you observe? Justify.

2. Fix n = 10. For k varying from 1 to n, define a matrix Ak of size k × k
by Ak = A(1:k,1:k). Check that the determinants of all the matrices Ak

are positive. Prove this result.
3. Are the eigenvalues of Ak eigenvalues of A?

2.21.

1. Let A=SymmetricMat(n). Compute the eigenvectors ui and the eigenvalues
λi of A. Compute

∑n
k=1 λiuiu

t
i and compare this matrix with A. What

do you observe?
2. Denote by D and P the matrices defined by [P,D]=eig(A). We modify

an entry of the diagonal matrix D by setting D(1, 2) = 1, and we define a
matrix B by B=P*D*inv(P). Compute the eigenvectors vi and eigenvalues
µi of B. Compute

∑n
k=1 µiviv

t
i and compare this matrix with B. What

do you observe?
3. Justify.

2.22. For various values of n, compute the rank of the matrix defined by the
instruction rank(rand(n,1)*rand(1,n)). What do you notice? The goal is
to prove the observed result.

1. Let u and v be two nonzero vectors of R
n. What is the rank of the matrix

A = vut?
2. Let A ∈ Mn(R) be a rank-one matrix. Show that there exist two vectors

u and v of R
n such that A = vut.

2.23 (∗). Define a square matrix by A=rand(n,n).

1. Compute the spectrum of A.
2. For 1 ≤ i ≤ n, define γi =

∑n
j �=i,j=1 |ai,j | and denote by Di the (so-called

Gershgorin) disk of radius γi and center ai,i:

Di =
{

z ∈ C, |z − ai,i| ≤ γi

}
.

(a) Compute the γi’s with the Matlab function sum.
(b) Let λ be an eigenvalue of A. Check with Matlab that there exists (at

least) one index i such that λ ∈ Di.
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(c) Rigorously prove this result.
3. A matrix A is said to be strictly diagonally dominant if

|ai,i| >
∑
j �=i

|ai,j | (1 ≤ i ≤ n).

(a) Write a function DiagDomMat(n) returning an n × n diagonally dom-
inant matrix.

(b) For various values of n, compute the determinant of A=DiagDomMat(n).
What do you notice?

(c) Justify your answer.
4. Write a program PlotGersh that plots the Gershgorin disks for a given

matrix.
Application:

A =

⎛
⎝ 1 0 1

−2 6 1
1 −1 −3

⎞
⎠ .

2.24. For each of the matrices

A1 =

⎛
⎝ 1 2 3

3 2 1
4 2 1

⎞
⎠ , A2 =

⎛
⎝ .75 0. .25

0. 1. 0.
.25 0. .75

⎞
⎠ ,

A3 =

⎛
⎝ .375 0 −.125

0 .5 0
−.125 0 .375

⎞
⎠ , A4 =

⎛
⎝−.25 0. −.75

0. 1. 0.
−.75 0. −.25

⎞
⎠ ,

compute An
i for n = 1, 2, 3, . . . In your opinion, what is the limit of An

i as n
goes to infinity? Justify the observed results.

2.25. Plot the image of the unit circle of R
2 by the matrix

A =
(
−1.25 0.75
0.75 −1.25

)
(2.11)

to reproduce Figure 2.2. Use the Matlab function svd.

2.26. For different choices of m and n, compare the singular values of a matrix
A=rand(m,n) and the eigenvalues of the block matrix B =

(
0 A

At 0

)
. Justify.

2.27. Compute the pseudoinverse A† (function pinv) of the matrix

A =

⎛
⎜⎝

1 −1 4
2 −2 0
3 −3 5
−1 −1 0

⎞
⎟⎠ .

Compute A†A, AA†, AA†A, and A†AA†. What do you observe? Justify.
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2.28. Fix n = 100. For different values of r ≤ n, compare the rank of
A=MatRank(n,n,r) and the trace of AA†. Justify.

2.29 (∗). The goal of this exercise is to investigate another definition of
the pseudoinverse matrix. Fix m = 10, n = 7. Let A be a matrix de-
fined by A=MatRank(m,n,5). We denote by P the orthogonal projection onto
(Ker A)⊥, and by Q the orthogonal projection onto ImA.

1. Compute a basis of (Ker A)⊥, then the matrix P .
2. Compute a basis of ImA, then the matrix Q.
3. Compare on the one hand A†A with P , and on the other hand, AA† with

Q. What do you notice? Justify your answer.
4. Let y ∈ C

m and define x1 = Px, where x ∈ C
n is such that Ax = Qy.

Prove (without using Matlab) that there exists a unique such x1. Consider
the linear map ϕ : C

m → C
n by ϕ(y) = x1. Show (without using Matlab)

that the matrix corresponding to this map (in the canonical basis) is A†.
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Matrix Norms, Sequences, and Series

3.1 Matrix Norms and Subordinate Norms

We recall the definition of a norm on the vector space K
n (with K = R or C.)

Definition 3.1.1. We call a mapping denoted by ‖ · ‖, from K
n into R

+ sat-
isfying the following properties a norm on K

n

1. ∀x ∈ K
n, ‖x‖ = 0 =⇒ x = 0;

2. ∀x ∈ K
n,∀λ ∈ K, ‖λx‖ = |λ|‖x‖;

3. ∀x ∈ K
n,∀y ∈ K

n, ‖x + y‖ ≤ ‖x‖ + ‖y‖ .

If K
n is endowed with a scalar (or Hermitian) product 〈·, ·〉, then the mapping

x → 〈x, x〉1/2 defines a norm on K
n. The converse is not true in general: we

cannot deduce from any norm a scalar product. The most common norms on
K

n are (xi denotes the coordinates of a vector x in the canonical basis of K
n):

• the Euclidean norm, ‖x‖2 =
(∑n

i=1 |xi|2
)1/2;

• the 
p-norm, ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1;
• the 
∞-norm, ‖x‖∞ = max1≤i≤n |xi| .

Figure 3.1 shows the unit circles of R
2 defined by each of these norms l1, l2,

and l∞. We recall the following important result.

Theorem 3.1.1. If E is a vector space of finite dimension, then all norms
are equivalent on E. That is, for all pairs of norms ‖ · ‖, ‖ · ‖′ there exist two
constants c and C such that 0 < c ≤ C, and for all x ∈ E, we have

c‖x‖ ≤ ‖x‖′ ≤ C‖x‖.

Let us recall the equivalence constants between some vector norms 
p (here
x ∈ K

n and p ≥ 1 is an integer):

‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞,
‖x‖2 ≤ ‖x‖1 ≤ √

n‖x‖2.
(3.1)
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�∞

�1
�2

�

�

−1

1

1−1

Fig. 3.1. Unit circles of R
2 for the norms �1, �2, and �∞.

In this section, we confine ourselves to the case of square matrices. Since the
space Mn(K) of square matrices of size n with entries in K is a vector space
on K, isomorphic to K

n2
, we can define the following norms:

• Frobenius (or Schur or Euclidean) norm, ‖A‖F =
(∑n

i=1

∑n
j=1 |ai,j |2

)1/2

;

• lq norm, ‖A‖ =
(∑n

i=1

∑n
j=1 |ai,j |q

)1/q

for q ≥ 1;
• l∞ norm, ‖A‖ = max1≤i≤n,1≤j≤n |ai,j | .

There are particular norms on Mn(K) that satisfy an additional inequality
on the product of two matrices.

Definition 3.1.2. A norm ‖ · ‖ defined on Mn(K) is a matrix norm if for all
matrices A,B ∈ Mn(K),

‖AB‖ ≤ ‖A‖ ‖B‖.

Example 3.1.1. The Frobenius norm is a matrix norm. Indeed, for any matrices
A and B the Cauchy–Schwarz inequality yields

n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑

k=1

Ai,kBk,j

∣∣∣∣∣
2

≤
n∑

i=1

n∑
j=1

(
n∑

k=1

|Ai,k|2
)(

n∑
k=1

|Bk,j |2
)

,

which is the desired inequality.

Example 3.1.2. Not all norms defined on Mn(K) are matrix norms. For in-
stance, the norm defined by
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‖A‖ = max
1≤i,j≤n

|ai,j | (3.2)

is not a matrix norm when n > 1, because for the matrix A whose entries are
all equal to 1, we have

1 = ‖A‖2 < ‖A2‖ = n.

We shall consider norms on Mn(K) that are yet more particular and that
are said to be subordinate to a vector norm on K

n.

Definition 3.1.3. Let ‖ ·‖ be a vector norm on K
n. It induces a matrix norm

defined by

‖A‖ = sup
x∈Kn,x �=0

‖Ax‖
‖x‖ , (3.3)

which is said to be subordinate to this vector norm.

The reader can easily check that indeed, (3.3) is a matrix norm on Mn(K).
For convenience, the vector and matrix norms are denoted in the same way.

Remark 3.1.1. Let us recall briefly the difference between a maximum and a
supremum. The supremum, supi∈I xi, of a family (xi)i∈I of real numbers is
the smallest constant C that bounds from above all the xi:

sup
i∈I

xi = minC with C = {C ∈ R such that xi ≤ C, ∀i ∈ I} .

(This smallest constant exists, possibly equal to +∞, since C is a closed set
of R as the intersection of the closed sets {C ∈ R such that C ≥ xi}.) If there
exists xi0 such that supi∈I xi = xi0 , then the supremum is said to be attained
and, by convention, we denote it by maxi∈I xi. Of course, this last notation,
which specifies to the reader that the supremum is attained, coincides with
the usual maximal value for a finite family (xi)i∈I .

Proposition 3.1.1. Let ‖ · ‖ be a subordinate matrix norm on Mn(K).

1. For all matrices A, the norm ‖A‖ is also defined by

‖A‖ = sup
x∈Kn,‖x‖=1

‖Ax‖ = sup
x∈Kn,‖x‖≤1

‖Ax‖.

2. There exists xA ∈ K
n, xA 	= 0, such that

‖A‖ =
‖AxA‖
‖xA‖

and sup can be replaced by max in the definitions of ‖A‖.
3. The identity matrix satisfies

‖In‖ = 1. (3.4)
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4. A subordinate norm is indeed a matrix norm: for all matrices A and B,
we have

‖AB‖ ≤ ‖A‖ ‖B‖.

Proof. The first point is obvious. The second point is proved by observ-
ing that the function x → ‖Ax‖ is continuous on the bounded, closed, and
therefore compact set {x ∈ K

n, ‖x‖ = 1}. Thus it attains its maximum. The
third point is obvious, whereas the fourth is a consequence of the inequality
‖ABx‖ ≤ ‖A‖ ‖Bx‖. �

Remark 3.1.2. There are matrix norms that are not subordinate to any vector
norm. A well-known example is the Frobenius norm, for which the norm of
the identity matrix is ‖In‖F =

√
n. This is not possible for a subordinate

norm according to (3.4).

Note that the equivalences (3.1) between vector norms on Kn imply the
corresponding equivalences between the subordinate matrix norms. Namely,
for any matrix A ∈ Mn(K),

n−1/p‖A‖∞ ≤ ‖A‖p ≤ n1/p‖A‖∞,
n−1/2‖A‖2 ≤ ‖A‖1 ≤ n1/2‖A‖2.

(3.5)

The computation of matrix norms by Definition 3.1.3 may be quite difficult.
However, the usual norms ‖ . ‖1 and ‖ . ‖∞ can be computed explicitly.

Proposition 3.1.2. We consider matrices in Mn(K).

1. The matrix norm ‖A‖1, subordinate to the l1-norm on K
n, satisfies

‖A‖1 = max
1≤j≤n

( n∑
i=1

|ai,j |
)
.

2. The matrix norm ‖A‖∞, subordinate to the l∞-norm on K
n, satisfies

‖A‖∞ = max
1≤i≤n

( n∑
j=1

|ai,j |
)
.

Proof. We write

‖Ax‖1 =
n∑

i=1

∣∣∣
n∑

j=1

ai,jxj

∣∣∣ ≤
n∑

j=1

|xj |
n∑

i=1

|ai,j | ≤ ‖x‖1

(
max

1≤j≤n

n∑
i=1

|ai,j |
)
,

from which we deduce the inequality

‖A‖1 ≤ max
1≤j≤n

n∑
i=1

|ai,j |. (3.6)
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Let j0 be the index satisfying

max
1≤j≤n

n∑
i=1

|ai,j | =
n∑

i=1

|ai,j0 |.

Let x0 be defined by x0
j = 0 if j 	= j0, and x0

j0
= 1. We have

‖x0‖1 = 1 and ‖Ax0‖1 = max
1≤j≤n

n∑
i=1

|ai,j |,

which implies that inequality (3.6) is actually an equality. Next, we write

‖Ax‖∞ = max
1≤i≤n

∣∣∣
n∑

j=1

ai,jxj

∣∣∣ ≤ ‖x‖∞
(

max
1≤i≤n

n∑
j=1

|ai,j |
)
,

from which we infer the inequality

‖A‖∞ ≤ max
1≤i≤n

n∑
j=1

|ai,j |. (3.7)

Let i0 be the index satisfying

max
1≤i≤n

n∑
j=1

|ai,j | =
n∑

j=1

|ai0j |.

Let x0 be defined by x0
j = 0 if ai0j = 0, and x0

j = ai0j

|ai0j | if ai0j 	= 0. If A 	= 0,
then x0 	= 0, and therefore ‖x0‖∞ = 1 (if A = 0, then there is nothing to
prove). Furthermore,

‖Ax0‖∞ ≥
∣∣∣

n∑
j=1

ai0jx
0
j

∣∣∣ =
n∑

j=1

|ai0j | = max
1≤i≤n

n∑
j=1

|ai,j |,

which proves that inequality (3.6) is actually an equality. �
We now proceed to the matrix norm subordinate to the Euclidean norm:

Proposition 3.1.3. Let ‖A‖2 be the matrix norm subordinate to the Euclid-
ean norm on K

n. We have

‖A‖2 = ‖A∗‖2 = largest singular value of A.

Proof. First of all, we have

‖A‖2
2 = sup

x∈Kn,x �=0

‖Ax‖2
2

‖x‖2
2

= sup
x∈Kn,x �=0

〈A∗Ax, x〉
〈x, x〉 .
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By Lemma 2.7.1, A∗A is self-adjoint and positive. Hence it is diagonalizable
and its eigenvalues (λi(A∗A))1≤i≤n are nonnegative real numbers. In the or-
thonormal basis of its eigenvectors, we easily check that

sup
x∈Kn,x �=0

〈A∗Ax, x〉
〈x, x〉 = max

1≤i≤n
λi(A∗A).

Since the singular values of A are the positive square roots of the eigenvalues
of A∗A, we infer the desired result. Moreover, the Cauchy–Schwarz inequality
yields

〈A∗Ax, x〉
〈x, x〉 ≤ ‖A∗Ax‖2‖x‖2

〈x, x〉 ≤ ‖A∗A‖2‖x‖2
2

〈x, x〉 ≤ ‖A∗‖2‖A‖2.

We deduce that ‖A‖2 ≤ ‖A∗‖2. Applying this inequality to A∗, we obtain the
desired inequality, which is to say ‖A‖2 = ‖A∗‖2. �

Remark 3.1.3. A real matrix may be seen either as a matrix of Mn(R) or as
a matrix of Mn(C), since R ⊂ C. If ‖ · ‖C is a vector norm in C

n, we can
define its restriction ‖ · ‖R to R

n, which is also a vector norm in R
n. For a real

matrix A ∈ Mn(R), we can thus define two subordinate matrix norms ‖A‖C

and ‖A‖R by

‖A‖C = sup
x∈Cn,x �=0

‖Ax‖C

‖x‖C

and ‖A‖R = sup
x∈Rn,x �=0

‖Ax‖R

‖x‖R

.

At first glance, these two definitions seem to be distinct. Thanks to the explicit
formulas of Proposition 3.1.2, we know that they coincide for the norms ‖x‖1,
‖x‖2, or ‖x‖∞. However, for other vector norms we may have ‖A‖C > ‖A‖R.
Since some fundamental results, like the Schur factorization theorem (Theo-
rem 2.4.1), hold only for complex matrices, we shall assume henceforth that
all subordinate matrix norms are valued in C

n, even for real matrices (this is
essential, in particular, for Proposition 3.1.4).

Remark 3.1.4. The spectral radius �(A) is not a norm on Mn(C). Indeed, we
may have �(A) = 0 with A 	= 0, for instance,

A =
(

0 1
0 0

)
.

Nonetheless, the lemma below shows that �(A) is a norm on the set of normal
matrices.

Lemma 3.1.1. Let U be a unitary matrix (U∗ = U−1). We have

‖UA‖2 = ‖AU‖2 = ‖A‖2.

Consequently, if A is a normal matrix, then ‖A‖2 = �(A).
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Proof. Since U∗U = I, we have

‖UA‖2
2 = sup

x∈Cn,x �=0

‖UAx‖2
2

‖x‖2
2

= sup
x∈Cn,x �=0

〈U∗UAx,Ax〉
〈x, x〉 = ‖A‖2

2.

Moreover, the change of variable y = Ux satisfies ‖x‖2 = ‖y‖2, hence

‖AU‖2
2 = sup

x∈Cn,x �=0

‖AUx‖2
2

‖x‖2
2

= sup
y∈Cn,y �=0

‖Ay‖2
2

‖U−1y‖2
2

= sup
y∈Cn,y �=0

‖Ay‖2
2

‖y‖2
2

= ‖A‖2
2.

If A is normal, it is diagonalizable in an orthonormal basis of eigenvectors
A = U diag (λ1, . . . , λn)U∗, and we have ‖A‖2 = ‖diag (λi)‖2 = �(A). �

Lemma 3.1.1 shows that �(A) and ‖A‖2 are equal for normal matrices.
Actually, any matrix norm ‖A‖ is larger than �(A), which is, in turn, always
close to some subordinate matrix norm, as shown by the next proposition.

Proposition 3.1.4. Let ‖ · ‖ be a matrix norm defined on Mn(C). It satisfies

�(A) ≤ ‖A‖.

Conversely, for any matrix A and for any real number ε > 0, there exists a
subordinate norm ‖ · ‖ (which depends on A and ε) such that

‖A‖ ≤ �(A) + ε.

Proof. Let λ ∈ C be an eigenvalue of A such that �(A) = |λ|, and x 	= 0 a
corresponding eigenvector. If the norm ‖.‖ is subordinate to a vector norm,
we write ‖λx‖ = �(A)‖x‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ and therefore �(A) ≤ ‖A‖. If
‖.‖ is some matrix norm (not necessarily subordinate), we denote by y ∈ C

n a
nonzero vector, so the matrix xy∗ is nonzero, and we have λxy∗ = Axy∗. Then,
taking the norm of this last equality yields |λ| ‖xy∗‖ = ‖Axy∗‖ ≤ ‖A‖ ‖xy∗‖,
which implies �(A) ≤ ‖A‖.

To prove the second inequality, we use the Schur factorization theorem
(Theorem 2.4.1) which states that for any A, there exists a unitary matrix U
such that T = U−1AU is triangular:

T =

⎛
⎜⎜⎜⎜⎝

t1,1 t1,2 . . . t1,n

0
. . .

...
...

. . . . . .
...

0 . . . 0 tn,n

⎞
⎟⎟⎟⎟⎠ ,

and the diagonal entries ti,i are the eigenvalues of A. For any δ > 0 we
introduce the diagonal matrix Dδ = diag (1, δ, δ2, . . . , δn−1), and we define a
matrix Tδ = (UDδ)−1A(UDδ) = D−1

δ TDδ that satisfies
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Tδ =

⎛
⎜⎜⎜⎜⎝

t1,1 δt1,2 . . . δn−1t1,n

0
. . .

...
...

. . . . . . δtn−1,n

0 . . . 0 tn,n

⎞
⎟⎟⎟⎟⎠ .

Given ε > 0, we can choose δ sufficiently small that the off-diagonal entries of
Tδ are also very small. Namely, they satisfy for all 1 ≤ i ≤ n − 1,

n∑
j=i+1

δj−i|ti,j | ≤ ε.

Since the ti,i are the eigenvalues of Tδ, which is similar to A, we infer that
‖Tδ‖∞ ≤ �(A) + ε. Then, the mapping B → ‖B‖ = ‖(UDδ)−1B(UDδ)‖∞ is
a subordinate norm (that depends on A and ε) satisfying

‖A‖ ≤ �(A) + ε,

thereby yelding the result. �

Remark 3.1.5. The second part of Proposition 3.1.4 may be false if the norm
is not a matrix norm. For instance, the norm defined by (3.2) is not a matrix
norm, and we have the counterexample

�(A) = 2 > ‖A‖ = 1 for A =
(

1 −1
−1 1

)
.

In Exercise 3.8, we dwell on the link between the matrix norm and its spectral
radius by showing that

�(A) = lim
k→∞

(
‖Ak‖

)1/k

.

Remark 3.1.6. Propositions 3.1.2 and 3.1.4 provide an immediate upper bound
for the spectral radius of a matrix:

�(A) ≤ min
(

max
1≤j≤n

n∑
i=1

|ai,j | , max
1≤i≤n

n∑
j=1

|ai,j |
)
.

3.2 Subordinate Norms for Rectangular Matrices

Similar norms can be defined on the space Mm,n(K) of rectangular (or non-
square) matrices of size m × n with entries in K. For instance,
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• the Frobenius (or Schur, or Euclidean) norm

‖A‖F =

⎛
⎝ m∑

i=1

n∑
j=1

|ai,j |2
⎞
⎠

1/2

;

• the lq-norm, ‖A‖ =
(∑m

i=1

∑n
j=1 |ai,j |q

)1/q

for q ≥ 1;
• the l∞-norm, ‖A‖ = max1≤i≤m,1≤j≤n |ai,j | .

We may, of course, define a subordinate matrix norm in Mm,n(K) by

‖A‖ = sup
x∈Kn,x �=0

‖Ax‖m

‖x‖n
,

where ‖ · ‖n (respectively ‖ · ‖m) is a vector norm on K
n (respectively K

n).
We conclude this section by defining the best approximation of a given (not

necessarily square) matrix by matrices of fixed rank. Recall that this property
is important for the example of image compression described in Section 1.5.

Proposition 3.2.1. Let A = V Σ̃U∗ be the SVD factorization of some matrix
A ∈ Mm,n(C) having r nonzero singular values arranged in decreasing order.
For 1 ≤ k < r, the matrix Ak =

∑k
i=1 µiviu

∗
i is the best approximation of A

by matrices of rank k, in the following sense: for all matrices X ∈ Mm,n(C)
of rank k, we have

‖A − Ak‖2 ≤ ‖A − X‖2. (3.8)

Moreover, the error made in substituting A with Ak is ‖A − Ak‖2 = µk+1.

Proof. According to (2.10), we have

A − Ak =
r∑

i=k+1

µiviu
∗
i = [vk+1| . . . |vr] diag (µk+1, . . . , µr)

⎡
⎢⎢⎢⎢⎢⎣

u∗
k+1

...

u∗
r

⎤
⎥⎥⎥⎥⎥⎦

.

Denoting by D ∈ Mm,n(R) the matrix diag (0, . . . , 0, µk+1, . . . , µr, 0, . . . , 0),
we have A − Ak = V DU∗, and since the Euclidean norm is invariant under
unitary transformation, we have ‖A−Ak‖2 = ‖D‖2 = µk+1. Let us now prove
the approximation property. For all x ∈ C

n, we have

‖Ax‖2 = ‖V Σ̃U∗x‖2 = ‖Σ̃U∗x‖2. (3.9)

Let E be the subspace of C
n, of dimension k + 1, generated by the vectors

u1, . . . , uk+1. If x ∈ E, we have x =
∑k+1

i=1 xiui and
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U∗x = U∗
k+1∑
i=1

xiui =
k+1∑
i=1

xiU
∗ui =

k+1∑
i=1

xiei,

where ei is the ith vector of the canonical basis of C
n. Thus we have

Σ̃U∗x = (µ1x1, . . . , µk+1xk+1, 0, . . . , 0)t.

So by (3.9) and the decreasing order of the singular values µi,

‖Ax‖2 ≥ µk+1‖x‖2, ∀x ∈ E. (3.10)

If the matrix X ∈ Mm,n(C) is of rank k < r, its kernel is of dimension
n − k ≥ r − k ≥ 1, and for all x ∈ Ker (X), we have

‖Ax‖2 = ‖(A − X)x‖2 ≤ ‖A − X‖2 ‖x‖2.

Assume that X contradicts (3.8):

‖A − X‖2 < ‖A − Ak‖2.

Hence for all x ∈ Ker (X),

‖Ax‖2 < ‖A − Ak‖2 ‖x‖2 = µk+1‖x‖2,

and therefore if x ∈ E ∩ Ker (X) with x 	= 0, we end up with a contradiction
to (3.10). Indeed, the two spaces have a nonempty intersection since dimE +
dim Ker (X) > n, so that (3.8) is finally satisfied. �

3.3 Matrix Sequences and Series

In the sequel, we consider only square matrices.

Definition 3.3.1. A sequence of matrices (Ai)i≥1 converges to a limit A if
for a matrix norm ‖ · ‖, we have

lim
i→+∞

‖Ai − A‖ = 0,

and we write A = limi→+∞ Ai.

The definition of convergence does not depend on the chosen norm, since
Mn(C) is a vector space of finite dimension. Therefore Theorem 3.1.1, which
asserts that all norms are equivalent, is applicable, and thus if a sequence
converges for one norm, it converges for all norms.

Remark 3.3.1. Let us recall that Mn(C), having finite dimension, is a com-
plete space, that is, every Cauchy sequence of elements of Mn(C) is a con-
vergent sequence in Mn(C):

lim
i→+∞

lim
j→+∞

‖Ai − Aj‖ = 0 ⇒ ∃A ∈ Mn(C) such that lim
i→+∞

‖Ai − A‖ = 0.
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A matrix series is a sequence (Si)i≥0 defined by partial sums of another se-
quence of matrices (Ai)i≥0: Si =

∑i
j=0 Aj . A series is said to be convergent if

the sequence of partial sums is convergent. Among all series, we shall be more
particularly concerned with matrix power series defined by (aiA

i)i≥0, where
each ai is a scalar in C and Ai is the ith power of the matrix A. A necessary
but not sufficient condition for the convergence of a power series is that the
sequence aiA

i converge to 0. The following result provides a necessary and
sufficient condition for the sequence of iterated powers of a matrix to converge
to 0.

Lemma 3.3.1. Let A be a matrix in Mn(C). The following four conditions
are equivalent:

1. limi→+∞ Ai = 0;
2. limi→+∞ Aix = 0 for all vectors x ∈ C

n;
3. �(A) < 1;
4. there exists at least one subordinate matrix norm such that ‖A‖ < 1.

Proof. Let us first show that (1) ⇒ (2). The inequality

‖Aix‖ ≤ ‖Ai‖‖x‖

implies limi→+∞ Aix = 0. Next, (2) ⇒ (3); otherwise, there would exist λ
and x 	= 0 satisfying Ax = λx and |λ| = �(A), which would entail that the
sequence Aix = λix cannot converge to 0. Since (3) ⇒ (4) is an immediate
consequence of Proposition 3.1.4, it remains only to show that (4) ⇒ (1). To
this end, we consider the subordinate matrix norm such that ‖A‖ < 1, and
accordingly,

‖Ai‖ ≤ ‖A‖i → 0 when i → +∞,

which proves that Ai tends to 0. �
We now study some properties of matrix power series.

Theorem 3.3.1. Consider a power series on C of positive radius of conver-
gence R: ∣∣∣

+∞∑
i=0

aiz
i
∣∣∣ < +∞,∀z ∈ C such that |z| < R.

For any matrix A ∈ Mn(C) such that �(A) < R, the series (aiA
i)i≥0 is

convergent, i.e.,
∑+∞

i=0 aiA
i is well defined in Mn(C).

Proof. Since �(A) < R, thanks to Lemma 3.3.1, there exists a subordinate
matrix norm for which we also have ‖A‖ < R. We check the Cauchy criterion
for the sequence of partial sums:∥∥∥∥∥∥

i∑
k=j+1

akAk

∥∥∥∥∥∥ ≤
i∑

k=j+1

|ak|‖A‖k. (3.11)
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Now, a power series on C is absolutely convergent inside its disk of conver-
gence. Hence ‖A‖ < R implies that the right-hand term in (3.11) tends to 0
as j and i tend to +∞. The convergence of the series is therefore established.
�

The previous notion of matrix power series generalizes, of course, the def-
inition of matrix polynomial and may be extended to analytic functions.

Definition 3.3.2. Let f(z) : C �→ C be an analytic function defined in the
disk of radius R > 0 written as a power series:

f(z) =
+∞∑
i=0

aiz
i ∀z ∈ C such that |z| < R.

By a slight abuse of notation, for any A ∈ Mn(C) with �(A) < R, we define
the matrix f(A) by

f(A) =
+∞∑
i=0

aiA
i.

Let us give some useful examples of matrix functions. The exponential function
is analytic in C. Accordingly, for all matrices A (without restriction on their
spectral radii), we can define its exponential by the formula

eA =
+∞∑
i=0

Ai

i!
.

Similarly, the function 1/(1− z) is analytic in the unit disk and thus equal to∑+∞
i=0 zi for z ∈ C such that |z| < 1. We therefore deduce an expression for

(I − A)−1.

Proposition 3.3.1. Let A be a matrix with spectral radius �(A) < 1. The
matrix (I − A) is nonsingular and its inverse is given by

(I − A)−1 =
+∞∑
i=0

Ai.

Proof. We already know that the series (Ai)i≥0 is convergent. We compute

(I − A)
p∑

i=0

Ai =
p∑

i=0

Ai(I − A) = I − Ap+1.

Since Ap+1 converges to 0 as p tends to infinity, we deduce that the sum of
the series (Ai)i≥0 is equal to (I − A)−1. �
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Remark 3.3.2. Proposition 3.3.1 shows in particular that the set of nonsingular
matrices is an open set in Mn(C). Indeed, consider a subordinate norm ‖ · ‖.
Given a nonsingular matrix M , any matrix N such that ‖M−N‖ < ‖M−1‖−1

is nonsingular as the product of two nonsingular matrices:

N = M
(
I − M−1(M − N)

)
,

since ‖M−1(M −N)‖ < 1. Hence for any nonsingular matrix M , there exists
a neighborhood of M that also consists of nonsingular matrices. This proves
that the set of nonsingular matrices is open.

3.4 Exercises

3.1. Let A be the matrix defined by A=rand(n,n), where n is a fixed integer.
Define M = maxi,j |Ai,j | (M may be computed by the Matlab function max).
Compare M with the norms ‖A‖1, ‖A‖2, ‖A‖∞, and ‖A‖F (use the function
norm). Justify.

3.2. Let T be a nonsingular triangular matrix defined by one of the in-
structions T=LNonsingularMat(n) and T=UNonsingularMat(n) (these func-
tions have been defined in Exercise 2.2), where n is a fixed integer. Define
m = (mini |Ti,i|)−1 (m may be computed by the Matlab function min). Com-
pare m with the norms ‖T−1‖1, ‖T−1‖2, ‖T−1‖∞, and ‖T−1‖F .

3.3 (∗). Define a diagonal matrix A by
u=rand(n,1); A=diag(u);.

Compute the norm ‖A‖p for p = 1, 2,∞. Comment on the observed results.

3.4. For various values of n, define two vectors u=rand(n,1) and v=rand(n,1).
Compare the matrix norm ‖uvt‖2 with the vector norms ‖u‖2 and ‖v‖2. Jus-
tify your observation. Same questions for the Frobenius norm as well as the
norms ‖.‖1 and ‖.‖∞.

3.5. For different values of n, define a nonsingular square matrix A by
A=NonsingularMat(n); (see Exercise 2.2). Let P and v be the matrix and
the vector defined by

[P,D]=eig(A*A’); [d k]=min(abs(diag(D))); v=P(:,k);
Compare ‖A−1v‖2 and ‖A−1‖2. Justify.

3.6. Let A be a real matrix of size m × n.

1. What condition should A meet for the function x �→ ‖Ax‖, where ‖.‖
denotes some norm on R

n, to be a norm on R
m? Write a function NormA

that computes ‖Ax‖2 for x ∈ R
n.

2. Assume A is a square matrix. Write a function NormAs that computes√
〈Ax, x〉 for x ∈ R

n. Does this function define a norm on R
n?
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3.7 (∗). Define a matrix A by A=PdSMat(n) (see Exercise 2.20) and denote by
‖.‖A the norm defined on R

n by ‖x‖A =
√

〈Ax, x〉 (see the previous exercise).
Let SA be the unit sphere of R

n for this norm:

SA = {x ∈ R
n, ‖x‖A = 1}.

1. Prove (do not use Matlab) that SA lies between two spheres (for the
Euclidean norm) centered at the origin, and of respective radii 1√

λmin
and

1√
λmax

, that is,

x ∈ SA =⇒ 1√
λmax

≤ ‖x‖2 ≤ 1√
λmin

,

where λmin (respectively λmax) denotes the smallest (respectively largest)
eigenvalue of A.

2. Plotting SA for n = 2.
(a) Let Γp be the line x2 = px1, p ∈ R. Compute 〈Ax, x〉 for x ∈ Γp (do

not use Matlab). Compute the intersection of Γp and SA.
(b) Write a function function [x,y]=UnitCircle(A,n) whose input ar-

guments are a 2× 2 matrix A, and an integer n and that returns two
vectors x and y, of size n, containing respectively the abscissas and
the ordinates of n points of the curve SA.

(c) Plot on the same graph the unit circle for the Euclidean norm and
SA for A= [7 5; 5 7]. Prove rigorously that the curve obtained is
an ellipse.

(d) Plot on the same graph the unit circles for the norms defined by the
matrices

A =
(

7 5
5 7

)
, B =

(
6.5 5.5
5.5 6.5

)
, C =

(
2 1
1 5

)
. (3.12)

Comment on the results.

3.8 (∗). Define a matrix A by A=rand(n,n). Compare the spectral radius
of A and ‖Ak‖1/k

2 for k = 10, 20, 30, . . . , 100. What do you notice? Does the
result depend on the the chosen matrix norm? (Try the norms ‖ . ‖1, ‖ . ‖∞,
and ‖ . ‖F .)
Explanation.

1. Prove that �(A) ≤ ‖Ak‖1/k, ∀k ∈ N
∗.

2. For ε > 0, define Aε = 1
�(A)+εA. Prove that �(Aε) < 1. Deduce that there

exists k0 ∈ N such that k ≥ k0 implies �(A) ≤ ‖Ak‖1/k ≤ �(A) + ε.
3. Conclude.

3.9. Define a matrix A=MatRank(m,n,r) and let [V S U] = svd(A) be the
SVD factorization of A (for example, take m = 10, n = 7, r = 5). For
k = 1, . . . , r−1, we compute the approximated SVD factorization of A by the
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instruction [v,s,u] = svds(A,k). We have seen in Proposition 3.2.1 that
the best approximation (in ‖.‖2-norm) of matrix A by m×n matrices of rank
k is the matrix Ak = usvt, and that the approximation error is ‖A − Ak‖2 =
Sk+1,k+1. We set out to compute the same error, but in the Frobenius norm.

1. For k = r − 1 ↘ 1, display ‖A − Ak‖2
F and the square of the singular

values of A. What relation do you observe between these two quantities?
2. Justify this relation rigorously.

3.10. We revisit the spring system in Section 1.3, assuming in addition that
each mass is subjected to a damping, proportional to the velocity, with a given
coefficient ci > 0; the zero right-hand sides of (1.8) have to be replaced by
−ciẏi (damping or breaking term).

1. Show that the vector y = (y1, y2, y3)t is a solution of

Mÿ + Cẏ + Ky = 0, (3.13)

where C is a matrix to be specified.
2. Define a vector z(t) = (yt, ẏt)t ∈ R

6. Prove that z is a solution of

ż(t) = Az(t), (3.14)

for some matrix A to be specified. For a given initial datum z(0), i.e., for
prescribed initial positions and speeds of the three masses, (3.14) admits
a unique solution, which is precisely z(t) = eAtz(0). (For the definition of
the matrix exponential, see Section 3.3.)

3. Assume that the stiffness constants are equal (k1 = k2 = k3 = 1), as well
as the damping coefficients (c1 = c2 = c3 = 1/2), and that the masses
are m1 = m3 = 1 and m2 = 2. The equilibrium positions of the masses
are supposed to be x1 = −1, x2 = 0, and x3 = 1. At the initial time,
the masses m1 and m3 are moved away from their equilibrium position
by y1(0) = −0.1, y3(0) = 0.1, with initial speeds ẏ1(0) = −1, ẏ3(0) = 1,
while the other mass m2 is at rest, y2(0) = 0, ẏ2(0) = 0. Plot on the same
graph the time evolutions of the positions xi(t) = xi + yi(t) of the three
masses. Vary the time t from 0 to 30, by a step of 1/10. Plot the speeds
on another graph. Comment.
Hint: use the Matlab function expm to compute eAt.
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Introduction to Algorithmics

This chapter is somewhat unusual in comparison to the other chapters of this
course. Indeed, it contains no theorems, but rather notions that are at the
crossroads of mathematics and computer science. However, the reader should
note that this chapter is essential from the standpoint of applications, and for
the understanding of the methods introduced in this course. For more details
on the fundamental notions of algorithmics, the reader can consult [1].

4.1 Algorithms and pseudolanguage

In order to fully grasp the notion of a mathematical algorithm, we shall illus-
trate our purpose by the very simple, yet instructive, example of the multipli-
cation of two matrices. We recall that the operation of matrix multiplication
is defined by

Mn,p(K) ×Mp,q(K) −→ Mn,q(K)

(A,B) �−→ C = AB,

where the matrix C is defined by its entries, which are given by the simple
formula

ci,j =
p∑

k=1

ai,kbk,j , 1 ≤ i ≤ n, 1 ≤ j ≤ q. (4.1)

Formula (4.1) can be interpreted in various ways as vector operations. The
most “natural” way is to see (4.1) as the scalar product of the ith row of A
with the jth column of B. Introducing (ai)1≤i≤n, the rows of A (with ai ∈ R

p),
and (bj)1≤j≤q, the columns of B (with bj ∈ R

p), we successively compute the
entries of C as

ci,j = ai · bj .

However, there is a “dual” way of computing the product C in which the
prominent role of the rows of A and columns of B is inverted by focusing
rather on the columns of A and the rows of B.
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Let (ak)1≤k≤p be the columns of A (with ak ∈ R
n), and let (bk)1≤k≤p be

the rows of B (with bk ∈ R
q). We note that C is also defined by the formula

C =
p∑

k=1

ak
(
bk
)t

, (4.2)

where we recall that the tensor product of a column vector by a row vector is
defined by

xyt = (xiyj)1≤i≤n, 1≤j≤q ∈ Mn,q(K),

where the (xi)1≤i≤n are the entries of x ∈ R
n, and (yj)1≤j≤q the entries of

y ∈ R
q. Formula (4.2) is no longer based the scalar product, but rather on

the tensor product of vectors, which numerically amounts to multiplying each
column of A by scalars that are the entries of each row of B.

Of course, in both computations of the product matrix C, the same mul-
tiplications of scalars are performed; what differentiates them is the order of
the operations. In theory, this is irrelevant, however in computing, these two
procedures are quite different! Depending on the way the matrices A,B,C
are stored in the computer memory, access to their rows and columns can be
more or less fast (this depends on a certain number of factors such as the
memory, the cache, and the processor, none of which we shall consider here).
In full generality, there are several ways of performing the same mathematical
operation.

Definition 4.1.1. We call the precise ordered sequence of elementary opera-
tions for carrying out a given mathematical operation an algorithm.

This definition calls immediately for a number of comments.

� One has to distinguish between the mathematical operation, which is the
goal or the task to be done, and the algorithm, which is the means to that
end. In particular, there can be several different algorithms that perform
the same operation.

� Two algorithms may carry out the same elementary operations and differ
only in the order of the sequence (that is the case of the two algorithms
above for matrix multiplication). All the same, two algorithms may also
differ by the very nature of their elementary operations, while producing
the same result (see below the Strassen algorithm).

� The notion of elementary operation is necessarily fuzzy. We can agree
(as here and in the whole course) that it is an algebraic operation on
a scalar. But after all, a computer knowns only binary numbers, and a
product of real numbers or the extraction of a square root already requires
algorithms! Nevertheless, we shall never go this far into details. By the
same token, if a product of block matrices has to be computed, we can
consider the multiplication of blocks as an elementary operation and not
the scalar multiplication.
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The script of an algorithm is an essential step, not only for writing a com-
puter program out of a mathematical method, but also for the assessment
of its performance and its efficiency, that is, for counting the number of el-
ementary operations that are necessary to its realization (see Section 4.2).
Of course, as soon as a rigorous measure of the efficiency of an algorithm is
available, a key issue is to find the best possible algorithm for a given mathe-
matical operation. This is a difficult problem, which we shall barely illustrate
by the case of the Strassen algorithm for matrix multiplication (see Section
4.3).

Although the above definition stipulates that an algorithm is characterized
by an “ordered” sequence of elementary operations, we have been up to now
relatively vague in the description of the two algorithms proposed for matrix
multiplication. More precisely, we need a notion of language, not so much for
writing programs, but for arranging operations. We call it pseudolanguage.
It allows one to accurately write the algorithm without going through purely
computational details such as the syntax rules (which vary with languages),
the declaration of arrays, and the passing of arguments. It is easy to transcribe
(except for these details) into a computing language dedicated to numerical
calculations (for instance, Fortran, Pascal, C, C++).

The reader will soon find out that the pseudolanguage is a description
tool for algorithms that for the sake of convenience obeys no rigorous syntax.
Even so, let us insist on the fact that although this pseudolanguage is not
accurately defined, it complies with some basic rules:

1. The symbol = is no longer the mathematical symbol of equality but the
computer science symbol of allocation. When we write a = b we allocate
the value of b to the variable a by deleting the previous value of a. When
we write a = a + b we add to the value of a that of b, but by no means
shall we infer that b is zero.

2. The elementary operations are performed on scalars. When vectors or ma-
trices are handled, loops of elementary operations on their entries should
be written. Note in passing that Matlab is able to perform elementary
operations directly on matrices (this is actually much better, in terms of
computing time, than writing loops on the matrix entries).

3. At the beginning of the algorithm, the data (entries) and the results (out-
puts) should be specified. In the course of an algorithm, intermediate
computational variables may be used.

4. Redundant or useless operations should be avoided for the algorithm to
be executed in a minimum number of operations.

As an example, we consider the two matrix multiplication algorithms that we
have just presented.

Let us remark that these two algorithms differ only in the order of their
loops (we have intentionally kept the same names for the indices in both
algorithms). If this makes no difference from a mathematical viewpoint, it is
not quite the same from the computer science viewpoint: the entries of A and
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Data: A and B. Output: C = AB.
For i = 1 ↗ n

For j = 1 ↗ q
Ci,j = 0
For k = 1 ↗ p

Ci,j = Ci,j + Ai,kBk,j

End k
End j

End en i
Algorithm 4.1: Product of two matrices: “scalar product” algorithm.

Data: A and B. Output: C = AB.
For i = 1 ↗ n

For j = 1 ↗ q
Ci,j = 0

End j
End i
For k = 1 ↗ p

For i = 1 ↗ n
For j = 1 ↗ q

Ci,j = Ci,j + Ai,kBk,j

End j
End i

End k
Algorithm 4.2: Product of two matrices: “tensor product” algorithm.

B are accessed either along their rows or columns, which is not executed with
the same speed depending on the way they are stored in the memory of the
computer. In both algorithms, the order of the loops in i and j can be changed.
Actually, we obtain as many algorithms as there are possible arrangements of
the three loops in i, j, k (check it as an exercise).

Obviously, the matrix product is a too simple operation to convince the
reader of the usefulness of writing an algorithm in pseudolanguage. Never-
theless, one should be reassured: more difficult operations will soon arrive!
Let us emphasize again the essential contributions of the script in pseudolan-
guage: on the one hand, it provides a good understanding of the sequencing
of the algorithm, and on the other hand, it enables one to accurately count
the number of operations necessary to its execution.

4.2 Operation Count and Complexity

The performance or the cost of an algorithm is mainly appraised by the num-
ber of operations that are required to execute it. This cost also depends on
other factors such as the necessary number of registers of memory and the
number of memory accesses to look for new data, but we neglect them in
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the sequel. An algorithm will be the more efficient, the fewer operations it
requiers.

Definition 4.2.1. We call the number of multiplications and divisions re-
quired to execute an algorithm its complexity.

We neglect all other operations such as additions (much quicker than mul-
tiplications on a computer) or square roots (much scarcer than multiplications
in general), which makes simpler the counting of operations. If the algorithm
is carried out on a problem of size n (for instance, the order of the matrix or
the number of entries of a vector), we denote by Nop(n) its complexity, or its
number of operations. The exact computation of Nop(n) is often complex or
delicate (because of boundary effects in the writing of loops). We thus con-
tent ourselves in finding an equivalent of Nop(n) when the dimension n of the
problem is very large (we talk then about asymptotic complexity). In other
words, we only look for the first term of the Taylor expansion of Nop(n) as n
tends to infinity.

Thanks to the transcription of the algorithm into pseudolanguage, it is easy
to count its operations. At this stage we understand why a pseudolanguage
script should avoid redundant or useless computations; otherwise, we may
obtain a bad operation count that overestimates the actual number of opera-
tions. In both examples above (matrix product algorithms), the determination
of Nop(n) is easy: for each i, j, k, we execute a multiplication. Consequently,
the number of operations is npq. If all matrices are square, n = p = q, we get
the classical result Nop(n) ≈ n3.

4.3 The Strassen Algorithm

It was believed for a long time that the multiplication of matrices of order
n could not be carried out in fewer than n3 operations. So the discovery of
a faster algorithm by Strassen in 1969 came as a surprise. Strassen devised
a very clever algorithm for matrix multiplication that requires many fewer
operations, on the order of

Nop(n) = O(nlog2 7) with log2 7 ≈ 2.81.

It may seem pointless to seek the optimal algorithm for the multiplication of
matrices. However, beyond the time that can be saved for large matrices (the
Strassen algorithm has indeed been used on supercomputers), we shall see
in the next section that the asymptotic complexity of matrix multiplication
is equivalent to that of other operations clearly less trivial, such as matrix
inversion. The Strassen algorithm relies on the following result.

Lemma 4.3.1. The product of two matrices of order 2 may be done with 7
multiplications and 18 additions (instead of 8 multiplications and 4 additions
by the usual rule).
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Proof. A simple computation shows that
(

a b
c d

)(
α β
γ δ

)
=
(

m1 + m2 − m4 + m6 m4 + m5

m6 + m7 m2 − m3 + m5 − m7

)
,

with
m1 = (b − d)(γ + δ), m5 = a(β − δ),
m2 = (a + d)(α + δ), m6 = d(γ − α),
m3 = (a − c)(α + β), m7 = (c + d)α,
m4 = (a + b)δ.

We count indeed 7 multiplications and 18 additions. �

Remark 4.3.1. We note that the multiplication rule of Strassen in the above
lemma is also valid if the entries of the matrices are not scalars but instead
belong to a noncommutative ring. In particular, the rule holds for matrices
defined by blocks.

Consider then a matrix of size n = 2k. We split this matrix into 4 blocks
of size 2k−1, and we apply Strassen’s rule. If we count not only multiplications
but additions too, the number of operations Nop(n) to determine the product
of two matrices satisfies

Nop(2k) = 7Nop(2k−1) + 18(2k−1)2,

since the addition of two matrices of size n requires n2 additions. A simple
induction yields

Nop(2k) = 7kNop(1) + 18
k−1∑
i=0

7i4k−1−i ≤ 7k (Nop(1) + 6) .

We easily deduce that the optimal number of operations Nop(n) satisfies for
all n,

Nop(n) ≤ Cnlog27 with log2 7 ≈ 2.81.

Since Strassen’s original idea, other increasingly complex algorithms have been
devised, whose number of operations increases more slowly for n large. How-
ever, the best algorithm (in terms of complexity) has not yet been found. As
of today, the best algorithm such that Nop(n) ≤ Cnα has an exponent α close
to 2.37 (it is due to Coppersmith and Winograd). It has even been proved that
if there exists an algorithm such that P (n) ≤ Cnα, then there exists another
algorithm such that P (n) ≤ C ′nα′

with α′ < α. Unfortunately, these “fast”
algorithms are tricky to program, numerically less stable, and the constant
C in Nop(n) is so large that no gains can be expected before a value of, say,
n = 100.
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4.4 Equivalence of Operations

We have just seen that for an operation as simple as the multiplication of
matrices, there exist algorithms whose asymptotic complexities are quite dif-
ferent (n3 for the standard algorithm, nlog2 7 for Strassen’s algorithm). On the
other hand, in most cases the best algorithm possible, in terms of complex-
ity, is not known for mathematical operations such as matrix multiplication.
Therefore, we cannot talk about the complexity of an operation in the sense
of the complexity of its best algorithm. At most, we shall usually determine
an upper bound for the number of operations (possibly improvable). Hence,
we introduce the following definition.

Definition 4.4.1. Let Nop(n) be the (possibly unknown) complexity of the best
algorithm performing a matrix operation. We call the following bound

Nop(n) ≤ Cnα ∀n ≥ 0,

where C and α are positive constants independent of n, the asymptotic com-
plexity of this operation, and we denote it by O(nα).

An amazing result is that many of matrix operations are equivalent in
the sense that they have the same asymptotic complexity. For instance, al-
though, at first glance, matrix inversion seems to be much more complex, it
is equivalent to matrix multiplication.

Theorem 4.4.1. The following operations have the same asymptotic complex-
ity in the sense that if there exists an algorithm executing one of them with a
complexity O(nα) where α ≥ 2, then it automatically yields an algorithm for
every other operation with the same complexity O(nα):

(i) product of two matrices: (A,B) �−→ AB,
(ii) inversion of a matrix: A �−→ A−1,
(iii) computation of the determinant: A �−→ det A,
(iv) solving a linear system: (A, b) �−→ x = A−1b.

Proof. The difficulty is that Theorem 4.4.1 should be proved without know-
ing the algorithms, or the exact exponent α. We prove only the equivalence
between (i) and (ii) (the other equivalences are much harder to prove). Let
I(n) be the number of operations required to compute A−1 by a given algo-
rithm. We assume that there exist C and α such that I(n) ≤ Cnα. Let us
show that there exists an algorithm that computes the product AB whose
number of operations P (n) satisfies P (n) ≤ C ′nα with the same exponent α
and C ′ > 0. First of all, we note that

⎛
⎝ I A 0

0 I B
0 0 I

⎞
⎠

−1

=

⎛
⎝ I −A AB

0 I −B
0 0 I

⎞
⎠ .
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Consequently, the product AB is obtained by inverting a matrix that is 3
times larger. Hence

P (n) ≤ I(3n) ≤ C3αnα.

Now let P (n) be the number of operations needed to compute AB by a given
algorithm. We assume that there exist C and α such that P (n) ≤ Cnα. Let
us show that there exists an algorithm that computes A−1 whose number of
operations I(n) satisfies I(n) ≤ C ′nα with the same exponent α and C ′ > 0.
In this case, we notice that(

A B
C D

)−1

=
(

A−1 + A−1B∆−1CA−1 −A−1B∆−1

−∆−1CA−1 ∆−1

)
(4.3)

with ∆ = D − CA−1B an invertible matrix (sometimes the called Schur
complement). Therefore, to evaluate the inverse matrix on the left-hand side
of (4.3), we can successively compute

• the inverse of A;
• the matrix X1 = A−1B;
• the Schur complement ∆ = D − CX1;
• the inverse of ∆;
• the matrices X2 = X1∆

−1, X3 = CA−1, X4 = ∆−1X3, and X5 = X2X3.

The left-hand side of (4.3) is then equal to(
A−1 + X5 X2

X4 ∆−1

)
.

Since this method requires 2 inversions and 6 multiplications, we deduce that

I(2n) ≤ 2I(n) + 6P (n),

if we neglect additions (for simplicity). By iterating this formula for n = 2k,
we get

I(2k) ≤ 2kI(1) + 6
k−1∑
i=0

2k−i−1P (2i) ≤ C

(
2k +

k−1∑
i=0

2k−i−1+αi

)
.

Since α ≥ 2, we infer
I(2k) ≤ C ′2αk.

If n 	= 2k for all k, then there exists k such that 2k < n < 2k+1. We inscribe
the matrix A in a larger matrix of size 2k+1:

Ã =
(

A 0
0 I

)
with Ã−1 =

(
A−1 0
0 I

)
,

where I is the identity of order 2k+1 − n. Applying the previous result to Ã
yields

I(n) ≤ C ′(2k+1)α ≤ C ′2αnα,

which is the desired result. �
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4.5 Exercises

Warning: for the following exercises do not use Matlab except where explicitly
requested.

4.1 (∗). Let u and v be two vectors of R
n, and let A and B be two square

matrices of Mn(R).

1. Find the numbers of operations required to compute the scalar product
〈u, v〉, the Euclidean norm ‖u‖2, and the rank-one matrix uvt.

2. Find the numbers of operations required to compute the matrix-vector
product Au, and the matrix product AB.

3. For n = 100k, with k = 1, . . . , 5, estimate the running time of Matlab
(use the functions tic and toc) for computing the product of two matrices
A=rand(n,n) and B=rand(n,n). Plot this running time in terms of n.

4. Assume that this running time is a polynomial function of n, so that for
n large enough, T (n) ≈ Cns. In order to find a numerical approximation
of the exponent s, plot the logarithm of T in terms of the logarithm of n.
Deduce an approximate value of s.

4.2 (∗). In order to compute the product C = AB of two real square matrices
A and B, we use the usual algorithm

ci,j =
n∑

k=1

ai,kbk,j , 1 ≤ i, j ≤ n,

with the notation A = (ai,j)1≤i,j≤n, B = (bi,j)1≤i,j≤n, and C = (ci,j)1≤i,j≤n.

1. Prove that if A is lower triangular, then the computational complexity for
the product C = AB is equivalent to n3/2 for n large (recall that only
multiplications and divisions are counted).

2. Write, in pseudolanguage, an algorithm that makes it possible to compute
the product C = AB of a lower triangular matrix A with any matrix B
that has the computational complexity n3/2.

3. We assume henceforth that both matrices A and B are lower triangular.
Taking into account their special structure, prove that the computational
complexity for the product C = AB is equivalent to n3/6.

4. Write a function LowTriMatMult that performs the product of two lower
triangular matrices, exploiting the sparse structure of these matrices.
Compare the results obtained with those of Matlab.

5. Write a function MatMult that executes the product of two matrices (with-
out any special structure). Compare the computational time of this func-
tion with that of LowTriMatMult for computing the product of two lower
triangular matrices.

6. Fix n = 300. Define a=triu(rand(n,n)) and b=triu(rand(n,n)). Find
the running time t1 for computing the product a*b. In order to ex-
ploit the sparse structure of the matrices, we define sa=sparse(a),
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sb=sparse(b). Find the running time t2 for the command sa*sb. Com-
pare t1 and t2.

4.3. Let A and B be square matrices of Mn(R), and u a vector of R
n.

1. If A is a band matrix (see Definition 6.2.1), compute the computational
complexity for computing Au (assuming n large) in terms of the half-
bandwidth p and of n.

2. If A and B are two band matrices, of equal half-bandwidths p, prove that
the product AB is a band matrix. Find the computational complexity for
computing AB.

4.4. Write a function Strassen that computes the product of two matrices
of size n× n, with n = 2k, by the Strassen algorithm. It is advised to use the
recursiveness in Matlab, that is, the possibility of calling a function within
its own definition. Check the algorithm by comparing its results with those
provided by Matlab. Compare with the results obtained with the function
MatMult.

4.5. Let A, B, C, and D be matrices of size n× n. Define a matrix X of size
2n × 2n by

X =
(

A B
C D

)
.

We assume that A is nonsingular as well as the matrix ∆ = D − CA−1B (∆
is called the Schur complement of X). Under these two assumptions, check
that the matrix X is nonsingular, and that its inverse is

X−1 =
(

A−1 + A−1B∆−1CA−1 −A−1B∆−1

−∆−1CA−1 ∆−1

)
. (4.4)

Compute the inverse of a 2n × 2n matrix by implementing (4.4) in Matlab.
Use the command inv to compute the inverses of the blocks of size n×n, then
try to minimize the number of block products. Compare your results with the
standard command inv(X).
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Linear Systems

We call the problem that consists in finding the (possibly multiple) solution
x ∈ K

p, if any, of the following algebraic equation

Ax = b (5.1)

a linear system. The matrix A ∈ Mn,p(K), called the “system matrix,” and
the vector b ∈ K

n, called the “right-hand side,” are the data of the problem;
the vector x ∈ K

p is the unknown. As usual, K denotes the field R or C.
The matrix A has n rows and p columns: n is the number of equations (the
dimension of b) and p is the number of unknowns (the dimension of x).

In this chapter, we study existence and uniqueness of solutions for the lin-
ear system (5.1) and we discuss some issues concerning stability and precision
for any practical method to be used on a computer for solving it.

5.1 Square Linear Systems

In this section, we consider only linear systems with the same number of
equations and unknowns: n = p. Such a linear system is said to be square
(like the matrix A). This particular case, n = p, is very important, because
it is the most frequent in numerical practice. Furthermore, the invertibility of
A provides an easy criterion for the existence and uniqueness of the solution.
Note that it is only in the case n = p that the inverse of a matrix can be
defined.

Theorem 5.1.1. If the matrix A is nonsingular, then there exists a unique
solution of the linear system Ax = b. If A is singular, then one of the following
alternatives holds: either the right-hand side b belongs to the range of A and
there exists an infinity of solutions that differ one from the other by addition
of an element of the kernel of A, or the right-hand side b does not belong to
the range of A and there are no solutions.
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The proof of this theorem is obvious (see [10] if necessary), but it does not
supply a formula to compute the solution when it exists. The next proposition
gives such a formula, the so-called Cramer formulas.

Proposition 5.1.1 (Cramer formulas). Let A = (a1| . . . |an) be a nonsin-
gular matrix with columns ai ∈ R

n. The solution of the linear system Ax = b
is given by its entries:

xi =
det (a1| . . . |ai−1| b |ai+1| . . . |an)

det A
, 1 ≤ i ≤ n.

Proof. Since the determinant is an alternate multilinear form, we have for
all j 	= i,

det (a1| . . . |ai−1|λai + µaj |ai+1| . . . |an) = λ det A

for all λ and µ in K. The equality Ax = b is equivalent to b =
∑n

i=1 xiai, that
is, the xi are the entries of b in the basis formed by the columns ai of the
matrix A. We deduce that

det (a1| . . . |ai−1| b |ai+1| . . . |an) = xi det A,

which is the aforementioned formula. �
Let us claim right away that the Cramer formulas are not of much help

in computing the solution of a linear system. Indeed, they are very expensive
in terms of CPU time on a computer. To give an idea of the prohibitive
cost of the Cramer formulas, we give a lower bound cn for the number of
multiplications required to compute the determinant (by the classical row
(or column) development method) of a square matrix of order n. We have
cn = n(1+ cn−1) ≥ ncn−1 and thus cn ≥ n! = n(n−1)(n−2) · · · 1. Therefore,
more than (n + 1)! multiplications are needed to compute the solution of
problem (5.1) by the Cramer method, which is huge. For n = 50, and if the
computations are carried out on a computer working at 1 gigaflop (i.e., one
billion operations per second), the determination of the solution of (6.1) by
the Cramer method requires at least

51!
(365 · 24 · 60 · 60) · (109)

≈ 4.8 × 1049 years!!!

Even if we use a clever way of computing determinants, requiring say the
order of nα operations, the Cramer formulas would yield a total cost of order
nα+1, which is still prohibitive, since Theorem 4.4.1 claims that computing
a determinant or solving a linear system should have the same asymptotic
complexity. We shall study in Chapter 6 methods that require a number of
operations on the order of n3, which is much less than n!; the same computer
would take 10−4 seconds to execute the n3 operations for n = 50. Let us check
that Matlab actually solves linear systems of size n in O(n3) operations. In
Figure 5.1 we display the computational time required by the command A\b,
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where the entries of A, an n×n matrix, are chosen randomly. The results are
displayed with a log-log scale (i.e., ln(time) in terms of ln(n)) in Figure 5.1
for 10 values of n in the range (100, 1000). If the dependence is of the form

time(n) = anp + O(np−1), a > 0,

taking the logarithms yields

ln(time(n)) = p ln(n) + ln(a) + O(1/n).

The plotted curve is indeed close to a line of slope 3; hence the approximation
p ≈ 3. In practice, the slope p is larger than 3 (especially for large values of
n) because in addition to the execution time of operations, one should take
into account the time needed to access the data in the computer memory.

4.5 5 5.5 6 6.5 7

−9

−7

−5

−3

−1
log(CPU)

← straight line with slope 3

log(n)

Fig. 5.1. Running time for solving Ax = b (command A\b of Matlab) in terms of n.

To conclude, the Cramer formulas are never used, because they are too
expensive in terms of computational time. It is an example, among many
others, that an elegant concept from a theoretical viewpoint is not necessarily
practical and efficient from a numerical viewpoint.

The next chapters are devoted to various methods for solving linear sys-
tems like (5.1). Before studying the general case, corresponding to any non-
singular matrix, let us review some simple particular cases:

� If A is a diagonal matrix, it is clear that the computation of the solution x
of (5.1) is performed in just n operations. Recall that we take into account
only multiplications and divisions and not additions and subtractions.

� If A is a unitary matrix, the solution is given by x = A−1b = A∗b. Since
transposition and complex conjugation require no operations, such a com-
putation boils down to a matrix multiplied by a vector, which is performed
in n2 operations.
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� If A is a triangular matrix (lower for instance), then (5.1) reads
⎛
⎜⎜⎜⎜⎜⎜⎝

a1,1 0 . . . . . . 0

a2,1 a2,2
. . . . . .

...
...

...
. . . . . .

...
an−1,1 an−1,2 an−1,n−1 0
an,1 an,2 . . . an,n−1 an,n

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1

x2
...

xn−1

xn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

b1

b2
...

bn−1

bn

⎞
⎟⎟⎟⎟⎠ .

The solution can be computed by the so-called forward substitution al-
gorithm (Algorithm 5.1). We first compute x1 = b1/a1,1; then, using this
value of x1, we obtain x2 = (b2 − a2,1x1)/a2,2; and so on up to xn. For an
upper triangular matrix, we use a “back substitution algorithm,” i.e., we
compute the entries of x in reverse order, starting from xn up to x1.

Data: A, b. Output: x = A−1b.
For i = 1 ↗ n

s = 0
For j = 1 ↗ i − 1

s = s + Ai,jxj

End j
xi = (bi − s)/Ai,i

End i

Algorithm 5.1: Forward substitution algorithm.

To compute the n entries of x, we thus perform
• 1 + 2 + · · · + n − 1 = n(n − 1)/2 multiplications
• n divisions

This is a total number of order n2/2 operations. Note that this algorithm
gives the solution x without having to compute the inverse matrix A−1:
this will always be the case for any efficient algorithm for solving linear
systems.

Since it is very easy to solve a linear system whose matrix is triangular,
many solution methods consist in reducing the problem to solving a triangular
system. Examples of such methods are given in the next chapters. We shall
remember at this stage that solving a triangular linear system requires (on
the order of) n2/2 operations.

Remark 5.1.1. To solve a linear system, it is not necessary to compute A−1.
We have just seen this with the Cramer formulas and the case of a triangular
matrix. In general, solving a linear system does not require that one compute
the inverse matrix A−1 because it is too expensive.

Conversely, if we have at our disposal an algorithm to solve the linear
system Ax = b, then we easily infer a method for determining the inverse
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matrix A−1. Indeed, if we denote by (ei)1≤i≤n the canonical basis of K
n and

xi the solution of the system with ei as right-hand side (i.e., Axi = ei), then
the matrix with columns (xi)1≤i≤n is nothing but A−1.

Remark 5.1.2. When solving a linear system, we use neither the diagonaliza-
tion nor the triangularization properties of the matrix A. Obviously, if we
explicitly knew such a factorization A = PTP−1, solving the linear system
would be easy. However, the trouble is that computing the diagonal or trian-
gular form of a matrix comes down to determining its eigenvalues, which is
much harder and much more costly than solving a linear system by classical
methods.

Remark 5.1.3. If one wants to minimize the storage size of a triangular (or
symmetric) matrix, it is not a good idea to represent such matrices A ∈
Mn(R) by a square array of dimension n×n. Actually, half the memory space
would suffice to store the n(n + 1)/2 nonzero entries of A. It is thus enough
to declare a vector array storea of dimension n(n + 1)/2 and to manage
the correspondence between indices (i, j) and index k such that A(i, j) =
storea(k). We easily check that k(i, j) = j+i(i−1)/2 if the upper triangular
matrix A is stored row by row; see Exercise 5.3.

5.2 Over- and Underdetermined Linear Systems

In this section we consider linear systems of the form (5.1) with different
numbers of equations and unknowns, n 	= p. When n < p, we say that the
system is underdetermined: there are more unknowns than equations (which
allows more “freedom” for the existence of solutions). When n > p, we say
that the system is overdetermined: there are fewer unknowns than equations
(which restricts the possibility of existence of solutions). In both cases, let us
recall a very simple but fundamental result [10].

Theorem 5.2.1. There exists at least one solution of linear system (5.1) if
and only if the right-hand side b belongs to the range of A. The solution is
unique if and only if the kernel of A is reduced to the zero vector. Two solutions
differ by an element of the kernel of A.

When n 	= p, there is no simpler criterion for the existence of solutions to a
linear system. We can only indicate, in a heuristic fashion, that it is more likely
for these to be solutions to an underdetermined system than to an overdeter-
mined one. Let us recall in any case the following obvious consequence of the
rank theorem.

Lemma 5.2.1. If n < p, then dim KerA ≥ p − n ≥ 1, and if there exists a
solution of the linear system (5.1), there exists an infinity of them.
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To avoid this delicate existence issue of the solution to a nonsquare linear
system, there is another way of looking at it by considering it as a “least
squares problem,” in other words, a “generalized” or approximate solution, in
the sense of least squares fitting, is called for. Chapter 7 is dedicated to this
topic.

5.3 Numerical Solution

We now focus on the practical aspects for solving numerically a linear system
on a computer. We have already seen that solution algorithms have to be very
efficient, that is, fast (by minimizing the number of performed operations),
and sparing memory storage. Furthermore, there is another practical requisite
for numerical algorithms: their accuracy. Indeed, in scientific computing there
are no exact computations! As we shall see below in Section 5.3.1, a computer’s
accuracy is limited due to the number of bits used to represent real numbers:
usually 32 or 64 bits (which makes about 8 or 16 significant digits). Therefore,
utmost attention has to be paid to the inevitable rounding errors and to their
propagation during the course of a computation. The example below is a
particularly striking illustration of this issue.

Example 5.3.1. Consider the following linear system:
⎛
⎜⎝

8 6 4 1
1 4 5 1
8 4 1 1
1 4 3 6

⎞
⎟⎠x =

⎛
⎜⎝

19
11
14
14

⎞
⎟⎠ ⇒ x =

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ .

If we slightly modify the right-hand side, we obtain a very different solution:
⎛
⎜⎝

8 6 4 1
1 4 5 1
8 4 1 1
1 4 3 6

⎞
⎟⎠x =

⎛
⎜⎝

19.01
11.05
14.07
14.05

⎞
⎟⎠ ⇒ x =

⎛
⎜⎝

−2.34
9.745
−4.85
−1.34

⎞
⎟⎠ .

This example shows that small errors in the data or in intermediate results
may lead to unacceptable errors in the solution. Actually, the relative error
in the solution, computed in the ‖.‖∞ norm, is about 2373 times larger than
the relative error on the right-hand side of the equation. This amplification of
errors depends on the considered matrix (for instance for the identity matrix
there are no amplifications of errors). One has therefore to make sure that
numerical algorithms do not favor such an amplification. Such a property is
called stability.

Remark 5.3.1. Numerical methods (or algorithms) for solving linear systems
have to be at the same time efficient and stable. This is really a crucial issue,
especially for so-called iterative methods (see Chapter 8). Their name is in
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opposition to direct methods (see Chapter 6), which would compute the exact
solution if there were no rounding errors (perfect or exact arithmetic). On the
other hand, iterative methods compute a sequence of approximate solutions
that converges to the exact solution: in such a case, stability is a necessary
condition.

5.3.1 Floating-Point System

We briefly discuss the representation of numbers in digital computers and its
associated arithmetic, which is not exact and is of limited accuracy, as we
anticipated. Since digital computers have a finite memory, integers and real
numbers can be (approximately) represented by only a finite number of bits.
Let us describe a first naive representation system.

Fixed-Point Representation. Suppose that p bits are available to code
an integer. Here is a simple way to do it. The first bit is used to indicate
the sign of the integer (0 for a positive integer and 1 for a negative one),
the p − 1 other bits contain the base-2 representation of the integer. For
example, for p = 8, the positive integers 11 = 1 × 23 + 1 × 21 + 1 × 20 and
43 = 1 × 25 + 1 × 23 + 1 × 21 + 1 × 20 are encoded as

0 0 0 0 1 0 1 1 and 0 0 1 0 1 0 1 1

For negatives integers, the complement representation can be used: it consists
in reversing the bits (0 becomes 1 and 1 becomes 0). For example, −11 and
−43 are encoded as

1 1 1 1 0 1 0 0 and 1 1 0 1 0 1 0 0

Integers outside the interval [−2p−1, 2p−1−1] cannot be encoded in the fixed-
point representation, which is a severe limitation! The same difficulty arises
for real numbers too. Therefore, there is a need for another representation.
We now describe a more elaborate representation system, which is used by all
computers dedicated to scientific computing.

Floating-Point Representation. For given integers b, p, nmin, and nmax,
we define the floating-point numbers as real numbers of the form

± (0.d1 . . . dp) × bn,

with d1 	= 0, 0 ≤ di ≤ b − 1, and −nmin ≤ n ≤ nmax. We denote by F the
(finite) set of all floating-point numbers. In this notation,

1. b is the base. The most common bases are b = 2 (binary base), b = 10
(decimal base), and b = 16 (hexadecimal base).

2. n ∈ [−nmin, nmax] is the exponent that defines the order of magnitude of
the numbers to be encoded.
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3. The integers di ∈ [0, b − 1] are called the digits and p is the number of
significant digits. The mantissa or significand is the integer m = d1 . . . dp.
Note that

m × bn−p = (0.d1 . . . dp) × bn = bn

p∑
k=1

dkb−k.

The following bounds hold for floating-point numbers

amin ≤ |a| ≤ amax, ∀a ∈ F ,

where amin = b−(nmin+1) corresponds to the case d1 = 1, d2 = · · · = dp = 0,
and n = −nmin, amax = bnmax(1− b−p) corresponds to the case n = nmax and
d1 = . . . dp = (b−1). In other words, amin is the smallest positive real number,
and amax the largest one, that can be represented in the set of floating-point
numbers. Smaller numbers produce an underflow and larger ones an overflow.
Computers usually support simple precision (i.e., representation with 32 bits)
and double precision (i.e., representation with 64 bits). In the single-precision
representation, 1 bit is used to code the sign, 8 bits for the exponent, and 23
bits for the mantissa (for a total of 32 bits). In the double-precision represen-
tation, 1 bit is used to code the sign, 11 bits for the exponent, and 52 bits for
the mantissa (for a total of 64 bits). The precise encoding is system dependent.
For example, in a single precision representation, 356.728 is encoded

0 0 0 0 0 0 0 0 3 3 5 6 7 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

in the decimal base and 81.625 = 26 + 24 + 20 + 2−1 + 2−3 = (2−1 + 2−3 +
2−7 + 2−8 + 2−10)27 is encoded

0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

in the binary base. In practice, the floating-point representation is more elabo-
rate than these simple examples. For example, in the binary base, the first digit
of the mantissa is always 1, hence it is not necessary to store it. By the same
token, the exponent is encoded as an unsigned number by adding to it a fixed
“bias” (127 is the usual bias in single precision). Let us consider again the real
number 81.625 written this time as 81.625 = (20 + 2−2 + 2−6 + 2−7 + 2−9)26.
The biased exponent to be stored is 127 + 6 = 27 + 22 + 20, and the complete
encoding is (compare with the previous encoding)

0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The mapping from real number to floating-point numbers is called the
floating-point representation or the rounding. Let fl(x) be the floating-point
number associated to the real number x. The following equality holds for all
real numbers x ∈ [amin, amax] ∪ {0}:

fl(x) = x(1 + ε),
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with |ε| ≤ εmachine, and εmachine = 1
2b1−p, a number called the machine

precision. Typically, for a computer with binary 32-bit single precision (b = 2,
p = 23), the machine precision is εmachine = 2−23 ≈ 11.9 × 10−8, while for
a binary 64-bit double precision computer εmachine = 2−52 ≈ 2.2 × 10−16

(the exponents in εmachine explain the 8 or 16 significant digits for single or
double-precision arithmetic). Concerning other properties of the floating-point
numbers (for example their distribution and the effect of rounding), we refer
the reader to the sections in [6], [13], and [15] devoted to the floating-point
system.
Floating-Point Arithmetic. A key issue is to quantify the precision of the
computer realization of an elementary arithmetic operation. Let us consider
the case of the operation +. The same holds true for the other operations −,
×, and ÷. Of course, the sum of two floating-point numbers is usually not
a floating-point number. We denotes by +̃ the computer realization of the
addition: for real numbers x and y,

x+̃y = fl (fl(x) + fl(y)) .

Unlike the operation +, this operation is not associative: (x+̃y)+̃z 	= x+̃(y+̃z).
Overflow occurs if the addition produces a too-large number, |x+̃y| > amax,
and underflow occurs if it produces a too-small number, |x+̃y| < amin. Most
computer implementations of addition (including the widely used IEEE arith-
metic) satisfy the property that the relative error is less than the machine
precision: ∣∣∣∣ (x+̃y) − (x + y)

x + y

∣∣∣∣ ≤ εmachine,

assuming x+y 	= 0 and amin < |x|, |y| < amax. Hence the relative error on one
single operation is very small, but this is not always the case when a sequence
of many operations is performed.

We will not study the precise roundoff, or error propagation, of vectorial
operations (such as scalar product and matrix-vector product) or numerical
algorithms presented in this book, and we refer the reader to [7] for more
details.

Let us conclude this section by saying that underflow and overflow are
not the only warning or error messages produced by a floating-point represen-
tation. Forbidden operations (like dividing by zero) or unresolved operations
(like 0÷0) produce, as an output, NaN (which means not a number) or Inf (in-
finity). In practice, obtaining a NaN or Inf is a clear indication that something
is going wrong in the algorithm!

5.3.2 Matrix Conditioning

To quantify the rounding error phenomenon, we introduce the notion of matrix
conditioning. It helps to measure the sensitivity of the solution x of the linear
system Ax = b to perturbations of the data A and b (we assume that A is



80 5 Linear Systems

a nonsingular square matrix and that b is nonzero). Let ε ≥ 0 be a small
parameter of data perturbation. We define Aε and bε, perturbations of A and
b, by

Aε = A + εB, B ∈ Mn(K), bε = b + εγ, γ ∈ K
n. (5.2)

Since A is nonsingular, Aε is also nonsingular for ε small enough (see Remark
3.3.2), and we denote by xε the solution of the system

Aεxε = bε. (5.3)

We remark that A−1
ε = (I + εA−1B)−1A−1, and using Proposition 3.3.1 for ε

small, we have (I + εA−1B)−1 = I − εA−1B + O(ε2). Consequently, we can
write an asymptotic expansion of xε in terms of ε:

xε = (I + εA−1B)−1A−1(b + εγ)
=
[
I − εA−1B + O(ε2)

]
(x + εA−1γ)

= x + εA−1(γ − Bx) + O(ε2),

where O(ε2) denotes a vector y ∈ K
n such that ‖y‖ = O(ε2) in a given vector

norm. Noting that ‖b‖ ≤ ‖A‖ ‖x‖, we have the following upper bounds for a
vector norm and its corresponding matrix norm:

‖xε − x‖ ≤ ε‖x‖ ‖A−1‖ ‖A‖
{
‖γ‖
‖b‖ +

‖B‖
‖A‖

}
+ O(ε2). (5.4)

Definition 5.3.1. The condition number of a matrix A ∈ Mn(K), relative to
a subordinate matrix norm ‖.‖, is the quantity defined by

cond(A) = ‖A‖ ‖A−1‖.

Note that we always have cond(A) ≥ 1, since 1 = ‖I‖ = ‖AA−1‖ ≤
‖A‖ ‖A−1‖. Inequality (5.4) reads then as

‖xε − x‖
‖x‖ ≤ cond(A)

{
‖Aε − A‖

‖A‖ +
‖bε − b‖

‖b‖

}
+ O(ε2). (5.5)

This upper bound shows that the relative error (to first-order in ε) in x is
bounded from above by cond(A) times the relative error in A and b. The
condition number cond(A) thus measures the conditioning or the sensitivity
of the problem Ax = b to perturbations in the data A or b. Even if the
relative error in data A and b is small, the relative error in the solution x
may be large if the quantity cond(A) is large. In other words, the condition
number measures the amplification of errors in the data (right-hand side b or
matrix A). We can establish a more accurate upper bound than (5.5) if we
perturb only one datum, b or A.

Proposition 5.3.1. Let A be a nonsingular matrix and b 	= 0 a vector.
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1. If x and x + δx are respectively the solutions of the systems

Ax = b and A(x + δx) = b + δb,

we have
‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖ . (5.6)

2. If x and x + δx are respectively the solutions of the systems

Ax = b and (A + δA)(x + δx) = b, (5.7)

we have
‖δx‖

‖x + δx‖ ≤ cond(A)
‖δA‖
‖A‖ .

Furthermore, these inequalities are optimal.

Proof. To prove the first result, we observe that Aδx = δb implies that
‖δx‖ ≤ ‖A−1‖ · ‖δb‖. However, we also have ‖b‖ ≤ ‖A‖‖x‖, which yields

‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖ .

This inequality is optimal in the following sense: for every matrix A, there
exists δb and x (which depend on A) such that

‖δx‖
‖x‖ = cond(A)

‖δb‖
‖b‖ . (5.8)

In fact, according to a property of subordinate matrix norms (cf. Proposition
3.1.1 in Chapter 3) there exist x0 	= 0 such that ‖Ax0‖ = ‖A‖ ‖x0‖ and x1 	= 0
such that ‖A−1x1‖ = ‖A−1‖ ‖x1‖. For b = Ax0 and δb = x1, we have x = x0

and δx = A−1x1, and equality (5.8) holds.
To obtain the second result, we observe that

Aδx + δA(x + δx) = 0 ⇒ ‖δx‖ ≤ ‖A−1‖ + ‖δA‖‖x + δx‖,

from which we deduce

‖δx‖
‖x + δx‖ ≤ cond(A)

‖δA‖
‖A‖ .

To prove the optimality, we show that for any matrix A, there exist a per-
turbation δA and a right-hand side b that satisfy the equality. Thanks to
Proposition 3.1.1 there exists y 	= 0 such that ‖A−1y‖ = ‖A−1‖‖y‖. Let ε be
a nonzero scalar. We set δA = εI and b = (A + δA)y. We then check that
y = y + δx and δx = −εA−1y, and since ‖δA‖ = |ε|, we infer the desired
equality. �
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In practice, the most frequently used conditionings are

condp(A) = ‖A‖p‖A−1‖p for p = 1, 2,+∞,

where the matrix norms are subordinate to the vector norms ‖.‖p. For in-
stance, for the matrix in Example 5.3.1, we have cond∞(A) ≈ 5367, which
accounts for the strong amplification of small perturbations of the right-hand
side on the solution. Let us note at once that the upper bound (5.6), while
optimal, is in general very pessimistic; see Remark 5.3.3.

We now establish some properties of the condition number.

Proposition 5.3.2. Consider a matrix A ∈ Mn(C).

1. cond(A) = cond(A−1), cond(αA) = cond(A) ∀α 	= 0.
2. For any matrix A,

cond2(A) =
µ1(A)
µn(A)

, (5.9)

where µn(A) and µ1(A) are respectively the smallest and the largest sin-
gular values of A.

3. For a normal matrix A,

cond2(A) =
|λmax(A)|
|λmin(A)| = �(A)�(A−1), (5.10)

where |λmin(A)| and |λmax(A)| are respectively the modulus of the smallest
and largest eigenvalues of A.

4. For any unitary matrix U , cond2(U) = 1.
5. For any unitary matrix U , cond2(AU) = cond2(UA) = cond2(A).

The proof of this proposition follows directly from the properties of the sub-
ordinate norm ‖ · ‖2.

Remark 5.3.2. Equality (5.10) is optimal, in the sense that for any matrix
norm, we have

cond(A) = ‖A‖ ‖A−1‖ ≥ �(A)�(A−1).

In particular, for a normal matrix A, we always have cond(A) ≥ cond2(A).
A matrix A is said to be “well conditioned” if for a given norm, cond(A) ≈

1; it is said to be “ill conditioned” if cond(A) � 1. Unitary matrices are
very well conditioned, which explains why one has to manipulate, whenever
possible, these matrices rather than others.

Since all norms are equivalent in a vector space of finite dimension, the
condition numbers of matrices in Mn(K) are equivalent in the following sense.

Proposition 5.3.3. Conditionings cond1, cond2, and cond∞ are equivalent:

n−1 cond2(A) ≤ cond1(A) ≤ n cond2(A),
n−1 cond∞(A) ≤ cond2(A) ≤ n cond∞(A),
n−2 cond1(A) ≤ cond∞(A) ≤ n2 cond1(A).
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Proof. The inequalities follow from the equivalences between the matrix
norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞, which in turn follow from the equivalences
between the corresponding vector norms. �

Remark 5.3.3. The upper bound (5.6), while optimal, is in general very pes-
simistic, as is shown by the following argument, based on the SVD decompo-
sition. Let A = V ΣU∗ be the SVD decomposition of the nonsingular square
matrix A with Σ = diag (µi) and µ1 ≥ · · · ≥ µn > 0. We expand b (respec-
tively x) in the basis of columns vi of V (respectively ui of U)

b =
n∑

i=1

bivi, x =
n∑

i=1

xiui.

We consider a perturbation δb that we write in the form δb = ε‖b‖2

∑n
i=1 δivi,

with ε > 0 and
∑n

i=1 |δi|2 = 1, so that ‖δb‖2 = ε‖b‖2. Let us show that
equality in (5.6) may occur only exceptionally if we use the Euclidean norm.
Observing that Aui = µivi, we have

xi =
bi

µi
and δxi = ε‖b‖2

δi

µi
,

and since the columns of U and V are orthonormal, the equality in (5.6) occurs
if and only if

ε2‖b‖2
2

∑n
i=1 | δi

µi
|2

‖x‖2
2

= ε2 µ2
1

µ2
n

.

Setting ci = bi/‖b‖2, this equality becomes

µ2
n

n∑
i=1

∣∣∣∣ δi

µi

∣∣∣∣
2

= µ2
1

n∑
i=1

∣∣∣∣ ci

µi

∣∣∣∣
2

,

that is,

|δn|2 +
n−1∑
i=1

µ2
n

µ2
i

|δi|2 = |c1|2 +
n∑

i=2

µ2
1

µ2
i

|ci|2.

And since
∑n

i=1 |δi|2 =
∑n

i=1 |ci|2 = 1, we have

n−1∑
i=1

(
µ2

n

µ2
i

− 1
)
|δi|2 =

n∑
i=2

(
µ2

1

µ2
i

− 1
)
|ci|2.

Since the left sum is nonpositive and the right sum is nonnegative, both sums
are zero. Now, all the terms of these two sums have the same sign; hence every
term of these sums is zero:(

µ2
n

µ2
i

− 1
)
|δi|2 = 0 and

(
µ2

1

µ2
i

− 1
)
|ci|2 = 0 for 1 ≤ i ≤ n.
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We deduce that if µi 	= µn then δi = 0, and if µi 	= µ1 then ci = 0. In other
words, the equality in (5.6) may occur only if the right-hand side b belongs to
the first eigenspace (corresponding to µ1) of A∗A and if the perturbation δb
belongs to the last eigenspace (corresponding to µn) of A∗A. This coincidence
seldom takes place in practice, which accounts for the fact that in general,
‖δx‖
‖x‖ is much smaller than its upper bound cond(A)‖δb‖

‖b‖ . See on this topic an
example in Section 5.3.3 below.

Geometric interpretation of cond2(A). We have seen (see Figure 2.2) that
the range, by the matrix A, of the unit sphere of R

n is an ellipsoid, whose
semiaxes are the singular values µi. Proposition 5.3.2 shows that the (2-norm)
conditioning of a matrix measures the flattening of the ellipsoid. A matrix is
therefore well conditioned when this ellipsoid is close to a sphere.

Another interpretation of cond2(A). The condition number cond2(A) of
a nonsingular matrix A turns out to be equal to the inverse of the relative
distance from A to the subset of singular matrices in Mn(C). Put differently,
the more a matrix is ill conditioned, the closer it is to being singular (and
thus difficult to invert numerically).

Lemma 5.3.1. The condition number cond2(A) of a nonsingular matrix A
is equivalently defined as

1
cond2(A)

= inf
B∈Sn

{
‖A − B‖2

‖A‖2

}
,

where Sn is the set of singular matrices of Mn(C).

Proof. Multiplying the above equality by ‖A||2 we have to prove that

1
‖A−1‖2

= inf
B∈Sn

{‖A − B‖2}. (5.11)

If there were B ∈ Sn such that ‖A − B‖2 < 1/‖A−1‖2, we would have

‖A−1(A − B)‖2 ≤ ‖A−1‖2 ‖A − B‖2 < 1,

and by Proposition 3.3.1 (and Lemma 3.3.1) the matrix I − A−1(A − B) =
A−1B would be nonsingular, whereas by assumption, B ∈ Sn. Hence, we have

inf
B∈S

{‖A − B‖2} ≥ 1
‖A−1‖2

.

Now we show that the infimum in (5.11) is attained by a matrix B0 ∈ Sn

satisfying

‖A − B0‖2 =
1

‖A−1‖2
.

By virtue of Proposition 3.1.1 there exists a unit vector u ∈ C
n, ‖u‖2 = 1,

such that ‖A−1‖2 = ‖A−1u‖2. Let us check that the matrix
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B0 = A − u(A−1u)∗

‖A−1‖2
2

satisfies the condition. We have

‖A − B0‖2 =
1

‖A−1‖2
2

‖u(A−1u)∗‖2 =
1

‖A−1‖2
2

max
x�=0

‖u(A−1u)∗x‖2

‖x‖2
.

Since u(A−1u)∗x = 〈x,A−1u〉u and ‖A−1u‖2 = ‖A−1‖2, we deduce

‖A − B0‖2 =
1

‖A−1‖2
2

max
x�=0

| 〈x,A−1u〉 |
‖x‖2

=
‖A−1u‖2

‖A−1‖2
2

=
1

‖A−1‖2
.

The matrix B0 indeed belongs to Sn, i.e., is singular because A−1u 	= 0 and

B0A
−1u = u − u(A−1u)∗A−1u

‖A−1‖2
2

= u − 〈A−1u,A−1u〉u
‖A−1‖2

2

= 0.

�

Remark 5.3.4 (Generalization of the conditioning). If a nonzero matrix A is
not square or singular, we define its condition number relative to a given norm
by

cond(A) = ‖A‖ ‖A†‖,
where A† is the pseudoinverse of the matrix A. By Definition 2.7.2 we have

‖A†‖2 = ‖Σ̃†‖2 =
1
µp

,

where µp is the smallest nonzero singular value of the matrix A. Denoting by
µ1(A) the largest singular value of A, we obtain the following generalization
of (5.9):

cond2(A) =
µ1(A)
µp(A)

.

5.3.3 Conditioning of a Finite Difference Matrix

We return to the differential equation (1.1) and its discretization by finite
differences (see Section 1.1). When the coefficient c(x) is identically zero on
the interval [0, 1], (1.1) is called the “Laplacian.” In this case, the matrix
An, resulting from the discretization by finite difference of the Laplacian, and
defined by (1.2), reads

An = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0

−1 2
. . . . . .

...

0
. . . . . . −1 0

...
. . . −1 2 −1

0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.12)
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Lemma 5.3.2. For any n ≥ 2, the linear system Anu(n) = b(n) has a unique
solution.

Proof. It suffices to show that An is nonsingular. An easy calculation shows
that

〈Anv, v〉 =
n−1∑
i=1

civ
2
i + n2

(
v2
1 + v2

n−1 +
n−1∑
i=2

(vi − vi−1)2
)

,

which proves that the matrix An is positive definite, since ci ≥ 0. Hence this
matrix is nonsingular. �

Its particularly simple form allows us to explicitly determine its 2-norm
conditioning. Recall that the reliability of the linear system solution associated
with An, and thus of the approximation of the solution of the Laplacian, is
linked to the condition number of An. Being symmetric and positive definite
(see the proof of Lemma 5.3.2), its 2-norm conditioning is given by (5.10), so
it is equal to the quotient of its extreme eigenvalues.

We thus compute the eigenvalues and secondarily the eigenvectors of An.
Let p = (p1, . . . , pn−1)t be an eigenvector of An corresponding to an eigenvalue
λ. Equation Anp = λp reads, setting h = 1/n,

−pk−1 + (2 − λh2)pk − pk+1 = 0, 1 ≤ k ≤ n − 1, (5.13)

with p0 = pn = 0. We look for special solutions of (5.13) in the form pk =
sin(kα), 0 ≤ k ≤ n, where α is a real number to be determined. Relation
(5.13) implies that

{2 − 2 cos α − λh2} sin(kα) = 0.

In particular, for k = 1,

{2 − 2 cos α − λh2} sin(α) = 0.

Since α is not a multiple of π, i.e., sin(α) 	= 0 (otherwise p would be zero), we
infer that

λ =
2(1 − cos α)

h2
=

4 sin2(α/2)
h2

.

Moreover, the boundary conditions, p0 = 0 and pn = 0 imply that sin(nα) = 0.
Therefore we find (n − 1) different possible values of α, which we denote by
α
 = 
π/n for 1 ≤ 
 ≤ n − 1, and which yield (n − 1) distinct eigenvalues of
An (i.e., all the eigenvalues of An, since it is of order n − 1):

λ
 =
4
h2

sin2
(



π

2n

)
. (5.14)

Each eigenvalue λ
 is associated with an eigenvector p
 whose entries are(
sin[
kπ/n]

)n−1

k=1
. The n − 1 eigenvalues of An are positive (and distinct),
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0 < λ1 < · · · < λn−1, which is consistent with the fact that the matrix An is
positive definite. The condition number of the symmetric matrix An is thus

cond2(An) =
sin2

(
π
2

n−1
n

)

sin2
(

π
2n

) .

When n tends to +∞ (or h tends to 0), we have

cond2(An) ≈ 4n2

π2
=

4
π2h2

.

We deduce that limn→+∞ cond2(An) = +∞, so An is ill conditioned for n
large. We come to a dilemma: when n is large, the vector un (discrete solution
of the linear system) is close to the exact solution of the Laplacian (see The-
orem 1.1.1). However, the larger n is, the harder it is to accurately determine
un: because of rounding errors, the computer provides an approximate solu-
tion ũn that may be very different from u(n) if we are to believe Proposition
5.6, which states that the relative error on the solution is bounded from above
as follows:

‖ũ(n) − u(n)‖2

‖u(n)‖2
≤ cond(An)

‖∆b(n)‖2

‖b(n)‖2
≈ 4

π2
n2 ‖∆b(n)‖2

‖b(n)‖2
,

where ∆b(n) measures the variation of the right-hand side due to rounding
errors. This upper bound is however (and fortunately) very pessimistic! Ac-
tually, we shall show for this precise problem, when the boundary conditions
are u(0) = u(1) = 0, that we have

‖∆u(n)‖2

‖u(n)‖2
≤ C

‖∆b(n)‖2

‖b(n)‖2
, (5.15)

with a constant C independent of n. This outstanding improvement of the
bound on the relative error is due to the particular form of the right-hand
side b of the linear system Anu(n) = b(n). Let us recall that b is obtained
by discretization of the right-hand side f(x) of (1.1), that is, b

(n)
i = f(xi).

We have h‖b(n)‖2
2 = h

∑n−1
i=1 f2(ih), and we recognize here a Riemann sum

discretizing the integral
∫ 1

0
f2(x)dx. Since the function f is continuous, we

know that

lim
n→+∞

h‖b(n)‖2
2 =

∫ 1

0

f2(x)dx.

Similarly,

lim
n→+∞

h‖u(n)‖2
2 =

∫ 1

0

u2(x)dx.

Recall that ∆u(n) = A−1
n ∆b(n), and hence ‖∆u(n)‖2 ≤ ‖A−1

n ‖2‖∆b(n)‖2. Thus
we deduce the following upper bound for the relative error on the solution
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‖∆u(n)‖2

‖u(n)‖2
≤ ‖A−1

n ‖2
‖∆b(n)‖2

‖u(n)‖2
=

1
λ1

‖b(n)‖2

‖u(n)‖2

‖∆b(n)‖2

‖b(n)‖2
,

since ‖A−1
n ‖2 = 1/λ1 ≈ π2, according to (5.14). Using the above convergence

of Riemann sums we claim that

1
λ1

‖b(n)‖2

‖u(n)‖2
≈ π2

(∫ 1

0
f2(x)dx∫ 1

0
u2(x)dx

)1/2

,

which yields the announced upper bound (5.15) with a constant C independent
of n.

5.3.4 Approximation of the Condition Number

In general, it is too difficult to compute the condition number of a matrix A
exactly. For the conditioning in the 1- or ∞-norm, we have simple formulas
at our disposal for the norm of A (see Proposition 3.1.2), but it requires the
explicit computation of A−1 to find its norm, which is far too expensive for
large matrices. Computing the 2-norm conditioning, given by formula (5.9) or
(5.10), is also very costly because it requires the extreme singular values or
eigenvalues of A, which is neither easy nor cheap, as we shall see in Chapter
10.

Fortunately, in most cases we do not need an exact value of a matrix
condition number, but only an approximation that will allow us to predict
beforehand the quality of the expected results (what really matters is the
order of magnitude of the conditioning more than its precise value). We look
therefore for an approximation of condp(A) = ‖A−1‖p ‖A‖p. The case p = 1
is handled, in Exercise 5.13, as a maximization of a convex function on a
convex set. The case p = ∞ is an easy consequence of the case p = 1 since
cond∞(A) = cond1(At). In both cases (p = 1 and p = ∞) the main difficulty
is the computation of ‖A−1‖p.

We now focus on the case p = 2. Consider the SVD decomposition of
the nonsingular matrix A ∈ Mn(R), A = V ΣU t, where Σ = diag (µi) with
µ1 ≥ · · · ≥ µn > 0, the singular values of A. It furnishes two orthonormal
bases of R

n: one made up of the columns ui of the orthogonal matrix U ,
the other of the columns vi of the orthogonal matrix V . We expand a vector
x ∈ R

n in the vi basis, x =
∑

i xivi. Since Aui = µivi, we have the following
relations:

‖A‖2 = max
x�=0

‖Ax‖
‖x‖ = µ1 = ‖Au1‖ (5.16)

and

‖A−1‖2 = max
x�=0

‖A−1x‖
‖x‖ =

1
µn

= ‖A−1vn‖. (5.17)

We can thus easily determine the norm of A by computing the product Au1,
and the norm of A−1 by solving a linear system Ax = vn. The trouble is that
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in practice, computing u1 and vn is a very costly problem, similar to finding
the SVD decomposition of A.

We propose a heuristic evaluation of ‖A‖2 and ‖A−1‖2 by restricting the
maximum in (5.16) and (5.17) to the subset {x ∈ R

n, xi = ±1}. The scheme
is the following: we compute an approximation α of ‖A‖2, an approximation
β of ‖A−1‖2, and deduce an approximation αβ of cond2(A). Note that these
approximations are actually lower bound for we make a restriction on the
maximization set. Hence, we always get a lower bound for the conditioning

cond2(A) = ‖A‖2 ‖A−1‖2 ≥ αβ.

In practice, we can restrict our attention to triangular matrices. Indeed, we
shall see in the next chapter that most (if not all) efficient algorithms for
solving linear systems rely on the factorization of a matrix A as a product of
two simple matrices (triangular or orthogonal) A = BC. The point in such a
manipulation is that solving a linear system Ax = b is reduced to two easy
solutions of triangular or orthogonal systems By = b and Cx = y (see Section
5.1). The following upper bound on conditioning holds:

cond(A) ≤ cond(B) cond(C).

The condition number cond2 of an orthogonal matrix being equal to 1, if we
content ourselves with an upper bound, it is enough to compute condition
numbers for triangular matrices only. We shall therefore assume in the sequel
of this section that the matrix A is (for instance, lower) triangular.

Data: A. Output: r ≈ ‖A‖2

x1 = 1; y1 = a1,1

For i = 2 ↗ n
s = 0
For j = 1 ↗ i − 1

s = s + ai,jxj

End j
If |ai,i + s| > |ai,i − s|

then
xi = 1

otherwise
xi = −1

End If
yi = ai,ixi + s

End i
r = ‖y‖2/

√
n

Algorithm 5.2: Approximation of ‖A‖2.

Approximation of ‖A‖2. When A is lower triangular, the entries of y = Ax
are deduced (from i = 1 to n) from those of x by the formulas
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yi = ai,ixi +
i−1∑
j=1

ai,jxj .

A popular computing heuristic runs as follows. We fix x1 = 1 and accordingly
y1 = a1,1. At each next step i ≥ 2, we choose xi equal to either 1 or −1, in
order to maximize the modulus of yi; see Algorithm 5.2. Observe that we do
not maximize among all vectors x whose entries are equal to ±1, since at each
step i we do not change the previous choices xk with k < i (this is typical of
so-called greedy algorithms). Since the norm of x is equal to

√
n, we obtain

the approximation ‖A‖2 ≈ ‖y‖2/
√

n.

Approximation of ‖A−1‖2. Similarly, we seek a vector x whose entries xi

are all equal to ±1 and that heuristically maximizes the norm of y = A−1x.
Since A is lower triangular, y will be computed by the forward substitution
algorithm previously studied (see Algorithm 5.1). The proposed computing
heuristic consists in fixing x1 = 1 and choosing each entry xi for i ≥ 2 equal
to 1 or −1 so that the modulus of the corresponding entry yi is maximal. It
yields the approximation ‖A−1‖2 ≈ ‖y‖2/

√
n; see Algorithm 5.3.

Data: A. Output: r ≈ ‖A−1‖2.
y1 = 1/a1,1

For i = 2 ↗ n
s = 0
For j = 1 ↗ i − 1

s = s + ai,jyj

End j
yi = −(sign(s) + s)/ai,i

End i
r = ‖y‖2/

√
n

Algorithm 5.3: Computation of ‖A−1‖2.

Finally, Algorithm 5.4 computes an approximation, at low cost, of the 2-
norm condition number of a matrix. We can arguably criticize Algorithm 5.4
(see the numerical tests in Exercise 5.12) for being based on a local criterion:
each entry yi is maximized without taking into account the other ones. There
exist less local variants of Algorithm 5.4 in the sense that they simultaneously
take into account several entries.

Data: A. Output: c ≈ cond2(A).
• compute r1 by Algorithm 5.2
• compute r2 by Algorithm 5.3
• set c = r1r2.

Algorithm 5.4: Approximation of cond2(A).
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5.3.5 Preconditioning

Instead of solving a linear system Ax = b with an ill-conditioned matrix A,
it may be more efficient to solve the equivalent linear system C−1Ax = C−1b
with a nonsingular matrix C that is easily invertible and such that C−1A is
better conditioned than A. All the trouble is to find such a matrix C, called
a preconditioner. The best choice would be such that C−1A is close to the
identity (whose conditioning is minimal, equal to 1), that is, C is close to A,
but computing A−1 is at least as difficult as solving the linear system!

We already know that conditioning is important for the stability and sensi-
tivity to rounding errors in solving linear systems. We shall see later, in Chap-
ter 9, that conditioning is also crucial for the convergence of iterative methods
for solving linear systems (especially the conjugate gradient method). Thus
it is very important to find good preconditioners. However it is a difficult
problem for which there is no universal solution. Here are some examples.

� Diagonal preconditioning. The simplest example of a preconditioner
is given by the diagonal matrix whose diagonal entries are the inverses
of the diagonal entries of A. For example, we numerically compare the
conditionings of matrices

A =
(

8 −2
−2 50

)
and B = D−1A, where D = diag (8, 50),

for which Matlab gives the approximate values

cond2(A) = 6.3371498 and cond2(B) = 1.3370144.

Thus, the diagonal preconditioning allows us to reduce the condition num-
ber, at least for some problems, but certainly not for all of them (think
about matrices having a constant diagonal entry)!

� Polynomial preconditioning. The idea is to define C−1 = p(A), where
p is a polynomial such that cond(C−1A) � cond(A). A good choice of
C−1 = p(A) is to truncate the expansion in power series of A−1,

A−1 =
(
I − (I − A)

)−1

= I +
∑
k≥1

(I − A)k,

which converges if ‖I − A‖ < 1. In other words, we choose the polyno-
mial p(x) = 1 +

∑d
k=1(1 − x)k. We suggest that the reader program this

preconditioner in Exercise 5.15.
� Right preconditioning. Replacing the system Ax = b by C−1Ax =

C−1b is called left preconditioning since we multiply the system on its
left by C−1. A symmetric idea is to replace Ax = b by the so-called
right preconditioned system AD−1y = b with x = D−1y and D (eas-
ily) invertible. Of course, we can mix these two kinds of precondition-
ing, and solve C−1AD−1y = C−1b, then compute x by D−1y = x.
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This is interesting if A is symmetric and if we choose C = Dt because
C−1AD−1 is still symmetric. Of course, this preconditioning is efficient
when cond(C−1AD−1) � cond(A) and solving Dx = y is easy.

We shall return to preconditioning in Chapter 9, which features more efficient
preconditioners.

5.4 Exercises

5.1. Floating-point representation, floating-point arithmetic.
Run the following instructions and comment the results.

1. Floating-point accuracy (machine precision).

a=eps;b=0.5*eps;X=[2, 1;2, 1];
A=[2, 1;2, 1+a];norm(A-X)
B=[2, 1;2, 1+b];norm(X-B)

2. Floating-point numbers bounds.

rM=realmax, 1.0001*rM, rm=realmin, .0001*rm

3. Infinity and “Not a number.”

A=[1 2 0 3]; B=1./A, isinf(B), C=A.*B

4. Singular or not?

A=[1 1; 1 1+eps];inv(A), rank(A)
B=[1 1; 1 1+.5*eps];inv(B), rank(B)

5.2 (∗). How to solve a triangular system.

1. Write a function whose heading is function x=ForwSub(A,b) computing
by forward substitution (Algorithm 5.1) the solution, if it exists, of the
system Ax = b, where A is a lower triangular square matrix.

2. Write similarly a function BackSub(A,b) computing the solution of a sys-
tem whose matrix is upper triangular.

5.3 (∗). How to store a lower triangular matrix.

1. Write a program StoreL for storing a lower triangular square matrix.
2. Write a program StoreLpv for computing the product of a lower triangular

square matrix and a vector. The matrix is given in the form StoreL.
3. Write a forward substitution program ForwSubL for computing the solu-

tion of a lower triangular system with matrix given by StoreL.

5.4. How to store an upper triangular matrix. In the spirit of the previous
exercise, write programs StoreU, StoreUpv, and ForwSubU for an upper tri-
angular matrix.
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5.5. Write a program StoreLpU computing the product of two matrices, the
first one being lower triangular and the second upper triangular. The matrices
are given by the programs StoreL and StoreU.

5.6. We define a matrix A=[1:5;5:9;10:14].

1. Compute a matrix Q whose columns form a basis of the null space of At.
2. (a) Consider b=[5; 9; 4] and the vector x ∈ R

5 defined by the instruc-
tion x=A\b. Compute x, Ax − b, and Qtb.

(b) Same question for b=[1; 1; 1]. Compare both cases.
(c) Justification. Let A be a real matrix of size m×n. Let b ∈ R

m. Prove
the equivalence

b ∈ Im (A) ⇐⇒ Qtb = 0.

(d) Write a function InTheImage(A,b) whose input arguments are a ma-
trix A and a vector b and whose output argument is “yes” if b ∈ Im A
and “no” otherwise. Application:
A=[1 2 3; 4 5 6; 7 8 9], b=[1;1;1], then b=[1 ;2;1].

5.7. The goal of this exercise is to show that using the Cramer formulas is a
bad idea for solving the linear system Ax = b, where A is a nonsingular n×n
matrix and b ∈ R

n. Denoting by a1, . . . , an the columns of A, Cramer’s formula
for the entry xi of the solution x is xi = det (a1| . . . |ai−1|b|ai+1| . . . |an)/det A
(see Proposition 5.1.1). Write a function Cramer computing the solution x by
means of Cramer’s formulas and compare the resulting solution with that
obtained by the instruction A\b.
Hint. Use the Matlab function det for computing the determinant of a matrix.
Application: for n = 20, 40, 60, 80, . . . consider the matrix A and vector b
defined by the instructions

b=ones(n,1);c=1:n; A=c’*ones(size(c));A=A+A’;
s=norm(A,’inf’); for i=1:n, A(i,i)=s;end;

Conclude about the efficiency of this method.

5.8. Let A and B be two matrices defined by the instructions

n=10;B=rand(n,n);A=[eye(size(B)) B; zeros(size(B)) eye(size(B))];

Compute the Frobenius norm of B as well as the condition number of A
(in the Frobenius norm). Compare the two quantities for various values of n.
Justify the observations.

5.9. The goal of this exercise is to empirically determine the asymptotic be-
havior of cond2(Hn) as n goes to ∞, where Hn ∈ Mn(R) is the Hilbert matrix
of order n, defined by its entries (Hn)i,j = 1/(i+ j−1). Compute cond2(H5),
cond2(H10). What do you notice? For n varying from 2 to 10, plot the curve
n �→ ln( cond2(Hn)). Draw conclusions about the experimental asymptotic
behavior.
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5.10. Write a function Lnorm that computes the approximate 2-norm of a
lower triangular matrix by Algorithm 5.2. Compare its result with the norm
computed by Matlab.

5.11. Write a function LnormAm1 that computes the approximate 2-norm of
the inverse of a lower triangular matrix by Algorithm 5.3. Compare its result
with the norm computed by Matlab.

5.12. Write a function Lcond that computes an approximate 2-norm condi-
tioning of a lower triangular matrix by Algorithm 5.4. Compare its result with
the conditioning computed by Matlab.

5.13 (∗). The goal of this exercise is to implement Hager’s algorithm for
computing an approximate value of cond1(A). We denote by S = {x ∈
R

n, ‖x‖1 = 1} the unit sphere of R
n for the 1-norm, and for x ∈ R

n,
we set f(x) = ‖A−1x‖1 with A ∈ Mn(R) a nonsingular square matrix. The
1-norm conditioning is thus given by

cond1(A) = ‖A‖1 max
x∈S

f(x).

1. Explain how to determine ‖A‖1.
2. Prove that f attains its maximum value at one of the vectors ej of the

canonical basis of R
n.

3. From now on, for a given x ∈ R
n, we denote by x̃ the solution of Ax̃ = x

and by x̄ the solution of Atx̄ = s, where s is the “sign” vector of x̃, defined
by si = −1 if x̃i < 0, si = 0 if x̃i = 0, and si = 1 if x̃i > 0. Prove that
f(x) = 〈x̃, s〉.

4. Prove that for any a ∈ R
n, we have f(x) + x̄t(a − x) ≤ f(a).

5. Show that if x̄j > 〈x, x̄〉 for some index j, then f(ej) > f(x).
6. Assume that x̃j 	= 0 for all j.

(a) Show that for y close enough to x, we have f(y) = f(x)+stA−1(y−x).
(b) Show that if ‖x̄‖∞ ≤ 〈x, x̄〉, then x is a local maximum of f on the

unit sphere S.
7. Deduce from the previous questions an algorithm for computing the 1-

norm conditioning of a matrix.
8. Program this algorithm (function Cond1). Compare its result with the

conditioning computed by Matlab.

5.14. We define n × n matrices C,D, and E by
C=NonsingularMat(n);D=rand(m,n);E=D*inv(C)*D’;

We also define (n + m) × (n + m) block matrices A and M
A=[C D’;D zeros(m,m)];M=[C zeros(n,m);zeros(m,n) E];

1. For different values of n, compute the spectrum of M−1A. What do you
notice?

2. What is the point in replacing system Ax = b by the equivalent system
M−1Ax = M−1b?
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3. We now want to give a rigorous explanation of the numerical results of
the first question. We assume that A ∈ Mn+m(R) is a nonsingular matrix
that admits the block structure A =

(
C Dt

D 0

)
, where C ∈ Mn(R) and

D ∈ Mm,n(R) are such that C and DC−1Dt are nonsingular too.
(a) Show that the assumption “A is nonsingular” implies m ≤ n.
(b) Show that for m = n, the matrix D is invertible.

4. From now on, we assume m < n. Let x = (x1, x2)t be the solution of the
system Ax = b = (b1, b2)t. The matrix D is not assumed to be invertible,
so that we cannot first compute x1 by relation Dx1 = b2, then x2 by
Cx1 + Dtx2 = b1. Therefore, the relation Dx1 = b2 has to be considered
as a constraint to be satisfied by the solutions x1, x2 of the system Cx1 +
Dtx2 = b1. We study the preconditioning of the system Ax = b by the
matrix M−1 with M =

(
C 0
0 DC−1Dt

)
.

(a) Let λ be an eigenvalue of M−1A and (u, v)t ∈ R
n+m a corresponding

eigenvector. Prove that (λ2 − λ − 1)Du = 0.
(b) Deduce the spectrum of the matrix M−1A.
(c) Compute the 2-norm conditioning of M−1A, assuming that it is a

symmetric matrix.

5.15 (∗). Program the polynomial preconditioning algorithm presented in
Section 5.3.5 on page 91 (function PrecondP).

5.16 (∗). The goal of this exercise is to study the numerical solution of the lin-
ear system that stems from the finite difference approximation of the Laplace
equation. According to Section 1.1, the Laplace equation is the following
second-order differential equation:

{
−u′′(x) + c(x)u(x) = f(x),
u(0) = 0, u(1) = 0, (5.18)

where u : [0, 1] → R denotes the solution (which is assumed to exist and be
unique) and f and c are given functions. We first study the case c ≡ 0. We
recall that a finite difference discretization at points xk = k/n, k = 1, . . . , n−1,
leads to the linear system

Anu(n) = b(n), (5.19)

where An ∈ Mn−1(R) is the matrix defined by (5.12), b(n) ∈ R
n−1 is the right-

hand side with entries (f(xi))1≤i≤n−1, and u(n) ∈ R
n−1 is the discrete solution

approximating the exact solution at the points xk, i.e., u(n) = (u1, . . . , un−1)t

with uk ≈ u(xk). We also recall that the n− 1 eigenvalues of An are given by

λk = 4n2 sin2
(
k

π

2n

)
, k = 1, . . . , n − 1. (5.20)

1. Computation of the matrix and right-hand side of (5.19).
(a) Write a function Laplacian1dD(n) with input argument n and output

argument An.
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(b) Write a function InitRHS(n) with input argument n and output ar-
gument b(n).

2. Validation.
(a) Give the exact solution ũe(x) of problem (5.18) when the function f

is constant, equal to 1. Write a function constructing the vector ue
n =

(ũe(x1), . . . , ũe(xn−1))t. Solve system (5.19) by Matlab. Compare the
vectors u(n) and ue

n. Explain.
(b) Convergence of the method. We choose

ũe(x) = (x−1) sin(10x) and f(x) =−20 cos(10 x)+100(x−1) sin(10x).

Plot the norm of the error u(n)−ue
n in terms of n. What do you notice?

3. Eigenvalues and eigenvectors of the matrix An.
(a) Compare the eigenvalues of An with those of the operator u �→ −u′′

endowed with the boundary conditions defined by (5.18). These are
real numbers λ for which we can find nonzero functions ϕ satisfying
the boundary conditions and such that −ϕ′′ = λϕ.

(b) Numerically compute the eigenvalues of An with Matlab and check
that the results are close to the values given by formula (5.20).

(c) Plot the 2-norm conditioning of An in terms of n. Comment.
4. We now assume that the function c is constant but nonzero.

(a) Give a formula for the new finite difference matrix Ãn. How do its
eigenvalues depend on the constant c?

(b) From now on we fix n = 100, and c is chosen equal to the negative
of the first eigenvalue of An. Solve the linear system associated to
the matrix Ãn and a right-hand side with constant entries equal to 1.
Check the result. Explain.

5.17. Reproduce Figures 1.2 and 1.3 of Chapter 1. Recall that these figures
display the approximation in the least squares sense of the values specified in
Table 1.1 by a first-degree polynomial and a fourth-degree one respectively.

5.18. Define f(x) = sin(x) − sin(2x) and let X be an array of 100 entries
(xi)n

i=1 chosen randomly between 0 and 4 by the function rand. Sort this
array in increasing order using the function sort.

1. Find an approximation of f in the least squares sense by a second-degree
polynomial p. Compute the discrete error

√∑n
i=1 |f(xi) − p(xi)|2.

2. Find another approximation of f in the least squares sense by a trigono-
metric function q(x) = a + b cos(x) + c sin(x). Compare q and p.
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Direct Methods for Linear Systems

This chapter is devoted to the solution of systems of linear equations of the
form

Ax = b, (6.1)

where A is a nonsingular square matrix with real entries, b is a vector called
the “right-hand side,” and x is the unknown vector. For simplicity, we invari-
ably assume that A ∈ Mn(R) and b ∈ R

n. We call a method that allows for
computing the solution x within a finite number of operations (in exact arith-
metic) a direct method for solving the linear system Ax = b. In this chapter,
we shall study some direct methods that are much more efficient than the
Cramer formulas in Chapter 5. The first method is the celebrated Gaussian
elimination method, which reduces any linear system to a triangular one. The
other methods rely on the factorization of the matrix A as a product of two
matrices A = BC. The solution of the system Ax = b is then replaced by the
solution of two easily invertible systems (the matrices B and C are triangular
or orthogonal) By = b, and Cx = y.

6.1 Gaussian Elimination Method

The main idea behind this method is to reduce the solution of a general
linear system to one whose matrix is triangular. As a matter of fact, we have
seen in Chapter 5 that in the case of an upper triangular system (respectively,
lower), the solution is straightforward by mere back substitution (respectively,
forward substitution) in the equations.

Let us recall the Gaussian elimination method through an example.

Example 6.1.1. Consider the following 4 × 4 system to be solved:
⎧⎪⎨
⎪⎩

2x +4y −4z +t = 0,
3x +6y +z −2t = −7,
−x +y +2z +3t = 4,
x +y −4z +t = 2,

(6.2)



98 6 Direct Methods for Linear Systems

which can also be written in matrix form as
⎛
⎜⎝

2 4 −4 1
3 6 1 −2
−1 1 2 3
1 1 −4 1

⎞
⎟⎠
⎛
⎜⎝

x
y
z
t

⎞
⎟⎠ =

⎛
⎜⎝

0
−7
4
2

⎞
⎟⎠ .

The Gaussian elimination method consists in first, removing x from the sec-
ond, third, and fourth equations, then y from the third, and fourth equations,
and finally, z from the fourth equation. Hence, we compute t with the fourth
equation, then z with the third equation, y with the second equation, and
lastly, x with the first equation.
Step 1. We denote by p = 2 the entry 1, 1 of the system matrix, we shall call
it the pivot (of the first step). Substituting

• the second equation by itself “minus” the first equation multiplied by 3
p ,

• the third equation by itself “minus” the first equation multiplied by −1
p ,

• the third equation by itself “minus” the first equation multiplied by 1
p ,

we get the following system:
⎧⎪⎨
⎪⎩

2x +4y −4z +t = 0,
7z −7t/2 = −7,

3y +7t/2 = 4,
−y −2z +t/2 = 2.

Step 2. This time around, the pivot (entry 2, 2 of the new matrix) is zero. We
swap the second row and the third one in order to get a nonzero pivot:

⎧⎪⎨
⎪⎩

2x +4y −4z +t = 0,
3y +7t/2 = 4,

7z −7t/2 = −7,
−y −2z +t/2 = 2.

The new pivot is p = 3:

• the third equation is unchanged,
• substituting the fourth equation by itself “minus” the second equation

multiplied by −1
p , we obtain the system

⎧⎪⎨
⎪⎩

2x +4y −4z +t = 0,
3y +7t/2 = 4,

7z −7t/2 = −7,
−2z +5t/3 = 10

3 .

Step 3. Entry 3, 3 of the matrix is nonzero, we set p = 7, and we substitute
the fourth equation by itself “minus” the third equation multiplied by −2

p :
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⎧⎪⎨
⎪⎩

2x +4y −4z +t = 0,
3y +7t/2 = 4,

7z −7t/2 = −7,
2t/3 = 4

3 .

(6.3)

The last system is triangular. It is easily solved through back substitution; we
obtain t = 2, z = 0, y = −1, and x = 1.

We now present a matrix formalism allowing to convert any matrix (or system
such as (6.2)) into a triangular matrix (or system such as (6.3)). The idea is to
find a nonsingular matrix M such that the product MA is upper triangular,
then to solve through back substitution the triangular system MAx = Mb.
To implement this idea, the Gaussian elimination method is broken into three
steps:

• elimination: computation of a nonsingular matrix M such that MA = T
is upper triangular;

• right-hand-side update: simultaneous computation of Mb;
• substitution: solving the triangular system Tx = Mb by mere back sub-

stitution.

The existence of such a matrix M is ensured by the following result to
which we shall give a constructive proof that is nothing but the Gaussian
elimination method itself.

Theorem 6.1.1 (Gaussian elimination theorem). Let A be a square ma-
trix (invertible or not). There exists at least one nonsingular matrix M such
that the matrix T = MA is upper triangular.

Proof. The outline of the method is as follows: we build a sequence of ma-
trices Ak, for 1 ≤ k ≤ n, in such a way that we go from A1 = A to An = T ,
by successive alterations. The entries of the matrix Ak are denoted by

Ak =
(
ak

i,j

)
1≤i,j≤n

,

and the entry ak
k,k is called the pivot of Ak . To pass from Ak to Ak+1, we

shall first make sure that the pivot ak
k,k is nonzero. If it is not so, we permute

the kth row with another row in order to bring a nonzero element into the
pivot position. The corresponding permutation matrix is denoted by P k (see
Section 2.2.4 on row permutations). Then, we proceed to the elimination of
all entries of the kth column below the kth row by linear combinations of the
current row with the kth row. Namely, we perform the following steps.
Step 1: We start off with A1 = A. We build a matrix Ã1 of the form

Ã1 = P 1A1,

where P 1 is a permutation matrix such that the new pivot ã1
1,1 is nonzero. If

the pivot a1
1,1 is nonzero, we do not permute, i.e., we take P 1 = I. If a1

1,1 = 0
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and if there exists an entry in the first column a1
i,1 	= 0 (with 2 ≤ i ≤ n),

then we swap the first row with the ith and P 1 is equal to the elementary
permutation matrix P (1, i) (we recall that the elementary permutation matrix
P (i, j) is equal to the identity matrix whose rows i and j have been swapped).
Next, we multiply Ã1 by the matrix E1 defined by

E1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0

− ã1
2,1

ã1
1,1

. . .
...

. . .

− ã1
n,1

ã1
1,1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

;

this removes all the entries of the first column but the first. We set

A2 = E1Ã1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ã1
1,1 . . . ã1

1,n

0
.
.
.
0

⎛
⎜⎜⎝ a2

i,j

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

with a2
i,j = ã1

i,j −
ã1

i,1

ã1
1,1

ã1
1j for 2 ≤ i, j ≤ n. The matrix A2 has therefore a first

column with only zeros below its diagonal.
During the permutation step, it may happen that all the elements of the

first column a1
i,1 vanish in which case it is not possible to find a nonzero

pivot. This is not a problem, since this first column has already the desired
properties of having zeros below its diagonal! We merely carry on with the
next step by setting A2 = A1 and E1 = P 1 = I. Such an instance occurs only
if A is singular; otherwise, its first column is inevitably nonzero.
Step K: We assume that Ak has its (k − 1) first columns with zeros below
its diagonal. We multiply Ak by a permutation matrix P k to obtain

Ãk = P kAk

such that its pivot ãk
k,k is nonzero. If ak

k,k 	= 0, then we take P k = I. Otherwise,
there exists ak

i,k 	= 0 with i ≥ k + 1, so we swap the kth row with the ith by
taking P k = P (i, k). Next, we multiply Ãk by a matrix Ek defined by
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Ek =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

... 1

... − ãk
k+1,k

ãk
k,k

1
...

...
. . .

...
...

. . .

0 − ãk
n,k

ãk
k,k

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which removes all the entries of the kth column below the diagonal. We set

Ak+1 = EkÃk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã1
1,1 . . . . . . . . . . . . ã1

1,n

0
. . .

...
...

. . . ãk
k,k ãk

k,k+1 . . . ãk
k,n

... 0 ak+1
k+1,k+1 . . . ak+1

k+1,n
...

...
...

...
0 . . . 0 ak+1

n,k+1 . . . ak+1
n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ak+1
i,j = ãk

i,j −
ãk

i,k

ãk
k,k

ãk
k,j for k + 1 ≤ i, j ≤ n. The matrix Ak+1 has its first

k columns with only zeros below the diagonal. During the permutation step,
it may happen that all elements of the kth column below the diagonal, ak

i,k

with i ≥ k, are zeros. Then, this kth column has already the desired form
and there is nothing to be done! We carry on with the next step by setting
Ak+1 = Ak and Ek = P k = I. Such an instance occurs only if A is singular.
Indeed, if A is nonsingular, then so is, Ak, and its kth column cannot have
zeros from the kth line to the last one, since its determinant would then be
zero.

After (n − 1) steps, the matrix An is upper triangular:

An = (En−1Pn−1 · · ·E1P 1)A.

We set M = En−1Pn−1 · · ·E1P 1. It is indeed a nonsingular matrix, since

det M =
n−1∏
i=1

det Ei det P i,

with detP i = ±1 and detEi = 1.
We can refresh the right-hand side (that is, compute Mb) sequentially

while computing the matrices P k and Ek. We build a sequence of right-hand
sides (bk)1≤k≤n defined by
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b1 = b, bk+1 = EkP kbk, for 1 ≤ k ≤ n − 1,

which satisfies bn = Mb in the end.
To solve the linear system Ax = b, it suffices now to solve the system

Anx = Mb, where An is an upper triangular matrix. If A is singular, we can
still perform the elimination step, that is, compute An. However, there is no
guarantee that we can solve the system Anx = Mb, since one of the diagonal
entries of An is zero.

Remark 6.1.1. The proof of Theorem 6.1.1 is indeed exactly the Gaussian elim-
ination method that is used in practice. It is therefore important to emphasize
some practical details.

1. We never compute M ! We need not multiply matrices Ei and P i to de-
termine Mb and An.

2. If A is singular, one of the diagonal entries of An = T is zero. As a result,
we cannot always solve Tx = Mb. Even so, elimination is still possible.

3. At step k, we only modify rows from k + 1 to n between columns k + 1 to
n.

4. A byproduct of Gaussian elimination is the easy computation of the deter-
minant of A. Actually, we have detA = ±det T depending on the number
of performed permutations.

5. In order to obtain better numerical stability in computer calculations,
we may choose the pivot ãk

k,k in a clever way. To avoid the spreading of
rounding errors, the largest possible pivot (in absolute value) is preferred.
The same selection can be done when the usual pivot ak

k,k is nonzero, i.e.,
we swap rows and/or columns to substitute it with a larger pivot ãk

k,k. We
call the process of choosing the largest possible pivot in the kth column
under the diagonal (as we did in the above proof) partial pivoting. We
call the process of choosing the largest possible pivot in the lower diagonal
submatrix of size (n − k + 1) × (n − k + 1) formed by the intersection of
the last (n − k + 1) rows and the last (n − k + 1) columns (in such a
case, we swap rows and columns) complete pivoting. These two variants
of Gaussian elimination are studied in Exercise 6.3.

Let us go back to Example 6.1.1 and describe the different steps with the
matrix formalism. The initial system reads as Ax = b with

A =

⎛
⎜⎝

2 4 −4 1
3 6 1 −2
−1 1 2 3
1 1 −4 1

⎞
⎟⎠ , b =

⎛
⎜⎝

0
−7
4
2

⎞
⎟⎠ .

Set A1 = A and b1 = b. In the first step, the pivot is nonzero so we take
P1 = I,
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E1 =

⎛
⎜⎝

1 0 0 0
− 3

2 1 0 0
1
2 0 1 0

− 1
2 0 0 1

⎞
⎟⎠ , A2 = E1P1A1 =

⎛
⎜⎝

2 4 −4 1
0 0 7 − 7

2
0 3 0 7

2
0 −1 −2 1

2

⎞
⎟⎠ ,

and

b2 = E1P1b1 =

⎛
⎜⎝

0
−7
4
2

⎞
⎟⎠ .

In the second step, the pivot is zero, so we take

P2 =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ , E2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 1

3 0 1

⎞
⎟⎠ ,

and

A3 = E2P2A2 =

⎛
⎜⎝

2 4 −4 1
0 3 0 7

2
0 0 7 − 7

2
0 0 −2 5

3

⎞
⎟⎠ , b3 = E2P2b2 =

⎛
⎜⎝

0
4
−7
10
3

⎞
⎟⎠ .

In the third step, the pivot is nonzero, so we take P3 = I,

E3 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 2

7 1

⎞
⎟⎠, A4 = E3P3A3 =

⎛
⎜⎝

2 4 −4 1
0 3 0 7

2
0 0 7 − 7

2
0 0 0 2

3

⎞
⎟⎠ ,

and

b4 = E3P3b3 =

⎛
⎜⎝

0
4
−7
4
3

⎞
⎟⎠ .

The solution x is computed by solving the upper triangular system A4x = b4,
and we obtain x = (1,−1, 0, 2)t.

6.2 LU Decomposition Method

The LU decomposition method consists in factorizing A into a product of two
triangular matrices

A = LU,

where L is lower triangular and U is upper triangular. This decomposition
allows us to reduce the solution of the system Ax = b to solving two triangular
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systems Ly = b and Ux = y. It turns out to be nothing else than Gaussian
elimination in the case without pivoting.

The matrices defined by

∆k =

⎛
⎜⎝

a1,1 . . . a1,k

...
. . .

...
ak,1 . . . ak,k

⎞
⎟⎠

are called the diagonal submatrices of order k of A ∈ Mn. The next result
gives a sufficient condition on the matrix A to have no permutation during
Gaussian elimination.

Theorem 6.2.1 (LU factorization). Let A = (ai,j)1≤i,j≤n be a matrix of
order n all of whose diagonal submatrices of order k are nonsingular. There
exists a unique pair of matrices (L,U), with U upper triangular and L lower
triangular with a unit diagonal (i.e., li,i = 1), such that A = LU .

Remark 6.2.1. The condition stipulated by the theorem is often satisfied in
practice. For example, it holds true if A is positive definite, i.e.,

xtAx > 0, ∀x 	= 0.

Indeed, if ∆k were singular, then there would exist a vector
⎛
⎜⎝

x1

...
xk

⎞
⎟⎠ 	= 0 such that ∆k

⎛
⎜⎝

x1

...
xk

⎞
⎟⎠ = 0.

Now let x0 be the vector whose k first entries are (x1, . . . , xk), and whose last
n − k entries are zero. We have

xt
0Ax0 = 0 and x0 	= 0,

which contradicts the assumption that A is positive definite. Consequently, ∆k

is nonsingular. Note that the converse is not true: namely, a matrix A, such
that all its diagonal submatrices are nonsingular is not necessarily positive
definite, as in the following instance:

A =
(

1 0
0 −1

)
.

Hence the assumption of Theorem 6.2.1 is more general than positive defi-
niteness.

Proof of Theorem 6.2.1. Assume that during Gaussian elimination, there is
no need to permute in order to change the pivot, that is, all natural pivots
ak

k,k are nonzero. Then we have
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An = En−1 · · ·E1A,

with

Ek =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

... 1

... −lk+1,k 1

...
...

. . .
...

...
. . .

0 −ln,k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and for k + 1 ≤ i ≤ n,

li,k =
ak

i,k

ak
k,k

.

Set U = An and L = (E1)−1 · · · (En−1)−1, so that we have A = LU . We need
to check that L is indeed lower triangular. A simple computation shows that
(Ek)−1 is easily deduced from Ek by changing the sign of the entries below
the diagonal:

(Ek)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

... 1

... +lk+1,k 1

...
...

. . .
...

...
. . .

0 +ln,k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Another computation shows that L is lower triangular and that its kth column
is the kth column of (Ek)−1:

L =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0

l2,1
. . . . . .

...
...

. . . . . . 0
ln,1 . . . ln,n−1 1

⎞
⎟⎟⎟⎟⎠ .

It remains to prove that the pivots do not vanish under the assumption made
on the submatrices ∆k. We do so by induction. The first pivot a1,1 is nonzero,
since it is equal to ∆1, which is nonsingular. We assume the first k − 1 pivots
to be nonzero. We have to show that the next pivot ak

k,k is nonzero too. Since
the first k − 1 pivots are nonzero, we have computed without permutation
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the matrix Ak, which is given by (E1)−1 · · · (Ek−1)−1Ak = A. We write this
equality with block matrices:

(
Lk

1,1 0
Lk

2,1 I

)(
Uk

1,1 Ak
1,2

Ak
2,1 Ak

2,2

)
=
(

∆k A1,2

A2,1 A2,2

)
,

where Uk
1,1, Lk

1,1, and ∆k are square blocks of size k, and Ak
2,2, I, and A2,2

square blocks of size n − k. Applying the block matrix product rule yields

Lk
1,1U

k
1,1 = ∆k,

where Uk
1,1 is an upper triangular matrix, and Lk

1,1 is a lower triangular matrix
with 1 on the diagonal. We deduce that Uk

1,1 = (Lk
1,1)

−1∆k is nonsingular as
a product of two nonsingular matrices. Its determinant is therefore nonzero,

det Uk
1,1 =

k∏
i=1

ak
i,i 	= 0,

which implies that the pivot ak
k,k at the kth step is nonzero.

Finally, let us check the uniqueness of the decomposition. Let there be two
LU factorizations of A:

A = L1U1 = L2U2.

We infer that
L−1

2 L1 = U2U
−1
1 ,

where L−1
2 L1 is lower triangular, and U2U

−1
1 is upper triangular. By virtue

of Lemma 2.2.5, the inverse and product of two upper (respectively, lower)
triangular matrices are upper (respectively, lower) triangular too. Hence, both
matrices are diagonal, and since the diagonal of L−1

2 L1 consists of 1’s, we have

L−1
2 L1 = U2U

−1
1 = I,

which proves the uniqueness. �

Determinant of a matrix. As for Gaussian elimination, a byproduct of the
LU factorization is the computation of the determinant of the matrix A, since
det A = det U . As we shall check in Section 6.2.3, it is a much more efficient
method than the usual determinant formula (cf. Definition 2.2.8).

Conditioning of a matrix. Knowing the LU decomposition of A yields an
easy upper bound on its conditioning, cond(A) ≤ cond(L) cond(U), where
the conditionings of triangular matrices are computed by Algorithm 5.4.

Incomplete LU preconditioning. Since the LU factorization provides a
way of computing A−1, an approximate LU factorization yields an approxi-
mation of A−1 that can be used as a preconditioner. A common approximation
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is the so-called incomplete LU factorization, which computes triangular matri-
ces L̃ and Ũ such that L̃Ũ is an approximation of A that is cheap to compute.
To have a fast algorithm for obtaining L̃ and Ũ we modify the standard LU
algorithm as follows: the entries L̃i,j and Ũi,j are computed only if the element
Ai,j is nonzero (or larger than a certain threshold). The sparse structure of A
is thus conserved; see Exercise 6.10.

6.2.1 Practical Computation of the LU Factorization

A practical way of computing the LU factorization (if it exists) of a matrix A
is to set

L =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0

l2,1
. . . . . .

...
...

. . . . . . 0
ln,1 . . . ln,n−1 1

⎞
⎟⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

u1,1 . . . . . . u1,n

0 u2,2

...
...

. . . . . .
...

0 . . . 0 un,n

⎞
⎟⎟⎟⎟⎠ ,

and then identify the product LU with A. Since L is lower triangular and U
upper triangular, for 1 ≤ i, j ≤ n, it entails

ai,j =
n∑

k=1

li,kuk,j =
min(i,j)∑

k=1

li,kuk,j .

A simple algorithm is thus to read in increasing order the columns of A and
to deduce the entries of the columns of L and U .
Column 1. We fix j = 1 and vary i:

a1,1 = l1,1u1,1 ⇒ u1,1 = a1,1;
a2,1 = l2,1u1,1 ⇒ l2,1 = a2,1

a1,1
;

...
...

an,1 = ln,1u1,1 ⇒ ln,1 = an,1
a1,1

.

We have thereby computed all the entries of the first column of L and of the
first column of U .
Column j. We assume that we have computed the first (j − 1) columns of L
and U . Then we read the jth column of A:

a1,j = l1,1u1,j ⇒ u1,j = a1,j ;
a2j = l2,1u1,j + l2,2u2,j ⇒ u2,j = a2,j − l2,1a1,j ;
...

...
aj,j = lj,1u1,j + · · · + lj,juj,j ⇒ uj,j = aj,j −

∑j−1
k=1 lj,kuk,j ;

aj+1,j = lj+1,1u1,j + · · · + lj+1,juj,j ⇒ lj+1,j =
aj+1,j−

∑j−1

k=1
lj+1,kuk,j

uj,j
;

...
...

an,j = ln,1u1,j + · · · + ln,juj,j ⇒ ln,j =
an,j−

∑j−1

k=1
ln,kuk,j

uj,j
.
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We compute in this way the first j entries of the jth column of U and the last
n− j entries of the jth column of L in terms of the first (j−1) columns. Note
the division by the pivot uj,j , which should not be zero.

Example 6.2.1. The LU factorization of the matrix in Example 6.1.1, by swap-
ping its second and third rows, is

⎛
⎝ 1 0 0 0

− 1
2 1 0 0

3
2 0 1 0
1
2 − 1

3 − 2
7 1

⎞
⎠
⎛
⎝ 2 4 −4 1

0 3 0 7
2

0 0 7 − 7
2

0 0 0 2
3

⎞
⎠ =

(
2 4 −4 1
−1 1 2 3
3 6 1 −2
1 1 −4 1

)
= P (2, 3)A.

6.2.2 Numerical Algorithm

We now write in pseudolanguage the algorithm corresponding to the LU fac-
torization. We have just seen that the matrix A is scanned column by column.
At the kth step we change its kth column so that the entries below the diag-
onal vanish by performing linear combinations of the kth row with every row
from the (k + 1)th to the nth. At the kth step, the first k rows and the first
k − 1 columns of the matrix are no longer modified. We exploit this property
in order to store in the same array, which initially contains the matrix A, the
matrices Ak and Lk = (E1)−1 · · · (Ek−1)−1. More precisely, the zeros of Ak in
its first (k− 1) columns below the diagonal are replaced by the corresponding
nontrivial entries of Lk, which all lie below the diagonal in the first (k − 1)
columns. At the end of the process, the array will contain the two triangular
matrices L and U (i.e., the lower part of L without the diagonal of 1’s and
the upper part of U). We implement this idea in Algorithm 6.1, where the
columns of L are also precomputed before the linear combinations of rows,
which saves some operations.

Data: A. Output: A containing U and L (but its diagonal)
For k = 1 ↗ n − 1 step k

For i = k + 1 ↗ n row i
ai,k =

ai,k

ak,k
new column of L

For j = k + 1 ↗ n
ai,j = ai,j − ai,kakj combination of rows i and k

End j
End i

End k
Algorithm 6.1: LU factorization algorithm.

6.2.3 Operation Count

To assess the efficiency of the LU factorization algorithm, we count the number
of operations Nop(n) its execution requires (which will be proportional to the
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running time on a computer). We do not accurately determine the number of
operations, and we content ourselves with the first-order term of its asymptotic
expansion when the dimension n is large. Moreover, for simplicity, we count
only multiplications and divisions, but not additions, as usual (see Section
4.2).

� LU factorization: the number of operations is

Nop(n) =
n−1∑
k=1

n∑
i=k+1

⎛
⎝1 +

n∑
j=k+1

1

⎞
⎠ ,

which, to first order yields

Nop(n) ≈ n3

3
.

� Back substitution (on the triangular system): the number of operations is

Nop(n) =
n∑

j=1

j ≈ n2

2
.

� Solution of a linear system Ax = b: an LU factorization of A is followed by
two substitutions, Ly = b, then Ux = y. Since n2 is negligible compared
to n3 when n is large, the number of operations is

Nop(n) ≈ n3

3
.

The LU method (or Gaussian elimination) is therefore much more efficient
than Cramer’s formulas for solving a linear system. Once the LU factorization
of the matrix is performed, we can easily compute its determinant, as well as
its inverse matrix.

� Computing detA: we compute the determinant of U (that of L is equal
to 1), which requires only the product of the diagonal entries of U (n− 1
multiplications). As a consequence, the number of operations is again

Nop(n) ≈ n3

3
.

� Computing A−1: the columns of A−1, denoted by xi, are the solutions
of the n systems Axi = ei, where (ei)1≤i≤n is the canonical basis of R

n.
A naive count of operations for computing A−1 is 4n3/3, which is the
sum of n3/3 for a single LU factorization and n3 for solving 2n triangular
systems. We can improve this number by taking into account the fact that
the basis vectors ei have many zero entries, which decreases the cost of
the forward substitution step with L, because the solution of Lyi = ei has
its first (i − 1) entries equal to zero. The number of operations becomes

Nop(n) ≈ n3

3
+

n∑
j=1

j2

2
+ n

(
n2

2

)
≈ n3.
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6.2.4 The Case of Band Matrices

Band matrices appear in many applications (such as the discretization of
partial differential equations, see Section 1.1) and their special structure allows
us to spare memory and computational cost during the LU factorization.

Definition 6.2.1. A matrix A ∈ Mn(R) satisfying ai,j = 0 for |i − j| > p
with p ∈ N is said to be a band matrix of bandwidth 2p + 1.

For instance, a tridiagonal matrix has half-bandwidth p = 1.

Proposition 6.2.1. The LU factorization preserves the band structure of ma-
trices.

Proof. Let A be a band matrix of bandwidth 2p + 1 and let A = LU be
its LU decomposition. We want to prove that L and U are band matrices of
bandwidth 2p + 1 too. By definition we have

ai,j =
min(i,j)∑

k=1

li,kuk,j .

We proceed by induction on i = 1, . . . , n. For i = 1, we have

• a1,j = l1,1u1,j = u1,j ; we infer that u1,j = 0 for all j > p + 1;
• aj,1 = lj,1u1,1; in particular, a1,1 = l1,1u1,1, which entails that u1,1 =

a1,1 	= 0, so lj,1 = aj,1/a1,1, which shows that lj,1 = 0 for all j > p + 1.

Assume now that for all i = 1, . . . , I − 1, we have

j > i + p =⇒ ui,j = lj,i = 0,

and let us prove that this property holds for i = I.

• For j > I + p, we have

aI,j =
I∑

k=1

lI,kuk,j = lI,IuI,j +
I−1∑
k=1

lI,kuk,j .

Observing that for all k = 1, . . . , I−1, we have j > I+p ≥ k+1+p > k+p,
we deduce, by application of the induction hypothesis, that uk,j = 0,
j > k + p. This implies that aI,j = uI,j , hence proving that uI,j = 0 for
all j > I + p.

• Similarly, for j > I + p, we have

aj,I = lj,IuI,I +
I−1∑
k=1

lj,kuk,I = lj,IuI,I .

The proof of Theorem 6.2.1 has shown that uI,I 	= 0. Thus lj,I = aj,I/uI,I ,
which implies that lj,I = 0 for j > I + p.
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So the matrices L and U have the same band structure as the matrix A. �

Remark 6.2.2. Proposition 6.2.1 does not state that the matrices A, on the
one hand, and L and U , on the other, have the same “sparse” structure. It
may happen that the band of A is sparse (contains a lot of zeros), whereas
the bands of L and U are full. We say that the LU decomposition has filled
the matrix’s band; see Exercise 6.8. Reducing the bandwidth of a matrix is a
good way of minimizing the computational and the memory requirements of
its LU factorization; see Exercise 6.9.

Example 6.2.2. To compute the LU factorization of the matrix

A =

⎛
⎜⎜⎜⎝

1 2 0 0 0
2 6 1 0 0
0 2 −2 −1 0
0 0 −9 1 2
0 0 0 −4 3

⎞
⎟⎟⎟⎠ ,

we look for the matrices L and U :

L =

⎛
⎜⎜⎜⎝

1 0 0 0 0
a 1 0 0 0
0 b 1 0 0
0 0 c 1 0
0 0 0 d 1

⎞
⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎝

e f 0 0 0
0 g h 0 0
0 0 i j 0
0 0 0 k l
0 0 0 0 m

⎞
⎟⎟⎟⎠ .

By identification of the entries of the product A = LU , we obtain

A =

⎛
⎜⎜⎜⎝

1 0 0 0 0
2 1 0 0 0
0 1 1 0 0
0 0 3 1 0
0 0 0 −1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 2 0 0 0
0 2 1 0 0
0 0 −3 −1 0
0 0 0 4 2
0 0 0 0 5

⎞
⎟⎟⎟⎠ .

Storage of a band matrix. To store a band matrix A of half-bandwidth p,
we use a vector array storea of dimension (2p+1)n. The matrix A is stored
row by row, starting with the first. Let k be the index such that A(i, j) =
storea (k). To determine k, we notice that the first entry of row i of A
(i.e., ai,i−p) has to be placed in position (i − 1)(2p + 1) + 1, from which we
deduce that the element ai,j has to be stored in storea in position k(i, j) =
(i−1)(2p+1)+ j− i+p+1 = (2i−1)p+ j. Be aware that some entries of the
vector storea are not allocated; however, their number is equal to p(p + 1),
which is negligible; see Exercise 6.5.
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6.3 Cholesky Method

The Cholesky method applies only to positive definite real symmetric matri-
ces. Recall that a real symmetric matrix A is positive definite if all its eigen-
values are positive. The Cholesky method amounts to factorizing A = BBt

with B a lower triangular matrix, so that solving the linear system Ax = b
boils down to two triangular systems By = b and Btx = y.

Theorem 6.3.1 (Cholesky factorization). Let A be a real symmetric pos-
itive definite matrix. There exists a unique real lower triangular matrix B,
having positive diagonal entries, such that

A = BB∗.

Proof. By the LU factorization theorem, there exists a unique pair of matri-
ces (L,U) satisfying A = LU with

L =

⎛
⎜⎜⎜⎜⎝

1

× . . .
...

. . .
× . . . × 1

⎞
⎟⎟⎟⎟⎠ and U =

⎛
⎜⎜⎜⎜⎝

u1,1 × . . . ×
. . .

...
. . . ×

unn

⎞
⎟⎟⎟⎟⎠ .

We introduce the diagonal matrix D = diag (√ui,i). The square root of the
diagonal entries of U are well defined, since ui,i is positive, as we now show.
By the same argument concerning the product of block matrices as in the
proof of Theorem 6.2.1, we have

k∏
i=1

ui,i = det ∆k > 0,

with ∆k the diagonal submatrix of order k of A. Therefore, by induction, each
ui,i is positive. Next, we set B = LD and C = D−1U , so that A = BC. Since
A = A∗, we deduce

C(B∗)−1 = B−1(C∗).

By virtue of Lemma 2.2.5, C(B∗)−1 is upper triangular, while B−1C∗ is lower
triangular. Both of them are thus diagonal. Furthermore, the diagonal entries
of B and C are the same. Therefore, all diagonal entries of B−1C∗ are equal
to 1. We infer C(B∗)−1 = B−1C∗ = I, which implies that C = B∗.

To prove the uniqueness of the Cholesky factorization, we assume that
there exist two such factorizations:

A = B1B
∗
1 = B2B

∗
2 .

Then
B−1

2 B1 = B∗
2(B∗

1)−1,
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and Lemma 2.2.5 implies again that there exists a diagonal matrix D =
diag (d1, . . . , dn) such that B−1

2 B1 = D. We deduce that B1 = B2D and

A = B2B
∗
2 = B2(DD∗)B∗

2 = B2D
2B∗

2 .

Since B2 is nonsingular, it yields D2 = I, so di = ±1. However, all the diagonal
entries of a Cholesky factorization are positive by definition. Therefore di = 1,
and B1 = B2. �

6.3.1 Practical Computation of the Cholesky Factorization

We now give a practical algorithm for computing the Cholesky factor B for a
positive definite symmetric matrix A. This algorithm is different from that of
LU factorization. Take A = (ai,j)1≤i,j≤n and B = (bi,j)1≤i,j≤n with bi,j = 0
if i < j. We identify the entries on both sides of the equality A = BB∗. For
1 ≤ i, j ≤ n, we get

ai,j =
n∑

k=1

bi,kbj,k =
min(i,j)∑

k=1

bi,kbj,k.

By reading, in increasing order, the columns of A (or equivalently its rows,
since A is symmetric) we derive the entries of the columns of B.
Column 1. Fix j = 1 and vary i:

a1,1 = (b1,1)2 ⇒ b1,1 = √
a1,1,

a2,1 = b1,1b2,1 ⇒ b2,1 = a2,1
b1,1

,
...

...
an1 = b1,1bn1 ⇒ bn,1 = an,1

b1,1
.

We have thus determined the entries of the first column of B.
Column j. We assume that we have computed the first (j − 1) columns of
B. Then, we read the jth column of A below the diagonal:

aj,j = (bj,1)2 + (bj,2)2 + · · · + (bj,j)2 ⇒ bj,j =
√

aj,j−
∑j−1

k=1(bj,k)2;

aj+1,j =bj,1bj+1,1+bj,2bj+1,2 + · · ·+ bj,jbj+1,j ⇒ bj+1,j =
aj+1,j−

∑j−1

k=1
bj,kbj+1,k

bj,j
;

...
...

an,j = bj,1bn,1 + bj,2bn,2 + · · · + bj,jbn,j ⇒ bn,j =
an,j−

∑j−1

k=1
bj,kbn,k

bj,j
.

We have thus obtained the jth column of B in terms of its first (j−1) columns.
Theorem 6.3.1 ensures that when A is symmetric positive definite, the terms
underneath the square roots are positive and the algorithm does not break
down.
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Remark 6.3.1. In practice, we don’t need to check whether A is positive def-
inite before starting the algorithm (we merely verify that it is symmetric).
Actually, if at step j of the Cholesky algorithm we cannot compute a square
root because we find that b2

j,j = aj,j −
∑j−1

k=1(bj,k)2 < 0, this proves that A

is not nonnegative. If we find that b2
j,j = 0, which prevents us from com-

puting the entries bi,j for i > j, then A is not positive definite. However, if
the Cholesky algorithm terminates “without trouble,” we deduce that A is
positive definite.

Determinant of a matrix. The Cholesky factorization is also used for com-
puting the determinant of a matrix A, since det A = (det B)2.

Conditioning of a matrix. Knowing the Cholesky decomposition of A al-
lows us to easily compute the 2-norm conditioning of A, which is cond(A)2 =
cond(BB∗) = cond2(B)2, since for any square matrix, ‖XX∗‖2 = ‖X∗X‖2 =
‖X‖2

2. The conditioning of the triangular matrix B is computed by Algorithm
5.4.

Incomplete Cholesky preconditioning. By extending the idea of the in-
complete LU factorization, we obtain an incomplete Cholesky factorization
that can be used as a preconditioner.

6.3.2 Numerical Algorithm

The Cholesky algorithm is written in a compact form using the array that
initially contained A and is progressively filled by B. At each step j, only
the jth column of this array is modified: it contains initially the jth column,
which is overridden by the jth column of B. Note that it suffices to store the
lower half of A, since A is symmetric.

Data: A. Output: A containing B in its lower triangular part
For j = 1 ↗ n

For k = 1 ↗ j − 1
aj,j = aj,j − (aj,k)2

End k
aj,j =

√
aj,j

For i = j + 1 ↗ n
For k = 1 ↗ j − 1

ai,j = ai,j − aj,kai,k

End k
ai,j =

ai,j

aj,j

End i
End j

Algorithm 6.2: Cholesky Algorithm.
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6.3.3 Operation Count

To assess the efficiency of the Cholesky method, we count the number of oper-
ations its execution requires (which will be proportional to its running time on
a computer). Once again, we content ourselves with the asymptotic first-order
term when the dimension n is large. We take into account only multiplications
and divisions. Although taking a square root is a more expensive operation
than a multiplication, we neglect them because their number is n, which is
negligible in comparison to n3.

• Cholesky factorization: The number of operations is

Nop(n) =
n∑

j=1

⎛
⎝(j − 1) +

n∑
i=j+1

j

⎞
⎠ ≈ n3

6
.

• Substitution: a forward and a back substitution are performed on the tri-
angular systems associated with B and B∗. The number of operations is
Nop(n) ≈ n2, which is thus negligible compared to the n3/6 of the factor-
ization.

The Cholesky method is thus approximately twice as fast as the Gauss method
for a positive definite symmetric matrix.

Example 6.3.1. Let us compute the Cholesky factorization of

A =

⎛
⎜⎝

1 2 1 2
2 13 2 4
1 2 2 3
2 4 3 9

⎞
⎟⎠ .

We look for a lower triangular matrix B of the form

B =

⎛
⎜⎝

b1,1 0 0 0
b2,1 b2,2 0 0
b3,1 b3,2 b3,3 0
b4,1 b4,2 b4,3 b4,4

⎞
⎟⎠ .

The algorithm of Section 6.3.1 yields

� computing the first column of B:
• b2

1,1 = 1 =⇒ b1,1 = 1,
• b1,1b2,1 = 2 =⇒ b2,1 = 2,
• b1,1b3,1 = 1 =⇒ b3,1 = 1,
• b1,1b4,1 = 2 =⇒ b4,1 = 2;

� computing the second column of B:
• b2

2,1 + b2
2,2 = 13 =⇒ b2,2 = 3,

• b3,1b2,1 + b3,2b2,2 = 2 =⇒ b3,2 = 0,
• b4,1b2,1 + b4,2b2,2 = 4 =⇒ b4,2 = 0;
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� computing the third column of B:
• b2

3,1 + b2
3,2 + b2

3,3 = 2 =⇒ b3,3 = 1,
• b4,1b3,1 + b4,2b3,2 + b4,3b3,3 = 3 =⇒ b4,3 = 1,

� computing the fourth column of B:
• b2

4,1 + b2
4,2 + b2

4,3 + b2
4,4 = 9 =⇒ b4,4 = 2.

Eventually we obtain

B =

⎛
⎜⎝

1 0 0 0
2 3 0 0
1 0 1 0
2 0 1 2

⎞
⎟⎠ .

We solve the linear system Ax = b with b = (4, 8, 5, 17)t by the Cholesky
method. We first determine the solution y of By = b, next the solution x of
Btx = y. We obtain y = (4, 0, 1, 4)t and x = (1, 0,−1, 2)t.

By a simple adaptation of the proof of Proposition 6.2.1 we can prove the
following result.

Proposition 6.3.1. The Cholesky factorization preserves the band structure
of matrices.

Remark 6.3.2. Computing the inverse A−1 of a symmetric matrix A by the
Cholesky method costs n3/2 operations (which improves by a factor of 2 the
previous result in Section 6.2.3). We first pay n3/6 for the Cholesky factor-
ization, then compute the columns xi of A−1 by solving Axi = ei. This is
done in two steps: first solve Byi = ei, then solve B∗xi = yi. Because of the
zeros in ei, solving Byi = ei costs (n − i)2/2, while because of the symmetry
of A−1, we need to compute only the (n− i + 1) last components of xi, which
costs again of the order of (n− i)2/2. The total cost of solving the triangular
linear systems is thus of order n3/3. The addition of n3/6 and n3/3 yields the
result Nop(n) ≈ n3/2.

6.4 QR Factorization Method

The main idea of the QR factorization is again to reduce a linear system to
a triangular one. However, the matrix is not factorized as the product of two
triangular matrices (as previously), but as the product of an upper triangular
matrix R and an orthogonal (unitary) matrix Q, which, by definition, is easy
to invert, since Q−1 = Q∗.

In order to solve the linear system Ax = b we proceed in three steps.

(i) Factorization: finding an orthogonal matrix Q such that Q∗A = R is
upper triangular.

(ii) Updating the right-hand side: computing Q∗b.
(iii) Back substitution: solving the triangular system Rx = Q∗b.
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If A is nonsingular, the existence of such an orthogonal matrix Q is guar-
anteed by the following result, for which we give a constructive proof by the
Gram–Schmidt orthonormalization process.

Theorem 6.4.1 (QR factorization). Let A be a real nonsingular matrix.
There exists a unique pair (Q,R), where Q is an orthogonal matrix and R is
an upper triangular matrix, whose diagonal entries are positive, satisfying

A = QR.

Remark 6.4.1. This factorization will be generalized to rectangular and sin-
gular square matrices in Section 7.3.3.

Proof of Theorem 6.4.1. Let a1, . . . , an be the column vectors of A. Since
they form a basis of R

n (because A is nonsingular), we apply to them the
Gram–Schmidt orthonormalization process, which produces an orthonormal
basis q1, . . . , qn defined by

qi =
ai −

∑i−1
k=1〈qk, ai〉qk

‖ai −
∑i−1

k=1〈qk, ai〉qk‖
, 1 ≤ i ≤ n.

We deduce

ai =
i∑

k=1

rkiqk, with rki = 〈qk, ai〉, for 1 ≤ k ≤ i − 1, (6.4)

and

ri,i =

∥∥∥∥∥ai −
i−1∑
k=1

〈qk, ai〉qk

∥∥∥∥∥ > 0.

We set rki = 0 if k > i, and we denote by R the upper triangular matrix with
entries (rki). We denote by Q the matrix with columns q1, . . . , qn, which is
precisely an orthogonal matrix. With this notation, (6.4) is equivalent to

A = QR.

To prove the uniqueness of this factorization, we assume that there exist two
factorizations

A = Q1R1 = Q2R2.

Then Q∗
2Q1 = R2R

−1
1 is upper triangular with positive diagonal entries as a

product of two upper triangular matrices (see Lemma 2.2.5). Let T = R2R
−1
1 .

We have
TT ∗ = (Q∗

2Q1)(Q∗
2Q1)∗ = I.

Hence T is a Cholesky factorization of the identity, and since it is unique, we
necessarily have T = I. �
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Remark 6.4.2. The above proof of uniqueness of the QR factorization relies
crucially on the positivity assumption of the diagonal entries of R. Let us
investigate the case that the diagonal entries of R have no specific sign (this
turns out to be useful in the proof of Theorem 10.6.1). Consider two QR
factorizations of the same nonsingular matrix

A = Q1R1 = Q2R2.

The upper triangular matrix R2R
−1
1 is thus equal to the orthogonal one Qt

2Q1,
hence it is diagonal (see the proof of Theorem 2.5.1): there exists a diagonal
matrix D such that R2R

−1
1 = Qt

2Q1 = D. That is to say, R2 = DR1 and Q1 =
Q2D. The last equality implies |Di,i| = 1. In other words, the QR factorization
of a real nonsingular matrix is always unique up to the multiplication of each
column k of Q and each row k of R by the factor rk = ±1. In the complex case,
the multiplication factor is a complex number of unit modulus, eis, where s
is a real number.

Example 6.4.1. The QR factorization of the matrix

A =

⎛
⎝ 1 −1 2

−1 1 0
0 −2 1

⎞
⎠

is

Q =

⎛
⎝ 1/

√
2 0 1/

√
2

−1/
√

2 0 1/
√

2
0 −1 0

⎞
⎠ , R =

⎛
⎝

√
2 −

√
2

√
2

0 2 −1
0 0

√
2

⎞
⎠ .

To determine the solution of Ax = (−3, 1, 5)t, we first compute y = Qtb =
1√
2
(−4,−5

√
2,−2)t, then solve Rx = y to obtain x = (−4,−3,−1)t.

6.4.1 Operation Count

We assess the efficiency of the Gram–Schmidt algorithm for the QR method
by counting the number of multiplications that are necessary to its execution.
The number of square roots is n, which is negligible in this operation count.

• Gram–Schmidt factorization: the number of operations is

Nop(n) =
n∑

i=1

((i − 1)(2n) + (n + 1)) ≈ n3.

• Updating the right-hand side: to compute the matrix-vector product Q∗b
requires Nop(n) ≈ n2.

• Back substitution: to solve the triangular system associated with R re-
quires Nop ≈ n2/2.
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The Gram–Schmidt algorithm for the QR method is thus three times slower
than Gaussian elimination. It is therefore not used in practice to solve linear
systems. Nonetheless, the QR method may be generalized, and it is useful for
solving least squares fitting problems (see Chapter 7).

Remark 6.4.3. In numerical practice the Gram–Schmidt procedure is not used
to find the QR factorization of a matrix because it is an unstable algorithm
(rounding errors prevent the matrix Q from being exactly orthogonal). We
shall see in the next chapter a better algorithm, known as the Householder
algorithm, to compute the QR factorization of a matrix.

Conditioning of a matrix. If one knows the QR factorization of a matrix A,
its 2-norm conditioning is easy to compute, since cond2(A) = cond2(QR) =
cond2(R) because Q is unitary.

6.5 Exercises

6.1. We define a matrix A=[1 2 3; 4 5 6; 7 8 9]. Compute its determi-
nant using the Matlab function det. Explain why the result is not an integer.

6.2. The goal of this exercise is to compare the performances of the LU and
Cholesky methods.

1. Write a function LUfacto returning the matrices L and U determined via
Algorithm 6.1. If the algorithm cannot be executed (division by 0), return
an error message.

2. Write a function Cholesky returning the matrix B computed by Algo-
rithm 6.2. If the algorithm cannot be executed (nonsymmetric matrix,
division by 0, negative square root), return an error message. Compare
with the Matlab function chol.

3. For n = 10, 20, . . . , 100, we define a matrix A=MatSdp(n) (see Exercise
2.20) and a vector b=ones(n,1). Compare:
• On the one hand, the running time for computing the matrices L and

U given by the function LUFacto, then the solution x of the system
Ax = b. Use the functions BackSub and ForwSub defined in Exercise
5.2.

• On the other hand, the running time for computing the matrix B given
by the function Cholesky, then the solution x of the system Ax = b.
Use the functions BackSub and ForwSub.

Plot on the same graph the curves representing the running times in terms
of n. Comment.

6.3 (∗). The goal of this exercise is to program the following variants of the
Gauss algorithm:
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• the Gauss algorithm with partial pivoting (by row), which consists, at each
step k of the Gauss elimination, in determining an index i0 (k ≤ i0 ≤ n)
such that

|ai0,k| = max
k≤i≤n

|ai,k|, (6.5)

then swapping rows k and i0,
• the Gauss algorithm with complete pivoting, which consists in determining

indices i0 and j0 (k ≤ i0, j0 ≤ n), such that

|ai0,j0 | = max
k≤i,j≤n

|ai,j |, (6.6)

then swapping rows k and i0, and columns k and j0.

Let Ak be the matrix obtained at the end of step k of the Gauss elimination.
In the first k − 1 columns of Ak, all the entries below the diagonal are zero.

1. Write a function x=Gauss(A,b) solving the linear system Ax = b by the
Gauss method outlined in Section 6.1. Recall that if the pivot A

(k)
k,k is zero,

this method permutes row k with the next row i (i ≥ k) such that A
(k)
i,i is

nonzero.
2. Write a function x=GaussWithoutPivot(A,b) solving the system Ax = b

by the Gauss method without any pivoting strategy. If the algorithm can-
not proceed (because of a too-small pivot A

(k)
k,k), return an error message.

3. Write a function x=GaussPartialPivot(A,b) solving the linear system
Ax = b by the Gauss method with partial pivoting by row.

4. Write a function x=GaussCompletePivot(A,b) solving the linear system
Ax = b by the Gauss method with complete pivoting.

5. Comparison of the algorithms.
(a) Check on the following example that it is sometimes necessary to use

a pivoting strategy. Define the matrix A, and the vectors b and x by

A =

⎛
⎝ ε 1 1

1 1 −1
1 1 2

⎞
⎠ , x =

⎛
⎝ 1

−1
1

⎞
⎠ , and b = Ax.

For ε = 10−15, compare the solutions obtained by Gauss(A,b) and
GaussPartialPivot(A,b). Comment.

(b) In order to compare the Gauss pivoting algorithms, we define the
following ratio �, which we shall call growth rate:

� =
maxi,j |A(n−1)

i,j |
maxi,j |Ai,j |

,

where A(n−1) denotes the upper triangular matrix generated by Gauss-
ian elimination. The growth rate measures the amplification of the ma-
trix entries during Gauss elimination. For numerical stability reasons,
the ratio � should not be too large.
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i. Modify the programs GaussWithoutPivot, GaussPartialPivot,
GaussCompletePivot, and Gauss to compute respectively the
rates �GWP , �GCP , �GPP and �G .

ii. For different values of n, compute the growth rates for the matrices
A, B, and C defined by
A=DiagDomMat(n); B=SpdMat(n); C=rand(n,n);
Conclude.

iii. Comparison of �GPP and �GCP .
A. For each n = 10 k (1 ≤ k ≤ 10), compute �GPP and �GCP for

three (or more) matrices randomly generated A=rand(n,n).
Plot these values on the same graph in terms of the matrix
dimension n. What do you notice?

B. For each n = 2 k (1 ≤ k ≤ 5), compute �GPP and �GCP for the
matrix defined by
A=-tril(ones(n,n))+2*diag(ones(n,1));
A=A+[zeros(n,n-1) [ones(n-1,1);0]];
What do you notice?

6.4. The goal of this exercise is to evaluate the influence of row permutation
in Gaussian elimination. Let A and b be defined by

e=1.E-15;A=[e 1 1;1 -1 1; 1 0 1];b=[2 0 1]’;

1. Compute the matrices L and U given by the function LUFacto of Exercise
6.2.

2. We define two matrices l and u by [l u]=LUFacto(p*A), where p is the
permutation matrix defined by the instruction [w z p]=lu(A). Display
the matrices l and u. What do you observe?

3. Determine the solution of the system Ax = b computed by the instruc-
tion BackSub (U,ForwdSub(L,b)), then the solution computed by the
instruction BackSub (u,ForwSub(l,p*b)). Compare with the exact solu-
tion x = (0, 1, 1)t. Conclude.

6.5 (∗).
1. Write a program StoreB to store a band matrix.
2. Write a program StoreBpv to compute the product of a band matrix with

a vector. The matrix is given in the form StoreB.

6.6 (∗). Write a program LUBand that computes the LU factorization of a
band matrix given in the form StoreB. The resulting matrices L and U have
to be returned in the form StoreB.

6.7. The goal of this exercise is to study the resolution of the finite difference
discretization of the 2D Laplace equation. For given smooth functions f and
g we seek a solution u(x, y) of the following partial differential equation:

−∆u(x, y) = f(x, y), for (x, y) ∈ Ω =]0, 1[×]0, 1[, (6.7)
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together with the boundary condition

u(x, y) = g(x, y), for (x, y) ∈ ∂Ω = boundary of Ω, (6.8)

where ∆u = ∂2u/∂x2 + ∂2u/∂y2 is the Laplacian of u. As for the one-
dimensional problem, we discretize the domain Ω: given the space step
h = 1/(N +1) (respectively, k = 1/(M +1)) in the direction of x (respectively,
y), we define the points

xi = ih, i = 0, . . . , N + 1, yj = jk, j = 0, . . . ,M + 1.

The goal is to compute an approximation (ui,j) of u at the points in Ω,
(xi, yj), 1 ≤ i ≤ N , and 1 ≤ j ≤ M .

1. Finite difference approximation of the Laplacian.
(a) Combining the Taylor expansions of u(xi − h, yj) and u(xi + h, yj),

show that

∂2u

∂x2
(xi, yj) =

u(xi−1, yj) − 2u(xi, yj) + u(xi+1, yj)
h2

+ O(h2).

We say that
(
u(xi−1, yj) − 2u(xi, yj) + u(xi+1, yj)

)
/h2 is a second-

order approximation of ∂2u/∂x2 at point (xi, yj).
(b) Same question for

∂2u

∂y2
(xi, yj) =

u(xi, yj−1) − 2u(xi, yj) + u(xi, yj+1)
k2

+ O(k2).

(c) Justify the finite difference method for solving the Laplace equation
(6.7):

−ui−1,j + 2ui,j − ui+1,j

h2
+

−ui,j−1 + 2ui,j − ui,j+1

k2
= fi,j , (6.9)

where ui,j denotes the approximation of u(xi, yj), and fi,j = f(xi, yj).
Formula (6.9) is called the 5-point discretization of the Laplacian,
because it couples 5 values of u at 5 neighboring points.

2. Taking into account the boundary condition (6.8), formula (6.9) has to be
modified for the points (xi, yj) close to the boundary ∂Ω, that is, for i = 1
and N , or j = 1 and M . For instance, for j = 1, the term ui,j−1 appearing
in (6.9) is known and equal to gi,0, according to (6.8). Therefore, this term
moves to the right-hand side of the equality:

−ui−1,1 + 2ui,1 − ui+1,1

h2
+

2ui,1 − ui,2

k2
= fi,1 +

gi,0

k2
. (6.10)

For i = 1 or i = N , there is yet another term of (6.10) that is known:

2u1,1 − u2,1

h2
+

2u1,1 − u1,2

k2
= f1,1 +

g1,0

k2
+

g0,1

h2
;
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−uN−1,1 + 2uN,1

h2
+

2uN,1 − uN,2

k2
= fN,1 +

gN,0

k2
+

gN+1,1

h2
.

Write the corresponding equations for the other points close to the bound-
ary.

3. We now solve the linear system corresponding to (6.9) and (6.10) and
assume, for simplicity, that h = k. Let ūj be the vector whose entries
are the n unknowns located on row j, ūj = (u1,j , u2,j , . . . , uN,j)t, and
f̄j = (f1,j , f2,j , . . . , fN,j)t. Determine the matrix B such that the vectors
ūj for j = 1, . . . , M satisfy the equations

−ūj−1 + Būj − ūj+1

h2
= f̄j .

For j = 1 or j = M , f̄j must be modified in order to take into account the
boundary values ui,0 and ui,M+1, which are known. For simplicity again,
we assume g = 0. Prove that the complete system reads

Aū = f̄ , (6.11)

where the unknown is ū = (ū1, . . . , ūM )t, the right-hand side is f̄ =
(f̄1, . . . , f̄M )t, and the matrix A is to be determined. Exhibit the band
structure of this matrix.
(a) Write a function Laplacian2dD(n) returning the matrix A (of order

n2, where n = N = M). Use the Matlab function spy to visualize the
matrix A. Hint: we do not request at this stage of the problem to use
the Matlab instruction sparse.

(b) Write a function Laplacian2dDRHS(n,f) returning the right-hand
side f̄ of equation (6.11), given n and the function f defined as a
Matlab function.

4. Validation. Set f(x, y) = 2x(1 − x) + 2y(1 − y), so that the solution of
(6.7) is u(x, y) = x(1−x)y(1− y). For N = 10, compute the approximate
solution and compare it with the exact solution, plotting them on the
same graph using the function plot3.

5. Convergence. We now choose f such that the solution u is not a polyno-
mial.
(a) How should one choose f so that the solution is

u(x, y) = (x − 1)(y − 1) sin(πx) sin(πy)?
(b) What is the maximal value N0 for which Matlab can carry out the

computations (before a memory size problem occurs)?
(c) Taking into account the sparse nature of the matrix A, we define a

function Laplacian2dDSparse. The command sparse should be used
to define and store the matrix A in sparse form: larger problems (i.e.,
with N larger than N0) can be solved accordingly. Let Ne be the total
number of nonzero entries of A. Define three vectors of size Ne:
• a vector ii of integers containing the indices of the rows of the

nonzero entries of A;
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• a vector jj of integers containing the indices of the columns of the
nonzero entries of A;

• a vector u containing the nonzero entries of A.
For any k = 1, . . . , Ne, they satisfy u(k) = Aii(k),jj(k). Next, define a
matrix spA=sparse(ii,jj,u). For every value N = 5, 10, 15, . . . , 50,
compute the error between the numerical solution and the exact so-
lution. Plot the error in terms of N on a log-log scale. The error is
computed in the ∞-norm, i.e., is equal to the maximum of the er-
ror between the exact and approximate solutions at the N × N mesh
points. Comment on the results.

6. Spectrum of A. We fix N = 20.
(a) Compute (using eig) the eigenvalues and the eigenvectors of A.
(b) Use the instruction sort to find the four smallest eigenvalues. Plot

the corresponding eigenvectors (using surfc). Hint: The eigenvectors
computed by Matlab are vectors of size N × N , which have to be
represented as a function of (x, y) given on an N × N regular grid.

(c) The eigenvalue λ and eigenfunction ϕ of the Laplacian on the unit
square with homogeneous Dirichlet boundary conditionsare are de-
fined by a nonidentically zero function ϕ such that

−∆ϕ = λϕ in Ω

and ϕ(x, y) = 0 for (x, y) ∈ ∂Ω. For which values α and β is
ϕ(x, y) = sin(αx) sin(βy) an eigenfunction? What is the corresponding
eigenvalue? Plot on the unit square the first four eigenfunctions of the
Laplacian, that is, the eigenfunctions corresponding to the smallest
eigenvalues. Interpret the curves of the previous question.

6.8. Let A be the matrix defined by A=Laplacian2dD(5), and A = LU its LU
factorization given by LUFacto. Use the function spy to display the matrices
L and U . Explain.

6.9. Let A be a band matrix of order n and half bandwidth p. For n � p � 1
compute the number of operations Nop(n, p) required for the LU factorization
(having in mind Proposition 6.2.1).

6.10. The goal of this exercise is to program the so-called incomplete LU
factorization of a matrix A, which is defined as the approximate factorization
A ≈ L̃Ũ , where L̃ and Ũ are computed by the program LUFacto modified as
follows: the entries L̃i,j and Ũi,j are computed if and only if the entry Ai,j is
not zero. If this entry is zero, we set L̃i,j = 0 and Ũi,j = 0.

1. Write a program ILUfacto computing the incomplete LU factorization of
a matrix. Because of rounding errors, the condition Ai,j = 0 has to be
replaced by |Ai,j | < ε, where ε > 0 is a prescribed small threshold.

2. For A=Laplacian2dD(10), compute cond2(A) and cond2(Ũ−1L̃−1A). Ex-
plain.
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Least Squares Problems

7.1 Motivation

The origin of the least squares data-fitting problem is the need of a notion
of “generalized solutions” for a linear system Ax = b that has no solution in
the classical sense (that is, b does not belong to the range of A). The idea
is then to look for a vector x such that Ax is “the closest possible” to b.
Several norms are at hand to measure the distance between Ax and b, but the
simplest choice (which corresponds to the denomination “least squares”) is the
Euclidean vector norm. In other words, a least squares problem amounts to
finding the solution (possibly nonunique) x ∈ R

p to the following minimization
problem:

‖b − Ax‖n = min
y∈Rp

‖b − Ay‖n, (7.1)

where A ∈ Mn,p(R) is a matrix with n rows and p columns, b is a vector of
R

n, and ‖ · ‖n denotes the Euclidean norm in R
n.

In the square case p = n, if the matrix A is nonsingular, then there exists
a unique minimizer x = A−1b, and the minimum is equal to zero. In such a
case, a least squares problem is equivalent to solving a linear system. If A is
singular or if p 	= n, the notion of least squares yields a generalization of a
linear system solving to nonsquare or singular matrices. If a solution of the
linear system Ax = b exists, then it is also a solution of the least squares
problem. The converse is not true, as we shall see in the following geometrical
argument.

The least squares problem (7.1) has a geometrical interpretation as finding
the orthogonal projection of b on the range of A. Indeed, Ax is the closest
vector in Im (A) to b. A well-known property of the orthogonal projection
is that b − Ax is actually orthogonal to Im (A). We display in Figure 7.1 a
vector b and its orthogonal projection Ax onto the vector subspace Im (A). It
is therefore clear that (7.1) always admits at least one solution x (such that
Ax is the orthogonal projection of b,) although the linear system Ay = b may
have no solution if b does not belong to Im (A).
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b

z = Ax

�

b − Ax �

O

�θ

Im (A)

Fig. 7.1. Least squares problem: projection of b onto Im (A).

Finally, let us recall that one of the main motivations of least squares
problems is data-fitting (see Section 1.2).

7.2 Main Results

We consider the least squares problem (7.1): find x ∈ R
p that minimizes

‖b − Ay‖n over R
p, where A ∈ Mn,p(R) is a matrix with n rows and p

columns, b ∈ R
n, and ‖ · ‖n denotes the Euclidean norm in R

n.

Lemma 7.2.1. A vector x ∈ R
p is a solution to the least squares problem

(7.1) if and only if it satisfies the so-called normal equation

A∗Ax = A∗b. (7.2)

(Observe that A∗A is a square matrix of size p.)

Proof. Let x ∈ R
p be a solution of (7.1), i.e.,

‖b − Ax‖2
n ≤ ‖b − Ay‖2

n, ∀y ∈ R
p.

For any z ∈ R
p and any t ∈ R, set y = x + tz. Then

‖b − Ax‖2
n ≤ ‖b − Ax‖2

n + 2t〈Ax − b, Az〉 + t2‖Az‖2
n.

We infer
0 ≤ 2 sign (t)〈Ax − b, Az〉 + |t|‖Az‖2

n,

which implies that as t tends to 0 (from above and then from below),

〈Ax − b, Az〉 = 0, ∀z ∈ R
p.

Thus we deduce that A∗Ax − A∗b = 0. Conversely, if x is a solution of the
normal equation (7.2), then

〈Ax − b, Az〉 = 0, ∀z ∈ R
p.

Thus
‖b − Ax‖2

n ≤ ‖b − Ay‖2
n, ∀y = x + tz ∈ R

p.

That is, x is also a solution of (7.1). �
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Theorem 7.2.1. For any matrix A ∈ Mn,p(R), there always exists at least
one solution of the normal equation (7.2). Furthermore, this solution is unique
if and only if Ker A = {0}.

Proof. If A∗A is nonsingular, there exists, of course, a unique solution to the
normal equation. If it is singular, we now show that there still exists a solution
that is not unique. Let us prove that A∗b ∈ Im A∗A, or more generally, that
Im A∗ ⊂ Im A∗A. The opposite inclusion, Im A∗A ⊂ Im A∗, is obvious, as
well as Ker A ⊂ Ker A∗A. On the other hand, the relation ImA∗ = (Ker A)⊥

implies that
R

p = Ker A ⊕ Im A∗. (7.3)

Moreover, A∗A is real symmetric, so is diagonalizable in an orthonormal basis
of eigenvectors. Since the range and the kernel of a diagonalizable matrix are
in direct sum, we deduce

R
p = Ker A∗A ⊕ Im A∗A. (7.4)

If we can show that KerA∗A ⊂ Ker A (and thereby that KerA = Ker A∗A),
then (7.3) and (7.4), together with the relation ImA∗A ⊂ Im A∗, imply that
Im A∗ = Im A∗A, which is the desired result. Let us prove that KerA∗A ⊂
Ker A. If x ∈ Ker A∗A, then

A∗Ax = 0 ⇒ 〈A∗Ax, x〉 = 0 ⇔ ‖Ax‖ = 0 ⇔ Ax = 0,

and thus x ∈ Ker A. This proves the existence of at least one solution. Clearly
two solutions of the normal equation differ by a vector in KerA∗A, which is
precisely equal to Ker A. �

A particular solution of the normal equation can be expressed in terms of
the pseudoinverse A† of A (see Definition 2.7.2).

Proposition 7.2.1. The vector xb = A†b is a solution of the least squares
problem (7.1). When (7.1) has several solutions, xb is the unique solution
with minimal norm, i.e., for all x 	= xb such that ‖Axb − b‖2 = ‖Ax− b‖2, we
have

‖xb‖2 < ‖x‖2.

Proof. For any x ∈ R
p, we decompose Ax − b as follows:

Ax − b = A(x − xb) − (I − AA†)b.

This decomposition is orthogonal since A(x − xb) ∈ Im A and (I − AA†)b ∈
( Im A)⊥, because AA† is the orthogonal projection matrix of C

m onto ImA;
see Exercise 2.29. We deduce from this decomposition that

‖Ax − b‖2
2 = ‖Ax − Axb‖2

2 + ‖Axb − b‖2
2 ≥ ‖Axb − b‖2

2, (7.5)

which proves that xb is a solution of ( 7.1). In addition, if ‖Axb − b‖2 =
‖Ax − b‖2, then (7.5) shows that Ax = Axb and z = x − xb ∈ Ker A. We
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obtain thus a decomposition of x into x = z + xb. This decomposition is
orthogonal, since z ∈ Ker A and xb = A†b ∈ (Ker A)⊥ (by definition of A† in
Exercise 2.29). Hence, if x 	= xb, we have

‖x‖2
2 = ‖z‖2

2 + ‖xb‖2
2 > ‖xb‖2

2.

�

Remark 7.2.1. The vector xb = A†b has a simple geometric characterization:
it is the unique vector of (KerA)⊥ whose image under the matrix A is equal
to the projection of b onto ImA; for more details see Exercise 2.29.

7.3 Numerical Algorithms

Before introducing efficient numerical methods for solving problem (7.2), we
first study the sensitivity of the solution to variations of the data.

7.3.1 Conditioning of Least Squares Problems

In this section we assume that system (7.2) has a unique solution, that is,
Ker A is reduced to the zero vector. Note that this is possible only if p ≤ n. In
this case, the square matrix A∗A is nonsingular, and by Theorem 7.2.1, the
least squares problem has a unique solution, equal to A†b.

Sensitivity of the Solution to Variations of b.

For a given b0 ∈ R
n, we call x0 = A†b0 the solution to the least squares

problem
min
y∈Rp

‖Ay − b0‖. (7.6)

Similarly for a given b1 ∈ R
n, we call x1 = A†b1 the solution to the least

squares problem
min
y∈Rp

‖Ay − b1‖. (7.7)

Before analyzing the variations of x in terms of the variations of b, let us first
observe that only the projection of the vector b onto Im A counts; it is the
point of the next remark.

Remark 7.3.1. As already explained in Section 7.1, a solution x of the least
squares problem can be obtained by taking Ax as the orthogonal projection
of b onto Im (A). Therefore, if we modify the vector b without changing its
orthogonal projection onto Im (A), we preserve the same solution of the least
squares problem. In other words, if b0 and b1 have the same projection z onto
Im (A), we have Ax0 = Ax1 = z. Since the kernel of A is Ker A = {0}, we
clearly obtain equality between the two solutions, x0 = x1.
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Bound from above of the absolute variation

We have a direct upper bound of the variations of the solution:

‖x1 − x0‖2 = ‖A†(b1 − b0)‖2 ≤ 1
µp

‖b1 − b0‖2,

where µp is the smallest nonzero singular value of the matrix A; see Remark
5.3.4.

Bound from above of the relative variation

Assuming that x0 and b0 are nonzero, the relative error on x can be bounded
in terms of the relative error on b.

Proposition 7.3.1. Assume that Ker A = {0}. Let b0, b1 be the vectors de-
fined in (7.6), (7.7), and x0, x1 their corresponding solutions. They satisfy

‖x1 − x0‖2

‖x0‖2
≤ Cb

‖b1 − b0‖2

‖b0‖2
, (7.8)

where

Cb = ‖A†‖2
‖b0‖
‖x0‖

. (7.9)

The constant Cb is a measure of the amplification of the relative error on the
solution x with respect to the relative error on the right-hand side b. This
constant is the product of several quantities:

Cb =
cond(A)
η cos θ

,

where

� cond(A) = ‖A‖2‖A†‖2 is the generalized conditioning of A,
� θ denotes the angle formed by the vectors Ax0 and b0 (see Figure 7.1),

i.e., cos θ = ‖Ax0‖2/‖b0‖2,
� η = ‖A‖2 ‖x0‖2/‖Ax0‖2 indicates the gap between the norm of the vector

Ax0 and the maximal value that can be taken by this norm (it always
satisfies η ≥ 1).

We single out the following particular cases:

� if b0 ∈ Im A, then θ = 0 and since η ≥ 1, the amplification constant Cb is
at most equal to cond2(A);

� if b0 ∈ ( Im A)⊥, then θ = π/2 and z0 = 0 = Ax0. The amplification
constant Cb is infinite in this case.
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Sensitivity of the Solution to Variations of A.

We now vary the matrix A. Let A0 be a reference matrix with KerA0 = {0},
and let

Aε = A0 + εB, B ∈ Mn,p(C) (7.10)

be the matrix of the perturbed problem. For ε small enough, A∗
εAε is nonsin-

gular, and the respective solutions to the reference and perturbed problems
are denoted by x0 and xε. They satisfy

A∗
0A0x0 = A∗

0b and A∗
εAεxε = A∗

εb.

We perform a Taylor expansion for ε close to 0:

xε = (A∗
εAε)−1A∗

εb =
[
(A∗

0 + εB∗)(A0 + εB)
]−1

(A∗
0 + εB∗)b

=
[
A∗

0A0 + ε(A∗
0B + B∗A0) + O(ε2)

]−1

(A∗
0b + εB∗b)

=
[
I + ε(A∗

0A0)−1(A∗
0B + B∗A0) + O(ε2)

]−1

(A∗
0A0)−1(A∗

0b + εB∗b)

=
[
I − ε(A∗

0A0)−1(A∗
0B + B∗A0) + O(ε2)

][
x0 + ε(A∗

0A0)−1B∗b
]
.

Therefore, we deduce that

xε − x0 = (A∗
0A0)−1(εB∗)(b − A0x0) − (A∗

0A0)−1A∗
0(εB)x0 + O(ε2).

Setting ∆A0 = Aε − A0, we get the following upper bound:

‖xε − x0‖2

‖x0‖2
≤ ‖(A∗

0A0)−1‖2 ‖∆A0‖2
‖b − A0x0‖2

‖A0x0‖2
+ ‖A†

0‖2 ‖∆A0‖2 + O(ε2).

On the other hand, we have tan θ = ‖b − z0‖2/‖z0‖2 and

‖(A∗A)−1‖2 =
1
σ

=
1

min
λ∈σ(A∗A)

|λ| =
1

min
i

µ2
i

= ‖A†‖2
2,

where σ is the smallest singular value of A∗A, µi are the singular values of
A, and we have used the fact that A∗A is normal. Hence, we have proved the
following result:

Proposition 7.3.2. Assume that Ker A0 = {0}. Let x0 and xε be the solu-
tions to the least squares problems associated with the matrices A0 and Aε

respectively, with the same right-hand side b. The following upper bound holds
as ε tends to 0:

‖xε − x0‖2

‖x0‖2
≤ CA0

‖Aε − A0‖2

‖A0‖2
+ O(ε2), (7.11)

where CA = cond2(A) +
tan θ

η
cond2(A)2.
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Therefore, the relative error on x can be amplified by the factor CA. We single
out the following particular cases:

� if b0 ∈ Im A, then CA = cond2(A);
� if b0 ∈ ( Im A)⊥, the amplification factor CA is infinite;
� in all other cases, CA is usually of the same order as cond2(A)2. Of

course, if (tan θ)/η is very small (much smaller than cond2(A)−1), CA

is of the order of cond2(A), while if (tan θ)/η is very large, CA is larger
than cond2(A)2.

7.3.2 Normal Equation Method

Lemma 7.2.1 tells us that the solution to the least squares problem is also a
solution of the normal equation defined by

A∗Ax = A∗b.

Since A∗A is a square matrix of size p, we can apply to this linear system
the methods for solving linear systems, as seen in Chapter 6. If Ker A = {0},
then the matrix A∗A is even symmetric and positive definite, so we can apply
the most efficient algorithm, that is, the Cholesky method.

Operation Count

As usual, we count only multiplications and we give an equivalent for n and
p large. When applying the Cholesky algorithm to the normal equation, the
following operations are performed:

• Multiplication of A∗ by A: it is the product of a p× n matrix by an n× p
matrix. The matrix A∗A is symmetric, so only the upper part has to be
computed. The number of operations Nop is exactly

Nop =
np(p + 1)

2
.

• Cholesky factorization:

Nop ≈ p3

6
.

• Computing the right-hand side: the matrix-vector product A∗b costs

Nop = pn.

• Substitutions: solving two triangular linear systems costs

Nop ≈ p2.



132 7 Least Squares Problems

In general, n is much larger than p, which makes the cost of the Cholesky
factorization marginal with respect to the cost of the matrix product A∗A.
However, this method is not recommended if p is large and the conditioning of
A is also large. Actually, the amplification of rounding errors, while solving the
normal equation, is governed by the conditioning of A∗A, which is in general
of the order of the square of the conditioning of A. We shall see other methods
where the conditioning is simply equal to that of A.

7.3.3 QR Factorization Method

The main idea of the QR factorization method is to reduce the problem to
a least squares problem with a triangular matrix. We thus factorize A as the
product of a triangular matrix R and an orthogonal (unitary) matrix Q. We
recall that the multiplication by an orthogonal matrix preserves the Euclidean
norm of a vector:

‖Qz‖n = ‖z‖n, ∀z ∈ R
n if Q−1 = Q∗.

Let A ∈ Mn,p(R) be a (not necessarily square) matrix. We determine R ∈
Mn,p(R) such that ri,j = 0 if i < j, and Q ∈ Mn,n(R) such that Q−1 = Q∗,
satisfying

A = QR.

The original least squares problem (7.1) is then equivalent to the following
triangular problem:

‖Q∗b − Rx‖n = min
y∈Rp

‖Q∗b − Ry‖n,

which is easily solved by a simple back substitution. We first study this method
based on the Gram–Schmidt procedure (in the next section, we shall see an-
other more powerful algorithm). We distinguish three cases.

Case n = p

If the matrix A is nonsingular, then we know that the solution to the least
squares problem is unique and equal to the solution of the linear system Ax =
b. We have seen in Chapter 6 how the QR method is applied to such a system.
If the matrix A is singular, we need to slightly modify the previous QR method.
Let a1, . . . , an be the column vectors of A. Since these vectors are linearly
dependent, there exists i such that a1, . . . , ai are linearly independent, and
ai+1 is generated by a1, . . . , ai. The Gram–Schmidt procedure (see Theorem
2.1.1) would stop at the (i + 1)th step, because

ãi+1 = ai+1 −
i∑

k=1

〈qk, ai+1〉qk = 0.
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Indeed, since the subspaces span {q1, . . . , qi} and span {a1, . . . , ai} are equal
and ai+1 belongs to the latter one, the orthogonal projection of ai+1 onto
span {q1, . . . , qi} is equal to ai+1, and ãi+1 vanishes. To avoid this difficulty,
we first swap the columns of A to bring into the first positions the linearly
independent columns of A. In other words, we multiply A by a permutation
matrix P such that the rk (A) first columns of AP are linearly independent
and the n − rk (A) last columns of AP are spanned by the rk (A) first ones.
This permutation can be carried out simultaneously with the Gram–Schmidt
procedure: if a norm is zero at step i + 1, we perform a circular permutation
from the (i + 1)th column to the nth. Permutation matrices are orthogonal,
so the change of variable z = P ty yields

‖b − Ay‖n = ‖b − APP ty‖n = ‖b − (AP )z‖n.

We apply the Gram–Schmidt procedure to the matrix AP up to step rk (A)
(we cannot go further). Hence, we obtain orthonormal vectors q1, . . . , q rk (A),
to which we can add vectors q rk (A)+1, . . . , qn in order to obtain an orthonormal
basis of R

n. We call Q the matrix formed by these column vectors. We have

qi =
ai −

∑i−1
k=1〈qk, ai〉qk

‖ai −
∑i−1

k=1〈qk, ai〉qk‖
, 1 ≤ i ≤ rk (A),

and ai ∈ span
{
a1, . . . , a rk (A)

}
= span

{
q1, . . . , q rk (A)

}
if rk (A) + 1 ≤ i ≤ n.

Therefore, we infer that there exist scalars rk,i such that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai =
i∑

k=1

rk,iqk, with rii > 0 if 1 ≤ i ≤ rk (A),

ai =
rk (A)∑
k=1

rk,iqk if rk (A) + 1 ≤ i ≤ n.

(7.12)

We set rk,i = 0 if k > i, and call R the upper triangular matrix with entries
(rk,i):

R =
(

R1,1 R1,2

0 0

)
, with R1,1 =

⎛
⎜⎝

r1,1 . . . r1, rk (A)

. . .
...

0 r rk (A), rk (A)

⎞
⎟⎠ .

Relations (7.12) are simply written AP = QR. Let z = (z1, z2) with z1 the
vector of the first rk (A) entries, and z2 that of the last n − rk (A). We have

‖b−APz‖2
n =‖Q∗b−Rz‖2

n =‖(Q∗b)1−R1,1z1−R1,2z2‖2
rg(A)+‖(Q∗b)2‖2

n− rk (A).

Since R1,1 is upper triangular and nonsingular, by a simple back substitution,
and whatever the vector z2 is, we can compute a solution:
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z1 = R−1
1,1 ((Q∗b)1 − R1,2z2) . (7.13)

Consequently, the value of the minimum is

‖(Q∗b)2‖n− rk (A) = min
y∈Rp

‖b − Ay‖n.

Since z2 is not prescribed, there is an infinite number of solutions (a vector
space of dimension n − rk (A)) to the least squares problem.

Case n < p

In this case, we always have Ker A 	= {0}. Therefore, there is an infinity
of solutions. For simplicity, we assume that the rank of A is maximal, i.e.,
equal to n. Otherwise, we have to slightly modify the argument that follows.
Let a1, . . . , ap ∈ R

n be the columns of A. Since rk (A) = n, possibly after
permuting the columns, the first n columns of A are linearly independent in
R

n and we can apply the Gram–Schmidt procedure to them. We thus obtain
an orthogonal matrix Q of size n, with columns q1, . . . , qn satisfying

qi =
ai −

∑i−1
k=1〈qk, ai〉qk

‖ai −
∑i−1

k=1〈qk, ai〉qk‖
, 1 ≤ i ≤ n.

On the other hand, an+1, . . . , ap are spanned by q1, . . . , qn, which is a basis of
R

n. That is, there exist entries rk,i such that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ai =
i∑

k=1

rk,iqk, with rii > 0 if 1 ≤ i ≤ n,

ai =
n∑

k=1

rk,iqk if n + 1 ≤ i ≤ p.

Set rk,i = 0 if k > i, and call R the n×p upper triangular matrix with entries
(rk,i):

R =
(
R1,1 R1,2

)
, with R1,1 =

⎛
⎜⎝

r1,1 . . . r1,n

. . .
...

0 rn,n

⎞
⎟⎠ ,

and R1,2 is an n × (p − n) matrix. Set z = (z1, z2) with z1 the vector formed
by the first n entries, and z2 by the last p − n. We have

‖b − Az‖n = ‖Q∗b − R1,1z1 − R1,2z2‖n.

Since R1,1 is upper triangular and nonsingular, by a simple back substitution,
and for any choice of z2, we can compute a solution:

z1 = R−1
1,1 ((Q∗b) − R1,2z2) . (7.14)
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As a consequence, the minimum value is

0 = min
y∈Rp

‖b − Ay‖n.

Since z2 is not prescribed, there is an infinite number of solutions (a vector
space of dimension p − n) to the least squares problem.

Case n > p

This is the most widespread case in practice, that is, there are more equa-
tions than unknowns. For simplicity, we assume that KerA = {0} (which is
equivalent to rk (A) = p), so the least squares fitting problem has a unique
solution. If Ker A 	= {0}, then what follows should be modified as in the case
n = p.

We apply the Gram–Schmidt procedure to the (linearly independent)
columns a1, . . . , ap of A in order to obtain orthonormal vectors q1, . . . , qp. We
complement this set of vectors by qp+1, . . . , qn to get an orthonormal basis of
R

n. We call Q the matrix formed by these column vectors. We have

ai =
i∑

k=1

rk,iqk, with rii > 0 if 1 ≤ i ≤ p.

Set rk,i = 0 if k > i, and call R the n×p upper triangular matrix with entries
(rk,i):

R =
(

R1,1

0

)
with R1,1 =

⎛
⎜⎝

r1,1 . . . r1,p

. . .
...

0 rp,p

⎞
⎟⎠ .

Denoting by (Q∗b)p (respectively, (Q∗b)n−p) the vector of the first p (respec-
tively, the last n − p) entries of Q∗b, we write

‖b − Az‖2
n = ‖Q∗b − Rz‖2

n = ‖(Q∗b)p − R1,1z‖2
p + ‖(Q∗b)n−p‖2

n−p.

Since R1,1 is upper triangular and nonsingular, by a simple back substitution
we can compute the solution

z = R−1
1,1(Q

∗b)p. (7.15)

Consequently, the minimum value is

‖(Q∗b)n−p‖n−p = min
y∈Rp

‖b − Ay‖n.

Note that in this case, there is a unique solution to the least squares problem
given by formula (7.15).
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Operation Count

We compute the number of multiplications required by the Gram–Schmidt
algorithm when n > p.

• Orthonormalization: at each step 1 ≤ i ≤ p, we compute i − 1 scalar
products of vectors of R

n, and i − 1 vector-scalar products. The number
of operations Nop is therefore

Nop ≈
p∑

i=1

2(i − 1)n ≈ np2.

• Updating the right-hand side: the cost of the matrix-vector product Q∗b
can be reduced by remarking that in (7.15), only the first p entries of Q∗b
are required; hence

Nop ≈ pn.

• Substitution: solving a triangular linear system of size p costs

Nop ≈ p2/2.

For large n, the QR method with the Gram–Schmidt algorithm is less
efficient than the normal equation method if we compare the number of op-
erations. The triangular system Rx = Q∗b (in the case n = p) is, however,
better conditioned. Indeed, cond2(R) = cond2(A), since R and A differ by
the multiplication of an orthogonal matrix (for the normal equation method,
it is the conditioning of A∗A that matters). Nevertheless, in practice, this al-
gorithm is not recommended for large matrices A (the following Householder
algorithm shall be preferred). Indeed, the Gram–Schmidt algorithm is numer-
ically unstable in the sense that for large values of p, the columns of Q are no
longer perfectly orthogonal, so Q−1 is numerically no longer equal to Q∗.

7.3.4 Householder Algorithm

The Householder algorithm is an implementation of the QR method that
does not rely on the Gram–Schmidt algorithm. It amounts to multiplying
the matrix A by a sequence of very simple orthogonal matrices (the so-called
Householder matrices) so as to shape A progressively into an upper triangular
matrix.

Definition 7.3.1. Let v ∈ R
n be a nonzero vector. The Householder matrix

associated with the vector v, denoted by H(v), is defined by

H(v) = I − 2
vvt

‖v‖2
.

We set H(0) = I; the identity is thus considered as a Householder matrix.
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Remark 7.3.2. The product vvt of an n×1 matrix by a 1×n matrix is indeed
a square matrix of order n, which is equivalently denoted by v ⊗ v. It easy to
check by associativity that the product (vvt)x is equal to 〈v, x〉v.

Householder matrices feature interesting properties that are described in
the following result; see also Figure 7.2.

�

�

�

�

�

αu−αu

H(u)x x = αu + βvβv

Fig. 7.2. Householder transformation H(u) = orthogonal symmetry with respect
to the hyperplane that is orthogonal to u.

Lemma 7.3.1. Let H(v) be a Householder matrix.

(i) H(v) is symmetric and orthogonal.
(ii)Let e be a unitary vector. ∀v ∈ R

n, we have

H(v + ‖v‖e)v = −‖v‖e (7.16)

and
H(v − ‖v‖e)v = +‖v‖e. (7.17)

Proof. Obviously H(v)t = H(v). On the other hand, we have

H2 = I − 4
vvt

‖v‖2
+ 4

(vvt)(vvt)
‖v‖4

= I,

since (vvt)(vvt) = ‖v‖2(vvt). Hence H(v) is also orthogonal. Without loss
of generality, we can assume that e is the first vector of the canonical basis
(ei)1≤i≤n. Let w = v+‖v‖e. If w is the null vector, then H(w)v = v = −‖v‖e,
and relation (7.16) holds. For w 	= 0,

H(w)v = v − 2
wwt

‖w‖2
v = v − 2

(‖v‖2 + ‖v‖v1)(v + ‖v‖e)
(v1 + ‖v‖)2 +

∑
k �=1 |vk|2

= v − 2(‖v‖2 + ‖v‖v1)(v + ‖v‖e)
2‖v‖2 + 2v1‖v‖

= v − (v + ‖v‖e) = −‖v‖e.
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A similar computation gives H(v − ‖v‖e)v = ‖v‖e. �
We describe the Householder algorithm in the case n ≥ p, that is, the

matrix A ∈ Mn,p(R) has more rows than columns. The Householder algorithm
defines a sequence of Householder matrices Hk ∈ Mn(R) and a sequence of
matrices Ak+1 ∈ Mn,p(R) for 1 ≤ k ≤ p satisfying

A1 = A, Ak+1 = HkAk, Ap+1 = R,

where R is upper triangular. Each matrix Ak has zeros below the diagonal in
its first (k − 1) columns, and the Householder matrix Hk is built in such a
way that it reduces to zero the kth column below the diagonal in Ak+1.
Step 1 We set A1 = A. Let a1 be the first column of A1. If we have

a1 =

⎛
⎜⎜⎜⎝

a1,1

0
...
0

⎞
⎟⎟⎟⎠ ,

then we are done by taking H1 = I. Otherwise, we set

H1 = H(a1 + ‖a1‖e1),

and define A2 = H1A1. By virtue of Lemma 7.3.1, the first column of A2 is

A2e1 = H1a1 =

⎛
⎜⎜⎜⎝

−‖a1‖
0
...
0

⎞
⎟⎟⎟⎠ ,

which is the desired result at the first step. We could also have taken H1 =
H(a1 − ‖a1‖e1); we choose the sign according to numerical stability criteria.
Step k Assume that the first k − 1 columns of Ak have zeros below the
diagonal:

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak
1,1 . . . . . . . . . . . . ak

1,p

0
. . .

...
...

. . . ak
k−1,k−1 × . . . ×

... 0
...

...
...

...
...

...
0 . . . 0 × . . . ak

n,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let ak be the vector of size (n + 1− k) made of the last (n + 1− k) entries of
the kth column of Ak. If we have
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ak =

⎛
⎜⎜⎜⎝

ak
k,k

0
...
0

⎞
⎟⎟⎟⎠ ,

then we choose Hk = I. Otherwise, we set

Hk =

⎛
⎝ Ik−1 0

0 H(ak + ‖ak‖e1)

⎞
⎠ ,

where Ik−1 is the identity matrix of order k − 1, and H(ak + ‖ak‖e1) is a
Householder matrix of order (n + 1− k). We define Ak+1 = HkAk. By virtue
of Lemma 7.3.1, the kth column of Ak+1 is

Ak+1ek = Hk

⎛
⎜⎜⎜⎜⎜⎝

ak
1,k

...
ak

k−1,k

ak

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ak
1,k

...
ak

k−1,k

H(ak + ‖ak‖e1)ak

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak
1,k

...
ak

k−1,k

−‖ak‖
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Furthermore, in view of the structure of Hk, the first (k−1) columns of Ak+1

are exactly the same as those of Ak. Consequently,

Ak+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak+1
1,1 . . . . . . . . . . . . ak+1

1,p

0
. . .

...
... ak+1

k,k × . . . ×
... 0

...
...

...
...

...
...

0 . . . 0 × . . . ak+1
n,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is the desired result at the kth step. We could also have taken H(ak −
‖ak‖e1) in Hk; we choose the sign according to numerical stability criteria.
After p steps we have thus obtained an upper triangular matrix Ap+1 such
that
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R = Ap+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ap+1
1,1 . . . ap+1

1,p

0
. . .

...
...

. . . ap+1
p,p

... 0

...
...

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Setting Q = H1 · · ·Hp, which is an orthogonal matrix, we have indeed ob-
tained that A = QR.

Remark 7.3.3. The QR factorization by the Householder algorithm is possible
even if the matrix A is singular. It is an advantage with respect to the Gram–
Schmidt algorithm, where column permutations are required if A is singular.
The Householder algorithm is numerically stable, so it is the one used in
practice. The algorithm still works if n < p with obvious modifications.

Operation Count

At each step k, the vector ak + ‖ak‖e1 is computed as well as the product
of the matrices Hk and Ak. Due to the special shape of the matrix Hk, this
matrix product is equivalent to running (p + 1 − k) operations of the type

(vvt)a
‖v‖2

=
〈v, a〉v
‖v‖2

,

where v = ak + ‖ak‖e1, and a is successively the vector containing the last
(n + 1 − k) entries of the last (p + 1 − k) column vectors of Ak. Hence, there
are mainly (p + 1 − k) scalar products and vector-scalar multiplications (we
neglect all lower-order terms such as, for example, the computation of ‖v‖).
Finally, we obtain

Nop ≈
p∑

k=1

2(p + 1 − k)(n + 1 − k) ≈ np2 − 1
3
p3.

This number of operations is smaller than that for the Gram–Schmidt pro-
cedure. In the case n = p, this method can be used to solve a linear system,
and the number of operations is of order 2

3n3, which makes the Householder
algorithm twice slower than the Gauss elimination algorithm. We shall use
Householder matrices again in Chapter 10, concerning eigenvalue computa-
tions.

7.4 Exercises

7.1. Define a matrix A=reshape(1:28,7,4) and vectors b1=ones(7,1), and
b2=[1;2;3;4;3;2;1].
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1. Compute the solutions x1 and x2, of minimal norm, for the least squares
problems

min
x∈R3

‖Ax − b1‖2 and min
x∈R3

‖Ax − b2‖2,

as well as the corresponding minimum values. Comment.
2. How can the other solutions of these two minimization problem be com-

puted?

7.2. Define a matrix A by
A=reshape(1:6,3,2);A=[A eye(size(A)); -eye(A) -A];

1. Define a vector b0 by b0=[2 4 3 -2 -4 -3]’. Compute the solution x0, of
minimal norm, of the least squares problem associated to the matrix A and
b0. Let bbea (small) variationof b0 definedbye=1.E-2;b=b0+e*rand(6,1).
Compute the solution x associated with b. Compute the relative errors
‖x−x0‖2/‖x0‖ and ‖b− b0‖2/‖b0‖. Compute the amplification coefficient
Cb defined by equality (7.9).

2. Same questions for the vector b1 defined by b1=[3 0 -2 -3 0 2]’. Dis-
play both vectors x1 and x. What do you observe?

3. For i varying from 1/100 to 1 by a step size of 1/100, compute the am-
plification coefficient Cb(i) associated with the vector b2 = ib0 +(1− i)b1.
Plot the results on a graph. Comment.

7.3. The goal of this exercise is to approximate a smooth function f defined
on the interval (0, 1) by a polynomial p ∈ Pn−1 in the least squares sense, i.e.,

∫ 1

0

|f(x) − p(x)|2dx = min
q∈Pn−1

∫ 1

0

|f(x) − q(x)|2 dx. (7.18)

Writing p =
∑n

i=1 aiϕi in a basis (ϕi)n
i=1 of Pn−1, the unknowns of the problem

are thus the coefficients ai. Problem (7.18) is equivalent to determining the
minimum of the function E from R

n into R, defined by

E(α1, . . . , αn) =
∫ 1

0

∣∣∣∣∣f(x) −
n∑

i=1

αiϕi(x)

∣∣∣∣∣
2

dx,

which admits a unique solution (a1, . . . , an) characterized by the relations

∂E

∂αk
(a1, . . . , an) = 0, k = 1, . . . , n.

1. Show that the vector a = (a1, . . . , an)t is the solution of a linear system
Aa = b whose matrix and right-hand side are to be specified.

2. Take ϕi(x) = xi−1 and show that the matrix A is the Hilbert matrix; see
Exercise 2.2.
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3. Prove, using the Gram–Schmidt procedure, that there exists a basis
(ϕi)n

i=1 of Pn−1 such that

∫ 1

0

ϕi(x)ϕj(x)dx = δi,j , 1 ≤ i, j ≤ n.

What is the point in using this basis to compute p?

7.4. Define a matrix A by A=MatRank(300,100,100) (see Exercise 2.7), and
b=rand(300,1).

1. Compare (in terms of computational time) the following three methods
for solving the least squares problem

min
x∈Rp

‖Ax − b‖2. (7.19)

(a) The Cholesky method for solving the normal equations. Use the func-
tion chol.

(b) The QR factorization method.
(c) The SVD method where A is factorized as A = V ΣU∗ (see Theorem

2.7.1). Hint: the solutions of (7.19) are given by x = Uy, where y ∈ R
n

can be determined explicitly in terms of the singular values of A and
the vector b.

Compute the solutions x of (7.19), the minima ‖Ax− b‖, and the compu-
tational time. Conclude.

2. Now define A and b by

e=1.e-5;P=[1 1 0;0 1 -1; 1 0 -1]
A=P*diag([e,1,1/e])*inv(P);b=ones(3,1)

Compare the solutions of the least squares problem obtained by the
Cholesky method and the QR method. Explain.

7.5 (∗). Program a function Householder to execute the QR factorization of
a matrix by the Householder algorithm. Compare the results with the factor-
ization obtained by the Gram–Schmidt method.
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Simple Iterative Methods

8.1 General Setting

This chapter is devoted to solving the linear system

Ax = b

by means of iterative methods. In the above equation, A ∈ Mn(R) is a non-
singular square matrix, b ∈ R

n is the right-hand side, and x is the unknown
vector. A method for solving the linear system Ax = b is called iterative if
it is a numerical method computing a sequence of approximate solutions xk

that converges to the exact solution x as the number of iterations k goes to
+∞.

In this chapter, we consider only iterative methods whose sequence of
approximate solutions is defined by a simple induction relation, that is, xk+1

is a function of xk only and not of the previous iterations xk−1, . . . , x1.

Definition 8.1.1. Let A be a nonsingular matrix. A pair of matrices (M,N)
with M nonsingular (and easily invertible in practice) satisfying

A = M − N

is called a splitting (or regular decomposition) of A. An iterative method based
on the splitting (M,N) is defined by{

x0 given in R
n,

Mxk+1 = Nxk + b ∀k ≥ 1.
(8.1)

In the iterative method (8.1), the task of solving the linear system Ax = b
is replaced by a sequence of several linear systems Mx̃ = b̃ to be solved.
Therefore, M has to be much easier to invert than A.

Remark 8.1.1. If the sequence of approximate solutions xk converges to a limit
x as k tends to infinity, then by taking the limit in the induction relation (8.1)
we obtain
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(M − N)x = Ax = b.

Accordingly, should the sequence of approximate solutions converge, its limit
is necessarily the solution of the linear system.

From a practical viewpoint, a convergence criterion is required to decide
when to terminate the iterations, that is, when xk is sufficiently close to the
unknown solution x. We will address this issue at the end of the chapter.

Definition 8.1.2. An iterative method is said to converge if for any choice of
the initial vector x0 ∈ R

n, the sequence of approximate solutions xk converges
to the exact solution x.

Definition 8.1.3. We call the vector rk = b−Axk (respectively, ek = xk −x)
residual (respectively, error) at the kth iteration.

Obviously, an iterative method converges if and only if ek converges to
0, which is equivalent to rk = Aek converging to 0. In general, we have no
knowledge of ek because x is unknown! However, it is easy to compute the
residuals rk, so convergence is detected on the residual in practice.

The sequence defined by (8.1) is also equivalently given by

xk+1 = M−1Nxk + M−1b. (8.2)

The matrix M−1N is called an iteration matrix or amplification matrix of
the iterative method. Theorem 8.1.1 below shows that the convergence of the
iterative method is linked to the spectral radius of M−1N .

Theorem 8.1.1. The iterative method defined by (8.1) converges if and only
if the spectral radius of M−1N satisfies

�(M−1N) < 1.

Proof . The error ek is given by the induction relation

ek = xk − x = (M−1Nxk−1 + M−1b) − (M−1Nx + M−1b)
= M−1N(xk−1 − x) = M−1Nek−1.

Hence ek = (M−1N)ke0, and by Lemma 3.3.1 we infer that limk→+∞ ek = 0,
for any e0, if and only if �(M−1N) < 1. �

Example 8.1.1. To solve a linear system Ax = b, we consider Richardson’s
iterative method (also called gradient method)

xk+1 = xk + α(b − Axk),

where α is a real number. It corresponds to the splitting (8.1) with M = α−1I
and N = α−1I − A. The eigenvalues of the iteration matrix Bα = I − αA
are (1 − αλi), where (λi)i are the eigenvalues of A. Richardson’s method
converges if and only if |1− αλi| < 1 for any eigenvalue λi. If the eigenvalues
of A satisfy 0 < λ1 ≤ · · · ≤ λn ≡ �(A), the latter condition is equivalent to
α ∈ (0, 2/�(A)); see Figure 9.1.
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In some cases, it is not necessary to compute the spectral radius of M−1N
to prove convergence, as shown in the following theorem.

Theorem 8.1.2. Let A be a Hermitian positive definite matrix. Consider a
splitting of A = M − N with M nonsingular. Then the matrix (M∗ + N) is
Hermitian. Furthermore, if (M∗ + N) is also positive definite, we have

�(M−1N) < 1.

Proof. First of all, M∗ + N is indeed Hermitian since it is the sum of two
Hermitian matrices

M∗ + N = (M∗ − N∗) + (N∗ + N) = A∗ + (N∗ + N).

Since A is positive definite, we define the following vector norm:

|x|A =
√

〈Ax, x〉, ∀x ∈ R
n.

We denote by ‖.‖ the matrix norm subordinate to |.|A. Let us show that
‖M−1N‖ < 1, which yields the desired result thanks to Proposition 3.1.4. By
Proposition 3.1.1, there exists v depending on M−1N such that |v|A = 1 and
satisfying

‖M−1N‖2 = max
|x|A=1

|M−1Nx|2A = |M−1Nv|2A.

Since N = M − A, setting w = M−1Av, we get

|M−1Nv|2A = 〈AM−1Nv,M−1Nv〉 = 〈AM−1(M − A)v,M−1(M − A)v〉
= 〈(Av − AM−1Av), (I − M−1A)v〉
= 〈Av, v〉 − 〈AM−1Av, v〉 + 〈AM−1Av,M−1Av〉 − 〈Av,M−1Av〉
= 1 − 〈w,Mw〉 + 〈Aw,w〉 − 〈Mw,w〉 = 1 − 〈(M∗ + N)w,w〉.

By assumption, (M∗ + N) is positive definite and w 	= 0, since A and M are
nonsingular. Thus 〈(M∗ +N)w,w〉 > 0. As a result, ‖M−1N‖2 = 1−〈(M∗ +
N)w,w〉 < 1. �

Iterative methods for solving linear systems may require a large number of
iterations to converge. Thus, one might think that the accumulation of round-
ing errors during the iterations completely destroys the convergence of these
methods on computers (or even worse, makes them converge to wrong solu-
tions). Fortunately enough, this is not the case, as is shown by the following
result.

Theorem 8.1.3. Consider a splitting of A = M − N with A and M nonsin-
gular. Let b ∈ R

n be the right-hand side, and let x ∈ R
n be the solution of

Ax = b. We assume that at each step k the iterative method is tainted by an
error εk ∈ R

n, meaning that xk+1 is not exactly given by (8.1) but rather by

xk+1 = M−1Nxk + M−1b + εk.
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We assume that �(M−1N) < 1, and that there exist a vector norm and a
positive constant ε such that for all k ≥ 0,

‖εk‖ ≤ ε.

Then, there exists a constant K, which depends on M−1N but not on ε, such
that

lim sup
k→+∞

‖xk − x‖ ≤ Kε.

Proof. The error ek = xk − x satisfies ek+1 = M−1Nek + εk, so that

ek =
(
M−1N

)k
e0 +

k−1∑
i=0

(
M−1N

)i
εk−i−1. (8.3)

By virtue of Proposition 3.1.4, there exists a subordinate matrix norm ‖ · ‖s

such that ‖M−1N‖s < 1, since �(M−1N) < 1. We use the same notation for
the associated vector norm. Now, all vector norms on R

n are equivalent, so
there exists a constant C ≥ 1, which depends only on M−1N , such that

C−1‖y‖ ≤ ‖y‖s ≤ C‖y‖, ∀y ∈ R
n.

Bounding (8.3) from above yields

‖ek‖s≤‖M−1N‖k
s‖e0‖s+

k−1∑
i=0

‖M−1N‖i
sCε≤‖M−1N‖k

s‖e0‖s+
Cε

1 − ‖M−1N‖s
.

Letting k go to infinity leads to the desired result with K = C2/(1 −
‖M−1N‖s). �

Iterative methods are often used with sparse matrices. A matrix is said
to be sparse if it has relatively few nonzero entries. Sparse matrices arise, for
example, in the discretization of partial differential equations by the finite
difference or finite element method. A simple instance is given by tridiagonal
matrices.
Storage of sparse matrices. The idea is to keep track only of nonzero entries
of a matrix A, thereby saving considerable memory in practice for matrices
of large size. We introduce sparse or Morse storage through the following
illustrative example; for more details we refer to [5], [14].

Example 8.1.2. Define a matrix

A =

⎛
⎜⎝

9 0 −3 0
7 −1 0 4
0 5 2 0
1 0 −1 2

⎞
⎟⎠ . (8.4)

The entries of A are stored in a vector array stocka. We define another
array beginl, which indicates where the rows of A are stored in stocka.
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More precisely, stocka(beginl(i)) contains the first nonzero entry of row
i. We also need a third array indicc that gives the column of every entry
stored in stocka. If ai,j is stored in stocka(k), then indicc(k) = j. The
number of nonzero entries of A is equal to the size of the vectors indicc and
stocka. The vector beginl has size (n + 1), where n is the number of rows
of A, because its last entry beginl(n + 1) is equal to the size of indicc and
stocka plus 1. This is useful in computing the product z = Ay with such a
storage: each entry z(i) of z is given by

z(i) =
ki+1−1∑
k=ki

stocka(k) y(indicc(k)),

where ki = beginl(i) and (kn+1 − 1) is precisely the size of indicc and
stocka (see Table 8.1 for its application to A).

2 4

−1 3

1 1

2 3

5 2

4 4 11

−1 2 8

7 1 6

−3 3 3

9 1 1

stocka indicc beginl

Table 8.1. Morse storage of the matrix A in (8.4).

8.2 Jacobi, Gauss–Seidel, and Relaxation Methods

8.2.1 Jacobi Method

For any matrix A = (ai,j)1≤i,j≤n, its diagonal D is defined as

D = diag (a1,1, . . . , an,n).

Definition 8.2.1. The Jacobi method is the iterative method defined by the
splitting

M = D, N = D − A.

The iteration matrix of this method is denoted by J = M−1N = I − D−1A.
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Remark 8.2.1.
1. The Jacobi method is well defined if the diagonal matrix is nonsingular.
2. If A is Hermitian, the Jacobi method converges if A and 2D − A are

positive definite (by virtue of Theorem 8.1.2).
3. There exists a block Jacobi method; see Section 8.6.

8.2.2 Gauss–Seidel Method

For any matrix A = (ai,j)1≤i,j≤n, consider the decomposition A = D−E−F ,
where D is the diagonal, −E is the lower part, and −F is the upper part of
A. Namely, ⎧⎨

⎩
di,j = ai,jδi,j ;
ei,j = −ai,j if i > j, and 0 otherwise;
fi,j = −ai,j if i < j, and 0 otherwise.

Definition 8.2.2. The Gauss–Seidel method is the iterative method defined
by the splitting

M = D − E, N = F.

The iteration matrix of this method is denoted by G1 = M−1N = (D−E)−1F .

Remark 8.2.2.
1. The Gauss–Seidel method is well defined if the matrix D − E is nonsin-

gular, which is equivalent to asking that D be nonsingular.
2. The matrix (D − E) is easy to invert, since it is triangular.
3. If A is Hermitian and positive definite, then M∗+N = D is also Hermitian

and positive definite, so Gauss–Seidel converges (by virtue of Theorem
8.1.2).

4. There exists a block Gauss–Seidel method; see Section 8.6.

Comparison between the Jacobi method and the Gauss–Seidel method.

In the Jacobi method, we successively compute the entries of xk+1 in terms
of all the entries of xk:

xk+1
i =

1
ai,i

[−ai,1x
k
1 − · · · − ai,i−1x

k
i−1 − ai,i+1x

k
i+1 − · · · − ai,nxk

n + bi].

In the Gauss–Seidel method, we use the information already computed in the
(i − 1) first entries. Namely,

xk+1
i =

1
ai,i

[−ai,1x
k+1
1 − · · · − ai,i−1x

k+1
i−1 − ai,i+1x

k
i+1 − · · · − ai,nxk

n + bi].

From a practical point of view, two vectors of size n are required to store xk

and xk+1 separately in the Jacobi method, while only one vector is required
in the Gauss–Seidel method (the entries of xk+1 progressively override those
of xk).
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8.2.3 Successive Overrelaxation Method (SOR)

The successive overrelaxation method (SOR) can be seen as an extrapolation
of the Gauss–Seidel method.

Definition 8.2.3. Let ω ∈ R
+. The iterative method relative to the splitting

M =
D

ω
− E, N =

1 − ω

ω
D + F

is called relaxation method for the parameter ω. We denote by Gω the iteration
matrix

Gω = M−1N =
(

D

ω
− E

)−1 (1 − ω

ω
D + F

)
.

Remark 8.2.3.
1. The relaxation method is well defined if the diagonal D is invertible.
2. If ω = 1, we recover the Gauss–Seidel method.
3. If ω < 1, we talk about an under-relaxation method.
4. If ω > 1, we talk about an over-relaxation method.
5. The idea behind the relaxation method is the following. If the efficiency

of an iterative method is measured by the spectral radius of its iteration
matrix M−1N , then, since �(Gω) is continuous with respect to ω, we
can find an optimal ω that produces the smallest spectral radius possible.
Accordingly, the associated iterative method is more efficient than Gauss–
Seidel. We shall see that in general, ωopt > 1, hence the name SOR (over-
relaxation).

6. A block relaxation method is defined in Section 8.6.
7. A relaxation approach for the Jacobi method is discussed in Exercise 8.7.

Theorem 8.2.1. Let A be a Hermitian positive definite matrix. Then for any
ω ∈ ]0, 2[, the relaxation method converges.

Proof. Since A is definite positive, so is D. As a result, D
ω −E is nonsingular.

Moreover,

M∗ + N =
D

ω
− E∗ +

1 − ω

ω
D + F =

2 − ω

ω
D,

since E∗ = F . We conclude that M∗ + N is positive definite if and only if
0 < ω < 2. Theorem 8.1.2 yields the result. �

Theorem 8.2.2. For any matrix A, we always have

�(Gω) ≥ |1 − ω|, ∀ω 	= 0.

Consequently, the relaxation method can converge only if 0 < ω < 2.
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Proof. The determinant of Gω is equal to

det (Gω) = det
(

(
1 − ω

ω
D + F

)
/ det

(
D

ω
− E

)
= (1 − ω)n.

We deduce that

�(Gω)n ≥
n∏

i=1

| λi(Gω) |= | det (Gω) |= | 1 − ω |n,

where λi(Gω) are the eigenvalues of Gω. This yields the result. �

8.3 The Special Case of Tridiagonal Matrices

We compare the Jacobi, Gauss–Seidel, and relaxation methods in the special
case of tridiagonal matrices.

Theorem 8.3.1. Let A be a tridiagonal matrix. We have

�(G1) = �(J )2,

so the Jacobi and Gauss–Seidel methods converge or diverge simultaneously,
but Gauss–Seidel always converges faster than Jacobi.

Theorem 8.3.2. Let A be a tridiagonal Hermitian positive definite matrix.
Then all three methods converge. Moreover, there exists a unique optimal pa-
rameter ωopt in the sense that

�(Gωopt) = min
0<ω<2

�(Gω),

where
ωopt =

2
1 +

√
1 − �(J )2

,

and
�(Gωopt) = ωopt − 1.

Remark 8.3.1. Theorem 8.3.2 shows that in the case of a tridiagonal Hermitian
positive definite matrix, we have ωopt ≥ 1. Therefore, it is better to perform
overrelaxation than underrelaxation.

To prove the above theorems, we need a technical lemma.

Lemma 8.3.1. For any nonzero real number µ 	= 0, we define a tridiagonal
matrix A(µ) by
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A(µ) =

⎛
⎜⎜⎜⎜⎝

b1 µ−1c1 0

µa2
. . . . . .
. . . . . . µ−1cn−1

0 µan bn

⎞
⎟⎟⎟⎟⎠ ,

where ai, bi, ci are given real numbers. The determinant of A(µ) is independent
of µ. In particular, det A(µ) = det A(1).

Proof. The matrices A(µ) and A(1) are similar, since A(µ)Q(µ) = Q(µ)A(1)
with Q(µ) = diag (µ, µ2, . . . , µn), which yields the result. �
Proof of Theorem 8.3.1. The eigenvalues of A are the roots of its character-
istic polynomial PA(λ) = det (A − λI). We have

PJ (λ) = det (−D−1) det (λD − E − F )

and
PG1(λ

2) = det (E − D)−1 det (λ2D − λ2E − F ).

We define a matrix A(µ) by

A(µ) = λ2D − µλ2E − 1
µ

F.

By Lemma 8.3.1, we get det A( 1
λ ) = det A(1). Hence

PG1(λ
2) = (−1)nλnPJ (λ).

As a consequence, for any λ 	= 0, we deduce that λ is an eigenvalue of J if
and only if λ2 is an eigenvalue of G1. Thus, �(G1) = �(J )2. �
Proof of Theorem 8.3.2. Since A is Hermitian, positive definite, we already
know by Theorem 8.2.1 that the relaxation method converges for 0 < ω < 2.
In particular, the Gauss–Seidel method converges. Now, Theorem 8.3.1 states
that �(J )2 = �(G1) < 1. Therefore, the Jacobi method converges too. It
remains to determine ωopt. Let A(µ) be the matrix defined by

A(µ) =
λ2 + ω − 1

ω
D − µλ2E − 1

µ
F.

By Lemma 8.3.1, we know that detA( 1
λ ) = det A(1). Accordingly,

det
(

λ2 + ω − 1
ω

D − λ2E − F

)
= λn det

(
λ2 + ω − 1

λω
D − E − F

)
.

Observing that

PGω
(λ2) = det

(
E − D

ω

)−1

det
(

λ2 + ω − 1
ω

D − λ2E − F

)
,
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we deduce that there exists a constant c (independent of λ) such that

PGω
(λ2) = cλnPJ

(
λ2 + ω − 1

λω

)
.

In other words, for any λ 	= 0, λ2 is an eigenvalue of Gω if and only if (λ2 +
ω − 1)/(λω) is an eigenvalue of J . For an eigenvalue α of J , we denote by
λ±(α) the two roots of the following equation:

λ2 + ω − 1
λω

= α,

that is,

λ±(α) =
αω ±

√
α2ω2 − 4(ω − 1)

2
.

We have just proved that µ+(α) = λ+(α)2 and µ−(α) = λ−(α)2 are eigenval-
ues of Gω. Now, if α is an eigenvalue of J , so is −α. Then, λ+(α) = −λ−(−α).
Hence,

�(Gω) = max
α∈σ(J )

|µ+(α)|,

with

|µ+(α)| =
∣∣∣∣12(α2ω2 − 2ω + 2) +

αω

2

√
α2ω2 − 4(ω − 1)

∣∣∣∣ . (8.5)

In order to compute ωopt, we have to maximize (8.5) over all eigenvalues of
J . Let us first show that the eigenvalues of J are real. Denote by α and v 	= 0
an eigenvalue and its corresponding eigenvector of J . By definition,

J v = αv ⇔ (E + F )v = αDv ⇔ Av = (1 − α)Dv.

Taking the scalar product with v yields

〈Av, v〉 = (1 − α)〈Dv, v〉,

which implies that (1 − α) is a positive real number, since A and D are
Hermitian positive definite. The next step amounts to computing explicitly
|µ+(α)|. Note that µ+(α) may be complex, because the polynomial α2ω2 −
4ω + 4 = 0 has two roots:

ω+(α) =
2

1 +
√

1 − α2
< ω−(α) =

2
1 −

√
1 − α2

,

and may therefore be negative. Since |α| ≤ �(J ) < 1, we get

1 < ω+(α) < 2 < ω−(α).

If ω+(α) < ω < 2, then µ+(α) is complex, and a simple computation shows
that |µ+(α)| = |ω − 1| = ω − 1. Otherwise, since ω ∈ (0, 2), we have 0 < ω <
ω+(α), and µ+(α) is real. Thus
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|µ+(α)| =
{

ω − 1 if ω+(α) < ω < 2,
λ+(α)2 if 0 < ω < ω+(α).

When µ+(α) is real, we have λ+(α) ≥ λ+(−α) if α > 0. Furthermore, ω+(α) =
ω+(−α), so

|µ+(α)| ≥ |µ+(−α)|, if α > 0.

In other words, we can restrict the maximization of |µ+(α)| to positive α.
Moreover, for α > 0 we have

d

dα

(
λ+(α)2

)
= λ+(α)

(
ω +

ω2α√
α2ω2 − 4(ω − 1)

)
> 0.

Accordingly, for a fixed ω, the maximum is attained at α = �(J ):

�(Gω) = |µ+(�(J ))| = max
α∈σ(J )

|µ+(α)|.

From now on, we replace α by the maximizer �(J ) and we eventually minimize
with respect to ω. The derivative is

d
dω

(
λ+(�(J ))2

)
= 2λ+(�(J )) d

dω λ+(�(J ))

= 2λ+(�(J ))
(

�(J )
2 + 2�(J )2ω−4

4
√

�(J )2ω2−4(ω−1)

)

= λ+(�(J ))2(�(J )λ+(�(J ))−1)√
�(J )2ω2−4(ω−1)

.

Since 0 < �(J ) < 1 and λ+(�(J )) ≤ �(Gω) < 1, we deduce

d

dω

(
λ+(�(J ))2

)
< 0,

and the minimum of λ+(�(J ))2 on [0, ω+(�(J ))] is attained at ω+(�(J )).
Likewise, the minimum of ω−1 on [ω+(�(J )), 2] is attained at ω+(�(J )). We
deduce that as ω varies in ]0, 2[, the minimum of �(Gω) is attained at ω+(�(J ))
and we obtain (see Figure 8.1) min0<ω<2 �(Gω) = ωopt − 1, and ωopt =
ω+(�(J )). �

Remark 8.3.2. If only a rough approximation of the optimal parameter ωopt

is available, it is better to overevaluate it than to underevaluate it, since (see
Figure 8.1)

lim
ω→ω−

opt

d�(Gω)
dω

= −∞ and lim
ω→ω+

opt

d�(Gω)
dω

= 1.
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�

�

ω

1

0 1 ωopt 2

ωopt − 1

�(J )2

�(Gω)

�

Fig. 8.1. Spectral radius of Gω in terms of ω.

8.4 Discrete Laplacian

We revisit the finite difference discretization of the Laplacian (see Sections
1.1 and 5.3.3), which leads to the linear system Anx = b, with a tridiagonal
symmetric positive definite matrix An ∈ Mn−1(R), defined by (5.12), and
b ∈ R

n−1. The eigenvalues of An are (see Section 5.3.3)

λk = 4n2 sin2
(
k

π

2n

)
, k = 1, . . . , n − 1.

We now compare some iterative methods for solving the corresponding linear
system. As usual (xk)k denotes the sequence of vector iterates and ek = xk−x
is the error.

� Jacobi method. According to our notations we have

M = 2n2In−1, N = 2n2In−1 − An, J = M−1N = In−1 −
1

2n2
An.

The eigenvalues of the Jacobi matrix J are therefore µk = 1 − λk/(2n2),
with λk eigenvalue of An, and

�(J ) = max
1≤k≤n−1

∣∣∣cos k
π

n

∣∣∣ = max
k∈{1,n−1}

∣∣∣cos k
π

n

∣∣∣ = cos
π

n
.

Since �(J ) < 1, the Jacobi method converges, and as n → +∞,

�(J ) = 1 − 1
2

π2

n2
+ O(n−4).

The matrix J = I − 1
2n2 An is symmetric, and therefore normal. Thus,

‖J k‖2 = �(J )k and ‖ek‖2 ≤ �(J )k‖e0‖2.
Let ε be a given error tolerance. What is the minimal number of iterations
k0 such that the error after k0 iterations is reduced from a factor ε? In
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mathematical terms we want ‖ek‖2 ≤ ε‖e0‖2, for k ≥ k0. We compute an
upper bound by looking for k0 such that �(J )k0 ≤ ε. We find

k0 =
ln ε

ln �(J )
≈ Cn2, with C = −2

ln ε

π2
.

� Gauss–Seidel method. Since An is tridiagonal, we have

�(G1) = �(J )2 = cos2
π

n
< 1,

and the Gauss–Seidel method converges too. As n → +∞,

�(G1) = 1 − π2

n2
+ O(n−4).

For all k ≥ k1, we have ‖ek‖2 ≤ ε‖e0‖2, where k1 is defined by

k1 =
ln ε

ln �(G1)
≈ Cn2, with C = − ln ε

π2
.

Note that k1 ≈ k0/2. Put differently, for large values of n, the Gauss–
Seidel method takes half as many iterations as the Jacobi method to meet
some prescribed convergence criterion.

� Relaxation method. Since An is tridiagonal, symmetric, and positive def-
inite, the relaxation method converges if and only if ω ∈ (0, 2), and the
optimal value of the parameter ω (see Theorem 8.3.2) is

ωopt =
2

1 +
√

1 − �(J )2
=

2
1 + sin π

n

.

As n → +∞, we have ωopt = 2(1 − π
n ) + O(n−2), and

�(Gωopt) = ωopt − 1 = 1 − 2π

n
+ O(n−2).

With the choice ω = ωopt, we get ‖ek‖2 ≤ ε‖e0‖2 for k ≥ k2 satisfying

k2 =
ln ε

ln �(Lωopt)
≈ Cn, with C = − ln ε

2π
.

Note that k2 ≈ π
2nk1, so the convergence is much faster than for Jacobi

or Gauss–Seidel, since we save one order of magnitude in n.

As a conclusion, to achieve a given fixed error ε, the Gauss–Seidel method
is (asymptotically) twice as fast as the Jacobi method. The speedup is all the
more considerable as we move from the Jacobi and Gauss–Seidel methods to
the relaxation method (with optimal parameter), since we save a factor n. For
instance, for n = 100 and ε = 0.1, we approximately obtain:

• k0 = 9342 iterations for the Jacobi method,
• k1 = 4671 iterations for the Gauss–Seidel method,
• k2 = 75 iterations for the optimal relaxation method.
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8.5 Programming Iterative Methods

We first define a convergence criterion for an iterative method, that is, a test
that if satisfied at the kth iteration allows us to conclude that xk+1 is an
approximation of x and to have control over the error ek+1 = xk+1 − x made
at this approximation.

Convergence criterion

Since we do not know x, we cannot decide to terminate the iterations as
soon as ‖x − xk‖ ≤ ε, where ε is the desired accuracy or tolerance. However,
we know Ax (which is equal to b), and a simpler convergence criterion is
‖b − Axk‖ ≤ ε. Nevertheless, if the norm of A−1 is large, this criterion may
be misleading, since ‖x − xk‖ ≤ ‖A−1‖ ‖b − Axk‖ ≤ ε‖A−1‖, which may not
be small. Therefore in practice, a relative criterion is preferred:

‖b − Axk‖
‖b − Ax0‖

≤ ε. (8.6)

Another simple (yet dangerous!) criterion that is sometimes used to detect
the convergence of xk is ‖xk+1 −xk‖ ≤ ε. This criterion is dangerous because
it is a necessary, albeit not sufficient, condition for convergence (a notorious
counterexample is the scalar sequence xk =

∑k
i=1 1/i, which goes to infinity

although |xk+1 − xk| goes to zero).

pseudolanguage algorithm

We recall that the simple iterative method Mxk+1 = Nxk + b can also be
written as follows:

xk+1 = xk + M−1rk, (8.7)

where rk = b − Axk is the residual at the kth iteration. Formula (8.7) is the
induction relation that we shall program.

� The initial guess is usually chosen as x0 = 0, unless we have some infor-
mation about the exact solution that we shall exploit by choosing x0 close
to x.

� At step 2 of the algorithm, the variable x is equal to xk as the input and
to xk+1 as the output. Same for r at step 3, which is equal to rk as the
input and to rk+1 as the output.

� Step 3 of the algorithm is based on the relation

rk+1 = b − Axk+1 = b − A(xk + M−1rk) = rk − AM−1rk.

� The algorithm stops as soon as ‖r‖2 < ε‖b‖, which is the relative criterion
(8.6) for x0 = 0.

� In practice, we cut down the number of iterations by adding to the con-
dition of the “while” loop an additional condition k ≤ kmax, where kmax

is the maximum authorized number of iterations. The iteration number k
is incremented inside the loop.
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Data: A, b. Output: x (approximation of x)
Initialization:

choose x ∈ R
n.

compute r = b − Ax.
While ‖r‖2 > ε‖b‖2

1. compute y ∈ R
n solution of

My = r
2. Update the solution

x = x + y
3. Compute the residual

r = r − Ay
End While
Algorithm 8.1: Iterative method for a splitting A = M − N .

Computational complexity.

For iterative methods, we compute the number of operations per iteration.

� Convergence criterion. It takes n elementary operations since the test can
be done on ‖r‖2

2 in order to avoid computing a square root.
� Step 1. Computing y requires n operations for the Jacobi method (M

is diagonal), and n2/2 operations for the Gauss–Seidel and relaxation
methods (M is triangular).

� Step 3. The product Ay requires n2 operations.

The number of operations per iteration is at most 3
2n2. This is very favorable

compared to direct methods if the total number of iterations is sensibly smaller
than n.

8.6 Block Methods

We can extend the Jacobi, Gauss–Seidel, and relaxation methods to the case
of block matrices. Figure 8.2 shows an example of block decomposition of a
matrix A. We always have A = D−E−F where D is a block diagonal matrix,
−E is block lower triangular, and −F is block upper triangular. Assume that
the size of the matrix is n × n, and let Ai,j (1 ≤ i, j ≤ p) be the blocks
constituting this matrix. Each block Ai,j has size ni × nj . In particular, each
diagonal block Ai,i is square, of size ni×ni (note that n =

∑p
i=1 ni). The block

decomposition of A suggests the following decomposition, for any b ∈ R
n:

b = (b1, . . . , bp)t, bi ∈ R
ni , 1 ≤ i ≤ p.

If the diagonal blocks are nonsingular, the Jacobi, Gauss–Seidel, and relax-
ation methods are well defined.
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F

E

D

Fig. 8.2. Example of a matrix decomposition by blocks.

Block–Jacobi method.

An iteration of the Jacobi method reads

Dxk+1 = (E + F )xk + b. (8.8)

Writing the vectors xk ∈ R
n as xk = (x1

k, . . . , xp
k)t, with xi

k ∈ R
ni , 1 ≤ i ≤ p,

equation (8.8) becomes

A1,1x
1
k+1 = b1 −

p∑
j=2

A1,jx
j
k, (8.9)

Ai,ix
i
k+1 = bi −

∑
j �=i

Ai,jx
j
k, for 2 ≤ i ≤ p − 1, (8.10)

Ap,px
p
k+1 = bp −

p−1∑
j=1

Ap,jx
j
k. (8.11)

Since all diagonal blocks Ai,i are nonsingular, we can compute each vectorpiece
xi

k+1 (for i = 1, . . . , p), thereby determining xk+1 completely. Since at each
iteration of the algorithm we have to invert the same matrices, it is wise to
compute once and for all the LU or Cholesky factorizations of the blocks Ai,i.

To count the number of operations required for one iteration, we assume
for simplicity that all blocks have the same size ni = n/p. Computing xk+1

from xk requires p(p − 1) block-vector multiplications, each having a cost of
(n/p)2, and p back-and-forth substitution on the diagonal blocks, with cost
(n/p)2 again. Each iteration has a total cost on the order on n2 + n2/p.

Likewise, we can define the block-Gauss–Seidel and block-relaxation meth-
ods. Theorems 8.2.1, 8.3.1, and 8.3.2 apply to block methods as well (see [3]
for proofs).



8.7 Exercises 159

8.7 Exercises

8.1. Let A=[1 2 2 1;-1 2 1 0;0 1 -2 2;1 2 1 2]. Check that this matrix
is nonsingular. In order to solve the system Ax = (1, 1, 1, 1)t, we decompose
A = M − N (with M nonsingular) and then build a sequence of vectors by
(8.1).

1. Let M=diag(diag(A));N=M-A. What is the method thus defined? Compute
x100, x200, . . . Does the sequence xk converge?

2. Same questions for M=tril(A).
3. Is the conclusion the same for M=2*tril(A)?

8.2. Write a function JacobiCvg(A) returning the value 1 if the Jacobi
method applied to the matrix A is well defined and converges, and return-
ing 0 if it diverges. It is not asked to program the method. Same question
for a function GaussSeidelCvg(A) informing about the convergence of the
Gauss–Seidel method. For each of the matrices

A1 =

⎛
⎜⎜⎝

1 2 3 4
4 5 6 7
4 3 2 0
0 2 3 4

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

2 4 −4 1
2 2 2 0
2 2 1 0
2 0 0 2

⎞
⎟⎟⎠ ,

do the Jacobi and Gauss–Seidel methods converge? Comment.

8.3. For different values of n, define the matrix A=DiagDomMat(n,n) (see Ex-
ercise 2.23). Do the Jacobi and Gauss–Seidel methods converge when applied
to this matrix? Justify your answers.

8.4. Let A, M1, and M2 be the matrices defined by

A =

⎛
⎜⎜⎝

5 1 1 1
0 4 −1 1
2 1 5 1
−2 1 0 4

⎞
⎟⎟⎠ , M1 =

⎛
⎜⎜⎝

3 0 0 0
0 3 0 0
2 1 3 0
−2 1 0 4

⎞
⎟⎟⎠ , M2 =

⎛
⎜⎜⎝

4 0 0 0
0 4 0 0
2 1 4 0
−2 1 0 4

⎞
⎟⎟⎠ .

Set Ni = Mi − A and b = A(8, 4, 9, 3)t. Compute the first 20 terms of the
sequences defined by x0 = (0, 0, 0, 0)t and Mixk+1 = Nixk + b. For each
sequence, compare x20 with the exact solution. Explain.

8.5. Program a function [x,iter]=Jacobi(A,b,tol,iterMax,x0). The in-
put arguments are:

• a matrix A and a right-hand side b;
• the initial vector x0;
• tol, the tolerance ε for the convergence criterion;
• iterMax, the maximum number of iterations.

The output arguments are:
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• the approximate solution x;
• iter, the number of performed iterations.

Hint: use the command nargin to determine the number of input arguments.

• If it is equal to 4, set x0=zeros(b);
• If it is equal to 3, set x0=zeros(b);iterMax=200;
• If it is equal to 2, set x0=zeros(b);iterMax=200;tol=1.e-4.

For n = 20, define A=Laplacian1dD(n);xx=(1:n)’/(n+1);b=xx.*sin(xx),
and sol=A\b. For different values of the parameter tol= 10−s, s = 2, 3, . . .,
compute the approximate solution x=Jacobi(A,b,tol,1000) and compare
norm(x-sol) and norm(inv(A))*tol. Comment.

8.6 (∗). Write a function [x, iter]=Relax(A,b,w,tol,iterMax,x0) pro-
gramming the relaxation method with parameter ω equal to w. For the same
matrix A as in Exercise 8.5 and the same vector b, plot the curve that gives
the number of iterations carried out by the relaxation method in terms of
ω = i/10 (i = 1, 2, . . . , 20). Take iterMAx = 1000, tol = 10−6, and x0 = 0.
Find the value of ω that yields the solution with a minimal number of itera-
tions. Compare with the theoretical value given in Theorem 8.3.2.

8.7. Let A ∈ Mn(R) be a nonsingular square matrix for which the Jacobi
method is well defined. To solve the system Ax = b, we consider the following
iterative method, known as the relaxed Jacobi method (ω is a nonzero real
parameter):

D

ω
xk+1 =

(1 − ω

ω
D + E + F

)
xk + b, k ≥ 1, (8.12)

and x0 ∈ R
n is a given initial guess.

1. Program this algorithm (function RelaxJacobi). As in Exercise 8.6, find
the optimal value of ω for which the solution is obtained with a minimal
number of iterations. Take n = 10, iterMAx = 1000, tol = 10−4, x0 = 0,
and vary ω between 0.1 and 2 with a step size equal to 0.1. Compute
the norms as well as the residuals of the solutions obtained for a value of
ω < 1 and a value ω > 1. Explain.

2. Theoretical study. We assume that A is symmetric, positive definite, and
tridiagonal, and we denote by Jω the iteration matrix associated with
algorithm (8.12).
(a) Find a relationship between the eigenvalues of the matrix Jω and

those of J1.
(b) Prove that the relaxed Jacobi method converges if and only if ω be-

longs to an interval I to be determined.
(c) Find the value ω̄ ensuring the fastest convergence, i.e., such that

�(Jω̄) = inf
ω∈I

�(Jω).

Compute �(Jω̄), and conclude.
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8.8. The goal of this exercise is to study a process of acceleration of conver-
gence for any iterative method. To solve the linear system Ax = b of order
n, we have at our disposal an iterative method that reads xk+1 = Bxk + c,
where B is a matrix of order n and c ∈ R

n. We assume that this iterative
method converges, i.e., the sequence xk converges to the unique solution x.
The convergence acceleration of this iterative method amounts to building a
new sequence of vectors (x′

j)j≥0
that converges faster to x than the original

sequence (xk)k≥0. The sequence (x′
j)j

is defined by

x′
j =

j∑
k=0

αj
kxk, (8.13)

where the coefficients αj
k ∈ R are chosen in order to ensure the fastest conver-

gence rate. We set ek = xk − x, and e′j = x′
j − x. We shall use Matlab only

at the very last question of this exercise.

1. Explain why the condition (which shall be assumed in the sequel)

j∑
k=0

αj
k = 1 (8.14)

is necessary.
2. Show that

e′j+1 = pj(B)e0, (8.15)

where pj ∈ Pj is defined by pj(t) =
∑j

k=0 αj
ktk.

3. We assume that B is a normal matrix and that ‖e0‖2 = 1. Prove that

‖e′j+1‖2 ≤ ‖pj(D)‖2, (8.16)

where D is a diagonal matrix made up of the eigenvalues of B, denoted
by σ(B). Deduce that

‖e′j+1‖2 ≤ max
λ∈σ(B)

|pj(λ)|. (8.17)

4. Show that the eigenvalues of B belong to an interval [−α, α] with 0 < α <
1.

5. Clearly the fastest convergence rate of the acceleration process is obtained
if the polynomial pj is chosen such that the right-hand side of (8.17) is
minimal. However, since we do not know the eigenvalues of B, we sub-
stitute the search for pj making minimal the maximum of the right-hand
side in (8.17) by the search for pj making minimal

max
λ∈[−α,α]

|pj(λ)|. (8.18)

Observing that pj(1) = 1, determine the solution to this problem using
Proposition 9.5.3 on Chebyshev polynomials.
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6. Use relation (9.12) to establish the following induction relation between
three consecutive vectors of the sequence (x′

j)j≥1:

x′
j+1 = µj(Bx′

j + c − x′
j−1) + x′

j−1, ∀j ≥ 1, (8.19)

where µj is a real number to be determined. This relation allows for com-
puting x′

j directly without having previously computed the vectors xk,
provided that the real sequence (µj)j can be computed.

7. Compute µ0 and µ1. Express 1
µj+1

in terms of µj . Prove that µj ∈ (1, 2)
for all j ≥ 1. Check that the sequence (µj)j converges.

8. Programming the method. We consider the Laplacian in two space di-
mensions with a right-hand side f(x, y) = cos(x) sin(y); see Exercise 6.7.
Compare the Jacobi method and the accelerated Jacobi method for solv-
ing this problem. Take n = 10, α = 0.97, and plot on the same graph the
errors (assuming that the exact solution is A\b) of both methods in terms
of the iteration number (limited to 50).
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Conjugate Gradient Method

From a practical viewpoint, all iterative methods considered in the previous
chapter have been supplanted by the conjugate gradient method, which is
actually a direct method used as an iterative one. For simplicity, we will
restrict ourselves, throughout this chapter, to real symmetric matrices. The
case of complex self-adjoint matrices is hardly more difficult. However, that
of non-self-adjoint matrices is relatively more delicate to handle.

9.1 The Gradient Method

Often called the “steepest descent method,” the gradient method is also known
as Richardson’s method. It is a classical iterative method with a particular
choice of regular decomposition. We recall its definition already presented in
Example 8.1.1.

Definition 9.1.1. The iterative method, known as the gradient method, is
defined by the following regular decomposition:

M =
1
α

In and N =
(

1
α

In − A

)
,

where α is a real nonzero parameter. In other words, the gradient method
consists in computing the sequence xk defined by

{
x0 given in R

n,
xk+1 = xk + α(b − Axk), ∀k ≥ 1.

For the implementation of this method, see Algorithm 9.1.

Theorem 9.1.1. Let A be a matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

(i) If λ1 ≤ 0 ≤ λn, then the gradient method does not converge for any value
of α.
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Data: A, b. Output: x (approximation of x)
Initialization:

choose α.
choose x ∈ R

n.
compute r = b − Ax.

While ‖r‖2 > ε‖b‖2

x = x + αr
r = b − Ax

End While
Algorithm 9.1: Gradient algorithm.

(ii)If 0 < λ1 ≤ · · · ≤ λn, then the gradient method converges if and only if
0 < α < 2/λn. In this case, the optimal parameter α, which minimizes
�(M−1N), is

αopt =
2

λ1 + λn
and min

α
�(M−1N) =

λn − λ1

λn + λ1
=

cond2(A) − 1
cond2(A) + 1

.

Remark 9.1.1. Note that if the matrix A is diagonalizable with eigenvalues
λ1 ≤ · · · ≤ λn < 0, then a symmetric result of (ii) occurs by changing α into
−α. On the other hand, the conditioning of a normal invertible matrix A is
cond2(A) = λn/λ1. Thus, for the optimal parameter α = αopt, the spectral
radius of the iteration matrix, �(M−1N) = cond2(A)−1

cond2(A)+1 , is an increasing func-
tion of cond2(A). In other words, the better the matrix A is conditioned, the
faster the gradient method converges.

Proof of Theorem 9.1.1. According to Theorem 8.1.1, we know that the
gradient method converges if and only if �(M−1N) < 1. Here, M−1N =
(In − αA); hence

�(M−1N) < 1 ⇐⇒ |1 − αλi| < 1 ⇐⇒ −1 < 1 − αλi < 1 , ∀i.

This implies that αλi > 0 for all 1 ≤ i ≤ n. As a result, all eigenvalues of
A have to be nonzero and bear the same sign as α. Therefore, the gradient
method does not converge if two eigenvalues have opposite signs, whatever
the value of α. If, on the other hand, we have 0 < λ1 ≤ · · · ≤ λn, then we
deduce

−1 < 1 − αλn ⇒ α <
2
λn

.

To compute the optimal parameter αopt, note that the function λ → |1−αλ|
is decreasing on ]−∞, 1/α] and then increasing on [1/α,+∞[; see Figure 9.1.
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�

�

1

λn

1

λ1

1

λi

ωopt

α

|1 − αλ1|

|1 − αλn|
|1 − αλi|

1

0

Fig. 9.1. Eigenvalues of the matrix Bα = I − αA.

Thus
�(M−1N) = max{|1 − αλ1|, |1 − αλn|}.

The piecewise affine function α ∈ [0, 2/λn] �→ �(M−1N) attains its minimum
at the point αopt defined by 1 − αoptλ1 = αoptλn − 1, i.e., αopt = 2

λ1+λn
. At

this point we check that �(M−1N) = λn−λ1
λn+λ1

. �

9.2 Geometric Interpretation

This section provides an explanation of the name of the gradient method. To
this end, we introduce several technical tools.

Definition 9.2.1. Let f be a function from R
n into R. We call the vector of

partial derivatives at the point x the gradient (or differential) of the function
f at x, which we denote by

∇f(x) =
(

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)t

.

We recall that the partial derivative ∂f
∂xi

(x) is computed by differentiating
f(x) with respect to xi while keeping the other entries xj , j 	= i, constant.

We consider the problem of minimizing quadratic functions from R
n into

R defined by

f(x) =
1
2
〈Ax, x〉 − 〈b, x〉 =

1
2

n∑
i,j=1

aijxixj −
n∑

i=1

bixi, (9.1)

where A is a symmetric matrix in Mn(R) and b is a vector in R
n. The function

f(x) is said to have a minimum (or attains its minimum) at x0 if f(x) ≥ f(x0)
for all x ∈ R

n. Figure 9.2 shows the surfaces x ∈ R
2 �→ 〈Aix, x〉 for each of

the symmetric matrices
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A1 =
(

5 −3
−3 5

)
, A2 =

(
1 3
3 1

)
. (9.2)

The matrix A1 has eigenvalues 2 and 8; it is therefore positive definite. The
matrix A2 has eigenvalues −2 and 4, so it is not positive (or negative!).

−2 −1 0 1 2−2−1012
0

20

40

60

−2 −1 0 1 2
−2

−1
0

1
2

0

20

40

Fig. 9.2. Surfaces x ∈ R
2 �→ 〈Ax, x〉, for A1 (left) and A2 (right), see (9.2).

Proposition 9.2.1. The gradient of the function f(x) defined by (9.1) is

∇f(x) = Ax − b.

Moreover,

(i) if A is positive definite, then f admits a unique minimum at x0 that is a
solution of the linear system Ax = b;

(ii) if A is positive indefinite and if b belongs to the range of A, then f attains
its minimum at all vectors x0 that solve the linear system Ax = b and at
these vectors only;

(iii) in all other cases, that is, if A is not positive or if b does not belong to
the range of A, f does not have a minimum, i.e., its infimum is −∞.

Proof. We compute the kth partial derivative of f ,

∂f

∂xk
(x) = akkxk +

1
2

∑
i�=k

aikxi +
1
2

∑
i�=k

akixi −bk =
∑

i

aikxi−bk = (Ax−b)k,

thereby easily deducing that ∇f(x) = Ax − b. Since A is real symmetric,
we can diagonalize it. Let (λi) and (êi) be its eigenvalues and eigenvectors.
Setting x =

∑
i x̂iêi and b =

∑
i b̂iêi, we have

f(x) =
1
2

n∑
i=1

λix̂
2
i −

n∑
i=1

b̂ix̂i =
1
2

n∑
i=1

(
λi(x̂i −

b̂i

λi
)2 − b̂2

i

λi

)
.
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If A is positive definite, then λi > 0 for all 1 ≤ i ≤ n. In this case, we minimize
f(x) by minimizing each of the squared terms. There exists a unique minimum
x whose entries are x̂i = b̂i

λi
, and this vector is the unique solution to the

system Ax = b.
If A is only positive indefinite, then there exists at least one index i0 such
that λi0 = 0. In this case, if b̂i0 	= 0, taking x = −tb̂i0 êi0 , we obtain

lim
t→+∞

f(x) = −∞,

so f is not bounded from below. If b̂i = 0 for all indices i such that λi = 0,
then b ∈ Im (A). Let Ã be the restriction of A to Im (A). Hence the minimum
of f is attained at all points x = Ã−1b + y, where y spans Ker (A).

Finally, if A admits an eigenvalue λi0 < 0, then, taking x parallel to êi0 ,
we easily see that f is not bounded from below. �

Corollary 9.2.1. Let A be a real positive definite symmetric matrix. Let f(x)
be the function defined by (9.1). Let F be a vector subspace of R

n. There exists
a unique vector x0 ∈ F such that

f(x0) ≤ f(x), ∀x ∈ F.

Furthermore, x0 is the unique vector of F such that

〈Ax0 − b, y〉 = 0, ∀y ∈ F.

Proof. Denote by P the orthogonal projection on the vector subspace F in
R

n. We also denote by P its matrix representation in the canonical basis. By
definition of the orthogonal projection we have P ∗ = P , P 2 = P , and the
mapping P is onto from R

n into F ; consequently,

min
x∈F

f(x) = min
y∈Rn

f(Py).

We compute f(Py) = 1
2 〈P ∗APy, y〉 − 〈P ∗b, y〉. Proposition 9.2.1 can be ap-

plied to this function. Since A is positive definite, we easily see that P ∗AP is
nonnegative. If P ∗b did not belong to the range of (P ∗AP ), then we would
infer that the infimum of f(Py) is −∞, which is impossible, since

inf
y∈Rn

f(Py) = inf
x∈F

f(x) ≥ min
x∈Rn

f(x) > −∞,

because A is positive definite. Thus P ∗b ∈ Im (P ∗AP ) and the minimum of
f(Py) is attained by all solutions of P ∗APx = P ∗b. Let us prove that this
equation has a unique solution in F . Let x1 and x2 be two solutions in F of
P ∗APx = P ∗b. We have

P ∗AP (x1 − x2) = 0 ⇒ 〈A(Px1 − Px2), (Px1 − Px2)〉 = 0 ⇒ Px1 = Px2.
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Since x1 and x2 belong to F , we have x1 = Px1 = Px2 = x2. Multiplying
the equation P ∗APx0 = P ∗b by y ∈ F and using the fact that Px0 = x0 and
Py = y, because x0, y ∈ F , yields the relation 〈Ax0 − b, y〉 = 0 for all y in F .
�

Theorem 9.2.1. Let A be a positive definite symmetric matrix, and let f be
the function defined on R

n by (9.1).

(i) x ∈ R
n is the minimum of f if and only if ∇f(x) = 0.

(ii) Let x ∈ R
n be such that ∇f(x) 	= 0. Then ∀α ∈

(
0, 2/�(A)

)
, we have

f(x − α∇f(x)) < f(x).

Remark 9.2.1. From this theorem we infer an iterative method for minimizing
f . We construct a sequence of points (xk)k such that the sequence (f(xk))k

is decreasing:

xk+1 = xk − α∇f(xk) = xk + α(b − Axk).

This is exactly the gradient method that we have studied in the previous sec-
tion. In other words, we have shown that solving a linear system whose ma-
trix is symmetric and positive definite is equivalent to minimizing a quadratic
function. This is a very important idea that we shall use in the sequel of this
chapter.

Proof of Theorem 9.2.1. We already know that f attains its minimum at a
unique point x that is a solution of Ax = b. At this point x, we therefore have
∇f(x) = 0. Next, let x be a point such that ∇f(x) 	= 0 and set δ = −α(Ax−b).
Since A is symmetric, we compute

f(x + δ) =
1
2
〈A(x + δ), (x + δ)〉 − 〈b, x + δ〉 = f(x) +

1
2
〈Aδ, δ〉 + 〈Ax − b, δ〉.

Now, 〈Aδ, δ〉 ≤ ‖A‖2‖δ‖2, and for a symmetric real matrix, we have ‖A‖2 =
�(A). Thus

f(x + δ) ≤ f(x) +
(
α2�(A)/2 − α

)
‖Ax − b‖2.

As a consequence, f(x + δ) < f(x) if 0 < α < 2/�(A). �

9.3 Some Ideas for Further Generalizations

We can improve the gradient method with constant step size, which we have
just discussed, by choosing at each iterative step a different coefficient αk that
minimizes f (xk − α∇f(xk)).
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Definition 9.3.1. The following iterative method for solving the linear system
Ax = b is called the gradient method with variable step size:

{
x0 given in R

n,
xk+1 = xk + αk(b − Axk) ∀k ≥ 1,

where αk is chosen as the minimizer of the function

g(α) = f (xk − α∇f(xk)) ,

with f(x) defined by (9.1).

The optimal value αk is given by the following lemma, the proof of which is
left to the reader as an easy exercise.

Lemma 9.3.1. Let A be a positive definite symmetric matrix. For the gradient
method with variable step size, there exists a unique optimal step size given by

αk =
‖Axk − b‖2

〈A(Axk − b), (Axk − b)〉 .

We observe that αk is always well defined except when Axk − b = 0, in which
case the method has already converged! The gradient method with optimal
step size is implemented in Algorithm 9.2.

Data A, b. Output: x (approximation of x)
Initialization:

choose x ∈ R
n.

compute r = b − Ax.

α =
‖r‖2

2
〈Ar,r〉

While ‖r‖2 > ε‖b‖2

x = x + αr
r = b − Ax

α =
‖r‖2

2
〈Ar,r〉 optimal step size

End While
Algorithm 9.2: Gradient algorithm with variable step size.

The gradient method with variable step size is a bit more complex than
the one with constant step size (more operations are needed to compute αk),
and in practice, it is not much more efficient than the latter. In order to
improve the gradient method and construct the conjugate gradient method,
we introduce the important notion of Krylov space.

Definition 9.3.2. Let r be a vector in R
n. We call the vector subspace of R

n

spanned by the k + 1 vectors {r,Ar, . . . , Akr}. The Krylov space associated
with the vector r (and matrix A), denoted by Kk(A, r) or simply Kk.
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The Krylov spaces (Kk)k≥0 form by inclusion an increasing sequence of
vector subspaces. Since Kk ⊂ R

n, this sequence becomes stationary from a
certain k. Namely, we prove the following result.

Lemma 9.3.2. The sequence of Krylov spaces (Kk)k≥0 is increasing,

Kk ⊂ Kk+1 ∀k ≥ 0.

Moreover, for all vectors r0 	= 0, there exists k0 ∈ {0, 1, . . . , n − 1} such that
{

dim Kk = k + 1 if 0 ≤ k ≤ k0,

dim Kk = k0 + 1 if k0 ≤ k.

This integer k0 is called the Krylov critical dimension.

Proof. It is clear that dim Kk ≤ k + 1 and dimK0 = 1. Since dimKk ≤ n
for any k, there exists k0 that is the greatest integer such that dim Kk = k+1
for any k ≤ k0. By definition of k0, the dimension of Kk0+1 is strictly
smaller than k0 + 2. However, since Kk0 ⊂ Kk0+1, we necessarily have
dim Kk0+1 = k0 + 1, and the vector Ak0+1r0 is a linear combination of the
vectors (r0, Ar0, . . . , A

k0r0). Thereby we infer by a simple induction argument
that all vectors Akr0 for k ≥ k0 +1 are also linear combinations of the vectors
(r0, Ar0, . . . , A

k0r0). Accordingly, Kk = Kk0 for all k ≥ k0. �

Proposition 9.3.1. We consider the gradient method (with constant or vari-
able step size) {

x0 ∈ R
n initial choice,

xk+1 = xk + αk(b − Axk).

The vector rk = b−Axk, called the residual, satisfies the following properties:

1. rk belongs to the Krylov space Kk corresponding to the initial residual r0.
2. xk+1 belongs to the affine space [x0 + Kk] defined as the collection of

vectors x such that x − x0 belongs to the vector subspace Kk.

Proof. By definition we have xk+1 = xk + αkrk, which, by multiplication by
A and subtraction to b, yields

rk+1 = rk − αkArk. (9.3)

By induction on (9.3), we easily infer that rk ∈ span
{
r0, Ar0, . . . , A

kr0

}
.

Then, a similar induction on xk+1 = xk + αkrk shows that xk+1 ∈ [x0 + Kk].
�

Lemma 9.3.3. Let (xk)k≥0 be a sequence in R
n. Let Kk be the Krylov space

relative to the vector r0 = b − Ax0. If xk+1 ∈ [x0 + Kk], then rk+1 = (b −
Axk+1) ∈ Kk+1.
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Proof. If xk+1 ∈ [x0 + Kk], there exist coefficients (αi)0≤i≤k such that

xk+1 = x0 +
k∑

i=0

αiA
ir0.

We multiply this equation by A and we subtract to b, which yields

rk+1 = r0 −
k∑

i=0

αiA
i+1r0.

Hence rk+1 ∈ Kk+1. �

9.4 Theoretical Definition of the Conjugate Gradient
Method

We now assume that all matrices considered here are symmetric and positive
definite. To improve the gradient method, we forget, from now on, the induc-
tion relation that gives xk+1 in terms of xk, and we keep as the starting point
only the relation provided by Proposition 9.3.1, namely

xk+1 ∈ [x0 + Kk],

where Kk is the Krylov space relative to the initial residual r0 = b−Ax0 (x0

is some initial choice). Of course, there exists an infinity of possible choices
for xk+1 in the affine space [x0 +Kk]. To determine xk+1 in a unique fashion,
we put forward two simple criteria:

• 1st definition (orthogonalization principle). We choose xk+1 ∈
[x0 + Kk] such that rk+1 ⊥ Kk.

• 2nd definition (minimization principle). We choose xk+1 ∈ [x0 + Kk]
that minimizes in [x0 + Kk]

f(x) =
1
2
〈Ax, x〉 − 〈b, x〉.

Theorem 9.4.1. Let A be a symmetric positive definite matrix. For the two
above definitions, there exists indeed a unique vector xk+1 ∈ [x0 + Kk]. Both
definitions correspond to the same algorithm in the sense that they lead to the
same value of xk+1. Furthermore, this algorithm converges to the solution of
the linear system Ax = b in at most n iterations. We call this method the
“conjugate gradient method.”

Remark 9.4.1. The previous theorem shows that the conjugate gradient algo-
rithm that we have devised as an iterative method is in fact a direct method,
since it converges in a finite number of iterations (precisely k0 +1, where k0 is
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the critical Krylov dimension defined in Lemma 9.3.2). However, in practice,
we use it like an iterative method that (hopefully) converges numerically in
fewer than k0 + 1 ≤ n iterations.

Intuitively, it is easy to see why the conjugate gradient improves the simple
gradient method. Actually, instead of merely decreasing f(x) at each iteration
(cf. Theorem 9.2.1), we minimize f(x) on an increasing sequence of affine
subspaces.

Remark 9.4.2. Introducing r = b − Ax, we have

h(r) = 〈A−1r, r〉/2 = f(x) + 〈A−1b, b〉/2.

Thanks to Lemma 9.3.3, the second definition is equivalent to finding xk+1 ∈
[x0 + Kk] such that its residual rk+1 = b−Axk+1 minimizes the function h(r)
in Kk+1.

Proof. First, let us prove that the two suggested definitions are identical and
uniquely define xk+1. For any y ∈ Kk, we set

g(y) = f(x0 + y) =
1
2
〈Ay, y〉 − 〈r0, y〉 + f(x0).

Minimizing f on [x0 + Kk] is equivalent to minimizing g on Kk. Now, by
Corollary 9.2.1, g(y) admits a unique minimum in Kk, which we denote by
(xk+1 − x0). As a consequence, the second definition gives a unique xk+1.
Furthermore, Corollary 9.2.1 also states that

〈Axk+1 − b, y〉 = 0 ∀y ∈ Kk,

which is nothing else but the definition of rk+1⊥Kk. The two algorithms are
therefore identical and yield the same unique value of xk+1.

If the critical dimension of the Krylov space k0 is equal to n − 1, then
dim Kk0 = n, and the affine subspace [x0+Kk0 ] coincides with R

n entirely. Ac-
cordingly, xk0+1 = xn is the minimum of f on R

n that satisfies, by Proposition
9.2.1, Axn = b. The gradient method has thereby converged in n iterations.

If k0 < n − 1, then by virtue of Lemma 9.3.2, for all k ≥ k0, dim Kk =
k0 + 1. In particular, Ak0+1r0 ∈ Kk0 , which means that Ak0+1r0 is a linear
combination of vectors (r0, Ar0, . . . , A

k0r0),

Ak0+1r0 =
k0∑

i=0

αiA
ir0.

The coefficient α0 is inevitably nonzero. As a matter of fact, if this were
not true, we could multiply the above equation by A−1 (we recall that A
is nonsingular, since it is positive definite) and show that Ak0r0 is a linear
combination of vectors (r0, Ar0, . . . , A

k0−1r0), which would imply that Kk0 =
Kk0−1, contradicting the definition of the critical dimension k0. Since r0 =
b − Ax0, we get
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A

(
1
α0

Ak0r0 −
k0∑

i=1

αi

α0
Ai−1r0 + x0

)
= b.

It turns out from this equation that the solution of Ax = b belongs to the
affine space [x0 + Kk0 ]. Hence, at the (k0 + 1)th iteration, the minimum of
f(x) on [x0 + Kk0 ] happens to be the minimum on all of R

n, and the iterate
xk0+1 is nothing but the exact solution. The conjugate gradient method has
thus converged in exactly k0 + 1 ≤ n iterations. �

The definition of the conjugate gradient method that we have just given is
purely theoretical. Actually, no practical algorithm has been provided either
to minimize f(x) on [x0 + Kk] or to construct rk+1 orthogonal to Kk. It
remains to show how, in practice, we compute xk+1. To do so, we will make
use of an additional property of the conjugate gradient method.

Proposition 9.4.1. Let A be a symmetric, positive definite matrix. Let
(xk)0≤k≤n be the sequence of approximate solutions obtained by the conjugate
gradient method. Set

rk = b − Axk and dk = xk+1 − xk.

Then

(i) the Krylov space Kk, defined by Kk = span
{
r0, Ar0, . . . , A

kr0

}
, satisfies

Kk = span {r0, . . . , rk} = span {d0, . . . , dk} ,

(ii) the sequence (rk)0≤k≤n−1 is orthogonal, i.e.,

〈rk, rl〉 = 0 for all 0 ≤ l < k ≤ n − 1,

(iii) the sequence (dk)0≤k≤n−1 is “conjugate” with respect to A, or “A-
conjugate,” i.e.,

〈Adk, dl〉 = 0 for all 0 ≤ l < k ≤ n − 1.

Remark 9.4.3. A conjugate sequence with respect to a matrix A is in fact
orthogonal for the scalar product defined by 〈Ax, y〉 (we recall that A is sym-
metric and positive definite). This property gave its name to the conjugate
gradient method.

Proof of Proposition 9.4.1. Let us first note that the result is independent of
the critical dimension k0, defined by Lemma 9.3.2. When k ≥ k0 + 1, that is,
when the conjugate gradient method has already converged, we have rk = 0
and xk = xk0+1; thus dk = 0. In this case, the sequence rk is indeed orthogonal
and dk is indeed conjugate for k ≥ k0 + 1. When k ≤ k0, the first definition
of the conjugate gradient implies that rk+1 ∈ Kk+1 and rk+1⊥Kk. Now,
Kk ⊂ Kk+1 and dimKk = k + 1 for k ≤ k0. Therefore the family (rk)0≤k≤k0
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is free and orthogonal. In particular, this entails that Kk = span {r0, . . . , rk}
for all k ≥ 0.

On the other hand, dk = xk+1 − xk, with xk ∈ [x0 + Kk−1] and xk+1 ∈
[x0 + Kk], implies that dk belongs to Kk for all k ≥ 1. As a consequence,

span {d0, . . . , dk} ⊂ Kk.

Let us show that the family (dk)1≤k≤k0 is conjugate with respect to A. For
l < k, we have

〈Adk, dl〉 = 〈Axk+1 − Axk, dl〉 = 〈rk − rk+1, dl〉 = 0,

since dl ∈ Kl = span {r0, . . . , rl} and the family (rk) is orthogonal. We de-
duce that the family (dk)0≤k≤k0 is orthogonal for the scalar product 〈Ax, y〉.
Now, dk 	= 0 for k ≤ k0, because otherwise, we would have xk+1 = xk

and accordingly rk+1 = rk 	= 0, which is not possible since rk+1 ∈ Kk+1

and rk+1⊥Kk. An orthogonal family of nonzero vectors is free, which implies
Kk = span {d0, . . . , dk}. �

9.5 Conjugate Gradient Algorithm

In order to find a practical algorithm for the conjugate gradient method, we
are going to use Proposition 9.4.1, namely that the sequence dk = xk+1 − xk

is conjugate with respect to A. Thanks to the Gram–Schmidt procedure, we
will easily construct a sequence (pk) conjugate with respect to A that will be
linked to the sequence (dk) by the following result of “almost uniqueness” of
the Gram–Schmidt orthogonalization procedure.

Lemma 9.5.1. Let (ai)1≤i≤p be a family of linearly independent vectors of
R

n, and let (bi)1≤i≤p and (ci)1≤i≤p be two orthogonal families for the same
scalar product on R

n such that for all 1 ≤ i ≤ p,

span {a1, . . . , ai} = span {b1, . . . , bi} = span {c1, . . . , ci} .

Then each vector bi is parallel to ci for 1 ≤ i ≤ p.

Proof. By the Gram–Schmidt orthonormalization procedure (cf. Theorem
2.1.1), there exists a unique orthonormal family (di)1≤i≤p (up to a sign change)
such that

span {a1, . . . , ai} = span {d1, . . . , di} , ∀1 ≤ i ≤ p.

Since the family (ai) is linearly independent, the vectors bi and ci are never
zero. We can thus consider the orthonormal families (bi/‖bi‖) and (ci/‖ci‖),
which must then coincide up to a sign change. This proves that each bi and
ci differ only by a multiplicative constant. �
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We will apply this result to the scalar product 〈A·, ·〉 and to the fam-
ily (dk)0≤k≤k0 , which is orthogonal with respect to this scalar product. Ac-
cordingly, if we can produce another sequence (pk)0≤k≤k0 that would also be
orthogonal with respect to 〈A·, ·〉 (for instance, by the Gram–Schmidt proce-
dure), then for all 0 ≤ k ≤ k0 there would exist a scalar αk such that

xk+1 = xk + αkpk.

More precisely, we obtain the following fundamental result.

Theorem 9.5.1. Let A be a symmetric, positive definite matrix. Let (xk) be
the sequence of approximate solutions of the conjugate gradient method. Let
(rk = b − Axk) be the associated residual sequence. Then there exists an A-
conjugate sequence (pk) such that

p0 = r0 = b − Ax0, and for 0 ≤ k ≤ k0,

⎧⎨
⎩

xk+1 = xk + αkpk,
rk+1 = rk − αkApk,
pk+1 = rk+1 + βkpk,

(9.4)

with

αk =
‖rk‖2

〈Apk, pk〉
and βk =

‖rk+1‖2

‖rk‖2
.

Conversely, let (xk, rk, pk) be three sequences defined by the induction relations
(9.4). Then (xk) is nothing but the sequence of approximate solutions of the
conjugate gradient method.

Proof. We start by remarking that should (xk) be the sequence of approxi-
mate solutions of the conjugate gradient method, then for all k ≥ k0 + 1 we
would have xk = xk0+1 and rk = 0. Reciprocally, let (xk, rk, pk) be three se-
quences defined by the induction relations (9.4). We denote by k0 the smallest
index such that rk0+1 = 0. We then easily check that for k ≥ k0 + 1 we have
xk = xk0+1 and rk = pk = 0. As a consequence, in the sequel we restrict
indices to k ≤ k0 for which rk 	= 0 (for both methods).

Consider (xk), the sequence of approximate solutions of the conjugate
gradient method. Let us show that it satisfies the induction relations (9.4).
We construct a sequence (pk), orthogonal with respect to the scalar product
〈A·, ·〉, by applying the Gram–Schmidt procedure to the family (rk). We define,
in this fashion, for 0 ≤ k ≤ k0,

pk = rk +
k−1∑
j=0

βj,kpj ,

with

βj,k = −〈Ark, pj〉
〈Apj , pj〉

. (9.5)
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Applying Lemma 9.5.1, we deduce that, since the sequences (pk) and (dk =
xk+1 − xk) are both conjugate with respect to A, for all 0 ≤ k ≤ k0 there
exists a scalar αk such that

xk+1 = xk + αkpk.

We deduce

〈Ark, pj〉 = 〈rk, Apj〉 =
〈

rk,
A(xj+1 − xj)

αj

〉
=

1
αj

〈rk, rj − rj+1〉, (9.6)

on the one hand. On the other hand, we know that the sequence rk is orthog-
onal (for the canonical scalar product). Therefore (9.5) and (9.6) imply

βj,k =

{
0 if 0 ≤ j ≤ k − 2,

‖rk‖2

αk−1〈Apk−1,pk−1〉 if j = k − 1.

In other words, we have obtained

pk = rk + βk−1pk−1 with βk−1 = βk−1,k.

Moreover, the relation xk+1 = xk + αkpk implies that

rk+1 = rk − αkApk.

We have hence derived the three induction relations (9.4). It remains to find
the value of αk. To do so, we use the fact that rk+1 is orthogonal to rk:

0 = ‖rk‖2 − αk〈Apk, rk〉.

Now, rk = pk − βk−1pk−1 and 〈Apk, pk−1〉 = 0, and thus

αk =
‖rk‖2

〈Apk, pk〉

and

βk−1 =
‖rk‖2

‖rk−1‖2
.

Conversely, consider three sequences (xk, rk, pk) defined by the induction
relations (9.4). It is easy to show by induction that the relations

r0 = b − Ax0 and
{

rk+1 = rk − αkApk,
xk+1 = xk + αkpk,

imply that the sequence rk is indeed the residual sequence, namely rk =
b − Axk. Another elementary induction argument shows that the relations

r0 = p0 and
{

rk = rk−1 − αk−1Apk−1,
pk = rk + βk−1pk−1,
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imply that pk and rk belong to the Krylov space Kk, for all k ≥ 0. As a
result, the induction relation xk+1 = xk + αkpk entails that xk+1 belongs to
the affine space [x0 + Kk]. To conclude that the sequence (xk) is indeed that
of the conjugate gradient method, it remains to show that rk+1 is orthogonal
to Kk (first definition of the conjugate gradient method). To this end, we now
prove by induction that rk+1 is orthogonal to rj , for all 0 ≤ j ≤ k, and that
pk+1 is conjugate to pj , for all 0 ≤ j ≤ k. At order 0 we have

〈r1, r0〉 = ‖r0‖2 − α0〈Ap0, r0〉 = 0,

since p0 = r0, and

〈Ap1, p0〉 = 〈(r1 + β0p0), Ap0〉 = α−1
0 〈(r1 + β0r0), (r0 − r1)〉 = 0.

Assume that up to the kth order, we have

〈rk, rj〉 = 0 for 0 ≤ j ≤ k − 1, and 〈Apk, pj〉 = 0 for 0 ≤ j ≤ k − 1.

Let us prove that this still holds at the (k + 1)th order. Multiplying the
definition of rk+1 by rj leads to

〈rk+1, rj〉 = 〈rk, rj〉 − αk〈Apk, rj〉,

which together with the relation rj = pj − βj−1pj−1 implies

〈rk+1, rj〉 = 〈rk, rj〉 − αk〈Apk, pj〉 + αkβj−1〈Apk, pj−1〉.

By the induction assumption, we easily infer that 〈rk+1, rj〉 = 0 if j ≤ k − 1,
whereas the formula for αk implies that 〈rk+1, rk〉 = 0. Moreover,

〈Apk+1, pj〉 = 〈pk+1, Apj〉 = 〈rk+1, Apj〉 + βk〈pk, Apj〉,

and since Apj = (rj − rj+1)/αj we have

〈Apk+1, pj〉 = α−1
j 〈rk+1, (rj − rj+1)〉 + βk〈pk, Apj〉.

For j ≤ k−1, the induction assumption and the orthogonality of rk+1 (which
we have just obtained) prove that 〈Apk+1, pj〉 = 0. For j = k, we infer
〈Apk+1, pk〉 = 0 from the formulas giving αk and βk. This ends the induc-
tion.

Since the family (rk)0≤k≤k0 is orthogonal, it is linearly independent as long
as rk 	= 0. Now, rk ∈ Kk, which entails that Kk = span {r0, . . . , rk}, since
these two spaces have the same dimension. Thus, we have derived the first
definition of the conjugate gradient, namely

xk+1 ∈ [x0 + Kk] and rk+1⊥Kk.

Hence, the sequence xk is indeed that of the conjugate gradient. �
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Remark 9.5.1. The main relevance of Theorem 9.5.1 is that it provides a prac-
tical algorithm for computing the sequence of approximate solutions (xk). It
actually suffices to apply the three induction relations to (xk, rk, pk) to derive
xk+1 starting from xk. It is no longer required to orthogonalize rk+1 with
respect to Kk, nor to minimize 1

2 〈Ax, x〉 − 〈b, x〉 on the space [x0 + Kk] (cf.
the two theoretical definitions of the conjugate gradient method).

Instead of having a single induction on xk (as in the simple gradient
method), there are three inductions on (xk, rk, pk) in the conjugate gradi-
ent method (in truth, there are only two, since rk is just an auxiliary for the
computations we can easily get rid of). In the induction on pk, if we substitute
pk with (xk+1 − xk)/αk, we obtain a three-term induction for xk:

xk+1 = xk + αk(b − Axk) +
αkβk−1

αk−1
(xk − xk−1).

This three-term induction is more complex than the simple inductions we have
studied so far in the iterative methods (see Chapter 8). This partly accounts
for the higher efficiency of the conjugate gradient method over the simple
gradient method.

9.5.1 Numerical Algorithm

In practice, the conjugate gradient algorithm is implemented following Algo-
rithm 9.3. As soon as rk = 0, the algorithm has converged. That is, xk is the

Data: A and b. Output: x (approximation of x)
Initialization:

choose x ∈ R
n

compute r = b − Ax
set p = r
compute γ = ‖r‖2

While ‖γ‖ > ε
y = Ap
α = γ

〈y,p〉
x = x + αp
r = r − αy

β = ‖r‖2

γ

γ = ‖r‖2

p = r + βp
End While

Algorithm 9.3: Conjugate gradient algorithm.

solution to the system Ax = b. We know that the convergence is achieved
after k0 +1 iterations, where k0 ≤ n−1 is the critical dimension of the Krylov
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spaces (of which we have no knowledge a priori). However, in practice, com-
puter calculations are always prone to errors due to rounding, so we do not
find exactly rk0+1 = 0. That is why we introduce a small parameter ε (for
instance, 10−4 or 10−8 according to the desired precision), and we decide that
the algorithm has converged as soon as

‖rk‖
‖r0‖

≤ ε.

Moreover, for large systems (for which n and k0 are large, orders of magnitude
ranging from 104 to 106), the conjugate gradient method is used as an iterative
method, i.e., it converges in the sense of the above criterion after a number of
iterations much smaller than k0 + 1 (cf. Proposition 9.5.1 below).

Remark 9.5.2.

1. In general, if we have no information about the solution, we choose to
initialize the conjugate gradient method with x0 = 0. If we are solving
a sequence of problems that bear little difference between them, we can
initialize x0 to the previous solution.

2. At each iteration, a single matrix-vector product is computed, namely
Apk, since rk is computed by the induction formula and not through the
relation rk = b − Axk.

3. To implement the conjugate gradient method, it is not necessary to store
the matrix A in an array if we know how to compute the product Ay
for any vector y. For instance, for the Laplacian matrix in one space
dimension, we have

A =

⎛
⎜⎜⎜⎜⎝

2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞
⎟⎟⎟⎟⎠ ,

⎧⎪⎪⎨
⎪⎪⎩

(Ay)1 = 2y1 − y2,
(Ay)n = 2yn − yn−1,
and for i = 2, . . . , n − 1,

(Ay)i = 2yi − yi+1 − yi−1.

4. The conjugate gradient method is very efficient. It has many variants and
generalizations, in particular to the case of nonsymmetric positive definite
matrices.

9.5.2 Number of Operations

If we consider the conjugate gradient method as a direct method, we can
count the number of operations necessary to solve a linear system in the most
unfavorable case, k0 = n − 1. At each iteration, on the one hand, a matrix-
vector product is computed (n2 products), and on the other hand, two scalar
products and three linear combinations of vectors such as x+αy (of the order
of magnitude of n products) have to be carried out. After n iterations, we
obtain a number of operations equal, to first order, to
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Nop ≈ n3.

It is hence less efficient than the Gauss and Cholesky methods. But one must
recall that it is being used as an iterative method and that generally conver-
gence occurs after fewer than n iterations.

9.5.3 Convergence Speed

Recall that Remark 9.1.1 tells us that the gradient method reduces the error
at each iteration by a factor of ( cond2(A)− 1)/( cond2(A) + 1). We shall now
prove that the convergence speed of the conjugate gradient is much faster,
since it reduces the error at each iteration by a smaller factor (

√
cond2(A)−

1)/(
√

cond2(A) + 1).

Proposition 9.5.1. Let A be a symmetric real and positive definite matrix.
Let x be the exact solution to the system Ax = b. Let (xk)k be the sequence of
approximate solutions produced by the conjugate gradient method. We have

‖xk − x‖2 ≤ 2
√

cond2(A)

(√
cond2(A) − 1√
cond2(A) + 1

)k

‖x0 − x‖2.

Proof. Recall that xk can be derived as the minimum on the space [x0+Kk−1]
of the function f defined by

z ∈ R
n �−→ f(z) =

1
2
〈Az, z〉 − 〈b, z〉 =

1
2
‖x − z‖2

A − 1
2
〈Ax, x〉,

where ‖y‖2
A = 〈Ay, y〉. Computing xk is thus equivalent to minimizing ‖x −

z‖2
A, that is, the error in the ‖.‖A norm, on the space [x0 + Kk−1]. Now we

compute ‖ek‖A. Relations (9.4) show that

xk = x0 +
k−1∑
j=0

αjpj ,

with each pj equal to a polynomial in A (of degree ≤ j) applied to p0, so there
exists a polynomial qk−1 ∈ Pk−1 such that

xk = x0 + q
k−1(A)p0.

Since p0 = r0 = b − Ax0 = A(x − x0), the errors ek satisfy the relations

ek = xk − x = e0 + q
k−1(A)p0 = Q

k
(A)e0,

where Q
k

is the polynomial defined, for all t ∈ R, by Q
k
(t) = 1− q

k−1(t)t. We
denote by uj an orthonormal basis of eigenvectors of A, i.e., Auj = λjuj , and
by e0,j the entries of the initial error e0 in this basis: e0 =

∑n
j=1 e0,juj . We

have
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‖e0‖2
A = 〈e0, Ae0〉 =

n∑
j=1

λj |e0,j |2

and

‖ek‖2
A = ‖Q

k
(A)e0‖2

A =
n∑

j=1

λj |e0,jQk
(λj)|2 .

Since the conjugate gradient method minimizes ‖ek‖A, the polynomial Q
k

must satisfy

‖ek‖2
A =

n∑
j=1

λj |e0,jQk
(λj)|2 = min

Q∈P
0
k

n∑
j=1

λj |e0,jQ(λj)|2 , (9.7)

where minimization is carried in P
0
k, the set of polynomials Q ∈ Pk that satisfy

Q(0) = 1 (indeed, we have Q
k
∈ P

0
k). From (9.7) we get an easy upper bound

‖ek‖2
A

‖e0‖2
A

≤
(

min
Q∈P

0
k

max
1≤j≤n

|Q
k
(λj)|2

)
≤
(

min
Q∈P

0
k

max
λ1≤x≤λn

|Q
k
(x)|2

)
. (9.8)

The last min–max problem in the right-hand side of (9.8) is a classical and cel-
ebrated polynomial approximation problem: Find a polynomial p ∈ Pk min-
imizing the quantity maxx∈[a,b] |p(x)|. To avoid the trivial zero solution, we
impose an additional condition on p, for instance, p(β) = 1 for a number
β /∈ [a, b]. This problem is solved at the end of this chapter, Section 9.5.5. Its
unique solution (see Proposition 9.5.3) is the polynomial

Tk

(
2x−(a+b)

b−a

)

Tk

(
2β−(a+b)

b−a

) , (9.9)

where Tk is the kth-degree Chebyshev polynomial defined for all t ∈ [−1, 1]
by Tk(t) = cos(k arcos t). The maximum value reached by (9.9) on the interval
[a, b] is

1∣∣∣Tk

(
2β−(a+b)

b−a

)∣∣∣ .

In our case (9.7), we have a = λ1, b = λn, β = 0. The matrix A being positive
definite, β /∈ [a, b], we conclude that

min
Q∈P

0
k

max
λ1≤x≤λn

|Q(x)| =
1∣∣∣Tk

(
λn+λ1
λn−λ1

)∣∣∣ . (9.10)

Observe now that

• A being symmetric, we have λn+λ1
λn−λ1

= κ+1
κ−1 , with κ = cond2(A) = λn/λ1;
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• Chebyshev polynomials satisfy (9.16), which we recall here:

2Tk(x) = [x +
√

x2 − 1]k + [x −
√

x2 − 1]k,

for all x ∈ (−∞,−1] ∪ [1,+∞). Therefore, we infer the following lower
bound:

(
2Tk

(
λn + λ1

λn − λ1

))1/k

≥ κ + 1
κ − 1

+

√(
κ + 1
κ − 1

)2

− 1

≥ 1
κ − 1

(
(κ + 1) + 2

√
κ
)

=
√

κ + 1√
κ − 1

.

Combining these results, equality (9.10), and the upper bound (9.8), we obtain

‖ek‖2
A ≤ 4

(√
κ + 1√
κ − 1

)2k

‖e0‖2
A.

Finally, the proposition follows immediately from the equivalence between the
norms ‖.‖2 and ‖.‖A: λ1‖x‖2

2 ≤ ‖x‖2
A ≤ λn‖x‖2

2. �
It is possible to improve further Proposition 9.5.1 by showing that the

convergence speed is indeed faster when the eigenvalues of A are confined to
a reduced number of values.

We draw from Proposition 9.5.1 three important consequences. First of
all, the conjugate gradient method works indeed as an iterative method. In
fact, even if we do not perform the requisite n iterations to converge, the more
we iterate, the more the error between x and xk diminishes. Furthermore, the
convergence speed depends on the square root of the conditioning of A, and
not on the conditioning itself as for the simple gradient method. Hence, the
conjugate gradient method converges faster than the simple gradient one (we
say that the convergence is quadratic instead of linear). Lastly, as usual, the
closer cond2(A) is to 1, the greater the speed of convergence, which means
that the matrix A has to be well conditioned for a quick convergence of the
conjugate gradient method.

9.5.4 Preconditioning

Definition 9.5.1. Let Ax = b be the linear system to be solved. We call a
matrix C that is easy to invert and such that cond2(C−1A) is smaller than
cond2(A) a preconditioning of A. We call the equivalent system C−1Ax =
C−1b a preconditioned system.

The idea of preconditioning is that if cond2(C−1A) < cond2(A), the con-
jugate gradient method converges faster for the preconditioned system than
for the original one. Of course, the price to pay for this faster convergence is
the requirement of inverting C. Nevertheless, we recall that it is not necessary
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to form the matrix (C−1A); we merely successively multiply matrices A and
C−1 by vectors. The problem here is to choose a matrix C that is an easily
invertible approximation of A. In practice, the preconditioning technique is
very efficient and there is a large literature on this topic.

Observe that it is not obvious whether we can choose C in such a way that
on the one hand, cond(C−1A) � cond(A), and on the other hand, C−1A re-
mains symmetric positive definite (a necessary condition for the application
of the conjugate gradient method). For this reason, we introduce a “symmet-
ric” preconditioning. Let C be a symmetric positive definite matrix. We write
C = BBt (Cholesky decomposition) and we substitute the original system
Ax = b, whose matrix A is badly conditioned, by the equivalent system

Ãx̃ = b̃, where Ã = B−1AB−t, b̃ = B−1b, and x̃ = Btx.

Since the matrix Ã is symmetric positive definite, we can use Algorithm 9.3
of the conjugate gradient method to solve this problem, i.e.,

Initialization
choice of x̃0

r̃0 = p̃0 = b̃ − Ãx̃0

Iterations
For k ≥ 1 and r̃k 	= 0

α̃k−1 = ‖r̃k−1‖2

〈Ãp̃k−1,p̃k−1〉
x̃k = x̃k−1 + α̃k−1p̃k−1

r̃k = r̃k−1 − α̃k−1Ãp̃k−1

β̃k−1 = ‖r̃k‖2

‖r̃k−1‖2

p̃k = r̃k + β̃k−1p̃k−1

End
We can compute x̃ in this fashion and next compute x by solving the upper

triangular system Btx = x̃. In practice, we do not proceed this way in order
to cut down the cost of the computations.

Note that residuals are linked by the relation r̃k = b̃ − Ãx̃k = B−1rk, the
new conjugate directions are p̃k = Btpk, and

〈Ãp̃k, p̃j〉 = 〈Apk, pj〉.

We thereby obtain the relations

α̃k−1 =
〈C−1rk−1, rk−1〉
〈Apk−1, pk−1〉

,

β̃k−1 =
〈C−1rk, rk〉

〈C−1rk−1, rk−1〉
.

We thus see that the only new operation (which is also the most costly one) is
the computation of zk = C−1rk, namely solving the linear system Czk = rk.
Knowing the Cholesky decomposition of C, the calculation of each zk can



184 9 Conjugate Gradient Method

be carried out in n2 operations at most. From this observation, we infer a
preconditioned version of the conjugate gradient algorithm (see Algorithm
9.4), in which the precise knowledge of the Cholesky factorization of C is no
longer required. This is Algorithm 9.4, which is used in numerical practice.

Data: A and b. Output: xk

Initialization
choice of x0

r0 = b − Ax0

z0 = C−1r0 preconditioning
p0 = z0

Iterations
For k ≥ 1 and rk �= 0

αk−1 =
〈zk−1,rk−1〉

〈Apk−1,pk−1〉
xk = xk−1 + αk−1pk−1

rk = rk−1 − αk−1Apk−1

zk = C−1rk preconditioning
βk−1 = 〈zk,rk〉

〈zk−1,rk−1〉
pk = zk + βk−1pk−1

End

Algorithm 9.4: Preconditioned conjugate gradient method.

SSOR preconditioning

To illustrate the interest in preconditioning the conjugate gradient method,
we consider again the matrix given by the finite difference discretization of the
Laplacian, which is a tridiagonal, symmetric, positive definite matrix An ∈
Mn−1(R), defined by (5.12). For simplicity, in the sequel we drop the subscript
n and write A instead of An. We denote by D the diagonal of A and by −E its
strictly lower triangular part, A = D −E −Et. For ω ∈ (0, 2), the symmetric
matrix

Cω =
ω

2 − ω

(
D

ω
− E

)
D−1

(
D

ω
− Et

)

is positive definite. Indeed, for x 	= 0, we have

〈Cωx, x〉 =
ω

2 − ω

〈
D−1

(
D

ω
− E

)t

x,

(
D

ω
− E

)t

x

〉
,

and since D−1 is symmetric positive definite and D
ω − E is nonsingular, we

have 〈Cωx, x〉 > 0 if and only if ω
2−ω > 0. We now precondition the system

Ax = b by the matrix Cω. We denote by Bω =
√

ω
2−ω (D

ω − E)D−1/2 the
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Cholesky factor of Cω. The matrices Ãω = B−1
ω AB−t

ω and C−1
ω A are similar,

since
C−1

ω A = B−t
ω B−1

ω A = B−t
ω

(
B−1

ω AB−t
ω

)
Bt

ω = B−t
ω ÃωBt

ω.

Hence

cond2(C−1
ω A) = cond2(Ãω) =

λmax(Ãω)
λmin(Ãω)

.

To evaluate the performance of the preconditioning we determine an upper
bound for λmax(Ãω) and a lower bound for λmin(Ãω). For any x 	= 0, we have

〈Ãωx, x〉
〈x, x〉 =

〈B−1
ω AB−t

ω x, x〉
〈x, x〉 =

〈AB−t
ω x,B−t

ω x〉
〈x, x〉 .

Setting x = Bt
ωy, we obtain

λmax(Ãω) = max
x�=0

〈Ãωx, x〉
〈x, x〉 = max

y �=0

〈Ay, y〉
〈Cωy, y〉 .

Similarly,

λmin(Ãω) = min
y �=0

〈Ay, y〉
〈Cωy, y〉 .

The goal is now to obtain the inequalities

0 < α ≤ 〈Ax, x〉
〈Cωx, x〉 ≤ β, ∀x 	= 0, (9.11)

from which we will deduce the bound cond2(Ãω) ≤ β/α.

• To obtain the upper bound in (9.11) we decompose Cω as

Cω = A +
ω

2 − ω
FωD−1F t

ω,

with Fω = ω−1
ω D − E. For all x 	= 0, we have

2 − ω

ω
〈(A − Cω)x, x〉 = −〈FωD−1F t

ωx, x〉 = −〈D−1F t
ωx, F t

ωx〉 ≤ 0,

since D−1 is positive definite. We can thus choose β = 1.
• To obtain the lower bound in (9.11), we write (2 − ω)Cω = A + aD + ωG

with

G = ED−1Et − 1
4
D and a =

(2 − ω)2

4ω
.

For x 	= 0, we compute

(2 − ω)
〈Cω, x〉
〈Ax, x〉 = 1 + a

〈Dx, x〉
〈Ax, x〉 + ω

〈Gx, x〉
〈Ax, x〉 .
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Since 〈Gx, x〉 = −n2

2 |x1|2, we have

(2 − ω)
〈Cω, x〉
〈Ax, x〉 ≤ 1 + a

〈Dx, x〉
〈Ax, x〉 = 1 + 2an2 ‖x‖2

〈Ax, x〉 ≤ 1 +
2an2

λmin(A)
.

We can therefore take α = (2 − ω)
1

1 + 2an2

λmin(A)

.

We now choose a value of ω that minimizes the function

f(ω) =
β

α
=

1
2 − ω

(
1 +

2an2

λmin

)
=

1
2 − ω

+ γ
2 − ω

ω
,

where

γ =
n2

2λmin
=

1
8 sin2 π

2n

≈ n2

2π2
.

A simple computation shows that

ω2(2 − ω)2f ′(ω) = ω2 − 2γ(2 − ω)2,

so the value ωopt minimizing f is

ωopt =
2
√

2γ

1 +
√

2γ
=

2
1 + 2 sin π

2n

≈ 2
(
1 − π

n

)
.

For this optimal value of ω the conditioning of Ãω is bounded above as follows:

cond2(Ãω) ≤ f(ωopt) =
1
2

+
1

2 sin π
2n

.

Thus for n large enough, cond2(Ãω) ≤ n

π
, whereas cond2(A) ≈ 4n2

π2
. We save

one order of magnitude in n by preconditioning the initial linear system.

9.5.5 Chebyshev Polynomials

This section is devoted to some properties of Chebyshev polynomials used pre-
viously, in particular in the proof of Proposition 9.5.1. Chebyshev polynomials
are first defined on the interval [−1, 1], then extended to R.

Study on [−1, 1]

On this interval, the Chebyshev polynomial Tn (n ≥ 1) is given by

Tn(t) = cos(nθ),

where θ ∈ [0, π] is defined by cos(θ) = t. We easily check that T0(t) = 1,
T1(t) = t, and

Tn+1(t) = 2tTn(t) − Tn−1(t), ∀n ≥ 1, (9.12)

which proves that Tn is a polynomial of degree n and can be defined on the
whole of R. We also check that Tn has exactly
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• n zeros (called Chebyshev points), which are

tk = cos(θk), θk =
π

2n
+ k

π

n
, 0 ≤ k ≤ n − 1,

• n + 1 extremal points where the polynomial takes its extremal values (−1
and 1), which are

t̃k = cos(kπ/n), 0 ≤ k ≤ n.

The first five Chebyshev polynomials are represented in Figure 9.3. Expressing

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1 n=0

n=1

n=2

n=3

n=4

Fig. 9.3. Chebyshev polynomials Tn, for n = 0, . . . , 4.

the cosine in exponential form, we have

2Tn(t) = einθ + e−inθ = (cos(θ) + i sin(θ))n + (cos(θ) − i sin(θ))n
.

Since θ ∈ [0, π], we have sin θ =
√

1 − t2, and Tn can be written explicitly in
terms of t:

2Tn(t) =
(
t + i

√
1 − t2)

)n

+
(
t − i

√
1 − t2

)n

. (9.13)

For α ∈ R with |α| > 1, we denote by P̄
α
n the set of polynomials of Pn taking

the value 1 at point α:

P̄
α
n = {p ∈ Pn, p(α) = 1}.

Proposition 9.5.2. Chebyshev polynomials satisfy the following property:

min
p∈P̄α

n

max
t∈[−1,1]

|p(t)| = max
t∈[−1,1]

|T̄n(t)| =
1

|Tn(α)| , (9.14)

where we have set T̄n = Tn/Tn(α).
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Proof. We know that Tn(α) 	= 0, because all the zeros, or roots, of Tn belong
to ]−1, 1[. Hence T̄n is well defined. On the one hand, if α > 1, then Tn(α) > 0,
since the polynomials Tn do not change sign on ]1,+∞[ and Tn(1) = 1. On
the other hand, if α < −1, then Tn(α) has the same sign as Tn(−1) = (−1)n.
We shall therefore assume in the sequel, without loss of generality, that α > 1,
so that Tn(α) > 0. To prove (9.14), we assume, to the contrary, that there
exists p ∈ P̄n such that

max
t∈[−1,1]

|p(t)| <
1

Tn(α)
. (9.15)

We are going to show that p = T̄n, which contradicts our assumption (9.15).
At each of the n + 1 extremal points t̃k of Tn, the polynomial q = p − T̄n

changes sign, since

• q(t̃0) = p(t̃0) − 1
Tn(α) < 0,

• q(t̃1) = p(t̃1) + 1
Tn(α) > 0,

• etc.

In addition, q(α) = 0, so the polynomial q ∈ Pn has at least n + 1 distinct
zeros, because the t̃k are distinct and α /∈ [−1, 1]. It must therefore vanish
identically. �

Study on [a, b]

The induction relation (9.12) shows that the Chebyshev polynomials can be
defined on the whole real line R. We can also define Tn(x) for x ∈ (−∞,−1]∪
[1,+∞) as follows: since |x| ≥ 1, we have

√
1 − x2 = i

√
x2 − 1, and by (9.13),

2Tn(x) = [x +
√

x2 − 1]n + [x −
√

x2 − 1]n. (9.16)

To obtain the analogue of property (9.14) on any interval [a, b], we define the
linear function ϕ that maps [−1, 1] onto [a, b]:

[−1, 1] −→ [a, b],
ϕ : t �−→ x = a+b

2 + b−a
2 t.

Proposition 9.5.3. For any β /∈ [a, b], the Chebyshev polynomials satisfy

min
q∈P

β
n

max
x∈[a,b]

|q(x)| = max
x∈[a,b]

|Tn(ϕ−1(x))|
|Tn(ϕ−1(β))| =

1
|Tn(ϕ−1(β))| .

Proof. Since β /∈ [a, b], α = ϕ−1(β) /∈ [−1, 1], and the polynomial p(t) =
q(ϕ(t)) belongs to P

α
n. By Proposition 9.5.2 we get

min
q∈P

β
n

max
x∈[a,b]

|q(x)| = min
q∈P

β
n

max
t∈[−1,1]

|q(ϕ(t))|

= min
p∈Pα

n

max
t∈[−1,1]

|p(t)|

= max
t∈[−1,1]

|T̄n(t)| =
1

|Tn(ϕ−1(β))| ,
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with T̄n(t) = Tn(t)/Tn(ϕ−1(β)), and the result is proved. �

9.6 Exercises

In these exercises A ∈ Mn(R) is always a symmetric positive definite matrix.
We recall that the following two problems are equivalent:

min
x∈Rn

{
f(x) =

1
2
〈Ax, x〉 − 〈b, x〉

}
, (9.17)

and solve the linear system
Ax = b. (9.18)

9.1. The goal of this exercise is to program and study the constant step gra-
dient algorithm.

1. Write a program GradientS that computes the minimizer of (9.17) by the
gradient method; see Algorithm 9.1.

2. Take n = 10, A=Laplacian1dD(n);xx=(1:n)’/(n+1);b=xx.*sin(xx).
Compute the solution xG of (9.18) obtained using this algorithm. Take
α = 10−4 and limit the number of iterations to Niter = 10 000. The conver-
gence criterion shall be written in terms of the residual norm which must
be smaller than ε = 10−4 times its initial value. How many iterations are
necessary before convergence? Compare the obtained solution with that
given by Matlab.

3. Take now Niter = 2000 and ε = 10−10. For α varying from αmin = 32 ×
10−4 to αmax = 42×10−4, by steps of size 10−5, plot a curve representing
the number of iterations necessary to compute xG. Determine numerically
the value of α leading to the minimal number of iterations. Compare with
the optimal value given by Theorem 9.1.1.

9.2. In order to improve the convergence of the gradient algorithm, we now
program and study the variable step gradient algorithm. At each iteration,
the step α is chosen equal to the value αk that minimizes the norm of the
residual rk+1 = b − Axk+1. In other words, αk is defined by

‖∇f (xk − αk∇f(xk)) ‖ = inf
α∈R

‖∇f (xk − α∇f(xk)) ‖,

where ‖.‖ denotes the Euclidean norm ‖.‖2.

1. Find an explicit formula for αk.
2. Write a program GradientV that computes the solution of (9.17) by the

variable step gradient method, see Algorithm 9.2.
3. Compare both algorithms (constant and variable step) and in particular

the number of iterations and the total computational time for the same
numerical accuracy. For this, take the data of Exercise 9.1 with, for the
constant step gradient, α as the optimal value.
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9.3 (∗). We now program and study the conjugate gradient algorithm.

1. Write a program GradientC that computes the solution of (9.17) using
the conjugate gradient method (see Algorithm 9.3).

2. Compare this algorithm with the variable step gradient algorithm for the
matrix defined in Exercise 9.1.

3. Let A and b be defined as follows:

A =
1
12

⎛
⎜⎜⎜⎜⎝

5 4 3 2 1
4 5 4 3 2
3 4 5 4 3
2 3 4 5 4
1 2 3 4 5

⎞
⎟⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎜⎝

1
2
3
4
5

⎞
⎟⎟⎟⎟⎠ .

Solve the system Ax = b using the program GradientC with the ini-
tial data x0 = (−2, 0, 0, 0, 10)t and note down the number of iterations
performed. Explain the result using the above script. Same question for
x0 = (−1, 6, 12, 0, 17)t.

4. We no longer assume that the matrix A is positive definite, nor that it is
symmetric, but only that it is nonsingular. Suggest a way of symmetrizing
the linear system (9.18) so that one can apply the conjugate gradient
method.

9.4. Write a program GradientCP that computes the solution of (9.17) by
the preconditioned conjugate gradient algorithm (see Algorithm 9.4) with the
SSOR preconditioning (see Section 9.5.4). Compare the programs GradientC
and GradientCP by plotting on the same graph the errors of both methods in
terms of the iteration number. Take n = 50 and Niter = 50 iterations without
a termination criterion on the residual and consider that the exact solution is
A\b.
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Methods for Computing Eigenvalues

10.1 Generalities

For a squared matrix A ∈ Mn(C), the problem that consists in finding the
solutions λ ∈ C and nonzero x ∈ C

n of the algebraic equation

Ax = λx (10.1)

is called an eigenvalue problem. The scalar λ is called an“eigenvalue,” and the
vector x is an “eigenvector.” If we consider real matrices A ∈ Mn(R), we can
also study the eigenvalue problem (10.1), but the eigenvalue λ and eigenvector
x may not be real and, in full generality, can belong to C or C

n respectively.
In Section 2.3 the existence and theoretical characterization of solutions

of (10.1) were discussed. On the other hand, the present chapter is devoted
to some numerical algorithms for solving (10.1) in practice.

We recall that the eigenvalues of a matrix A are the roots of its charac-
teristic polynomial det (A− λIn). In order to compute these eigenvalues, one
may naively think that it suffices to factorize its characteristic polynomial.
Such a strategy is bound to fail. On the one hand, there is no explicit formula
(using elementary operations such as addition, multiplication, and extraction
of roots) for the zeros of most polynomials of degree greater than or equal to
5, as has been known since the work of Galois and Abel. On the other hand,
there are no robust and efficient numerical algorithms for computing all the
roots of large-degree polynomials. By the way, there is no special property of
the characteristic polynomial, since any nth-degree polynomial of the type

pA(λ) = (−1)n
(
λn + a1λ

n−1 + a2λ
n−2 + · · · + an−1λ + an

)

is actually the characteristic polynomial (developed with respect to the last
column) of the matrix (called the companion matrix of the polynomial)
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A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−a1 −a2 . . . . . . −an

1 0 . . . . . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Accordingly, there cannot exist direct methods (that is, methods producing
the result after a finite number of operations) for the determination of the
eigenvalues! As a result, there are only iterative methods for computing eigen-
values (and eigenvectors).

It turns out that in practice, computing the eigenvalues and eigenvectors
of a matrix is a much harder task than solving a linear system. Nevertheless,
there exist numerically efficient algorithms for self-adjoint matrices or ma-
trices having eigenvalues with distinct moduli. However, the general case is
much more delicate to handle and will not be treated here. Finally, numerical
stability issues are very complex. The possibility of having multiple eigenval-
ues seriously complicates their computation, especially in determining their
corresponding eigenvectors.

10.2 Conditioning

The notion of conditioning of a matrix is essential for a good understanding
of rounding errors in the computation of eigenvalues, but it is different from
the one introduced for solving linear systems. Consider the following “ill-
conditioned” example:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 ε
1 0 . . . . . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where ε = 10−n. Noting that pA(λ) = (−1)n(λn − ε), the eigenvalues of A are
the nth roots of 10−n, all of which are equal in modulus to 10−1. However,
had we taken ε = 0, then all eigenvalues would have been zero. Therefore,
for large n, small variations in the matrix entries yield large variations in the
eigenvalues.

Definition 10.2.1. Let A be a diagonalizable matrix with eigenvalues λ1,...,λn,
and let ‖ · ‖ be a subordinate matrix norm. The real number defined by

Γ (A) = inf
P−1AP= diag (λ1,...,λn)

cond(P ),
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where cond(P ) = ‖P‖ ‖P−1‖ is the conditioning of the matrix P , is called
the conditioning of the matrix A, relative to this norm, for computing its
eigenvalues.

For all diagonalizable matrices A, we have Γ (A) ≥ 1. If A is normal, then
A is diagonalizable in an orthonormal basis. In other words, there exists a
unitary matrix U such that U−1AU is diagonal. For the induced matrix norm
‖ · ‖2, we know that ‖U‖2 = 1, so cond2(U) = 1. Accordingly, if A is normal,
then Γ2(A) = 1. In particular, the 2-norm conditioning of self-adjoint matrices
for computing eigenvalues is always equal to 1.

Theorem 10.2.1 (Bauer–Fike). Let A be a diagonalizable matrix with
eigenvalues (λ1, . . . , λn). Let ‖ · ‖ be a subordinate matrix norm satisfying

‖diag (d1, . . . , dn)‖ = max
1≤i≤n

|di|.

Then, for every matrix perturbation δA, the eigenvalues of (A + δA) are con-
tained in the union of n disks of the complex plane Di defined by

Di = {z ∈ C |z − λi| ≤ Γ (A)‖δA‖} , 1 ≤ i ≤ n.

Remark 10.2.1. The hypothesis on the subordinate matrix norm is satisfied
by all norms ‖ · ‖p with p ≥ 1; see Exercise 3.3.

Proof of Theorem 10.2.1. Let P be a nonsingular matrix satisfying

P−1AP = diag (λ1, . . . , λn).

Let us prove that the theorem is still valid if we substitute Γ (A) by cond(P ),
which implies the desired result when P varies. Let λ be an eigenvalue of
(A + δA). If for some index i, we have λ = λi, then we are done. Otherwise,
the matrix diag (λ1 −λ, . . . , λn −λ), denoted by diag (λi −λ), is nonsingular,
so

P−1(A + δA − λI)P = diag (λi − λ) + P−1δAP (10.2)
= diag (λi − λ) (I+B) , (10.3)

where the matrix B is defined by

B = diag (λi − λ)−1P−1δAP.

Assume that ‖B‖ < 1. Then, by Proposition 3.3.1 the matrix (I + B) is
invertible and equality (10.3) is thereby contradicted, since the matrix (A +
δA − λI) is singular. Consequently, we infer that necessarily ‖B‖ ≥ 1, and

1 ≤ ‖B‖ ≤ ‖diag (λi − λ)−1‖‖P−1‖ ‖δA‖ ‖P‖.

Thanks to the hypothesis on the norm of a diagonal matrix, we deduce

min
1≤i≤n

|λi − λ| ≤ cond(P )‖δA‖,

which ends the proof. �
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10.3 Power Method

The simplest method to compute eigenvalues and eigenvectors of a matrix
is the power method. In practice, this method is confined to the computa-
tion of some (not all) extreme eigenvalues, provided that they are real and
simple (their algebraic multiplicity is equal to 1). For the sake of simplicity
we shall now restrict our attention to real matrices only. Let A be a real
matrix of order n, not necessarily symmetric (unless otherwise mentioned).
We call (λ1, . . . , λn) its eigenvalues repeated with their algebraic multiplicity,
and sorted in increasing order of their modulus |λ1| ≤ |λ2| ≤ · · · ≤ |λn|.
Henceforth, we denote by ‖ · ‖ the Euclidean norm in R

n.
The power method for computing the largest eigenvalue λn is defined by

Algorithm 10.1. In the convergence test, ε is a small tolerance, for instance

Data: A . Output: a ≈ λn largest (in modulus) eigenvalue of A
xk ≈ un eigenvector associated with λn

Initialization:
choose x0 ∈ R

n such that ‖x0‖ = 1.
Iterations

For k ≥ 1 and ‖xk − xk−1‖ ≤ ε
yk = Axk−1

xk = yk/‖yk‖
End

a = ‖yk‖
Algorithm 10.1: Power method.

ε = 10−6. If δk = xk − xk−1 is small, then xk is an approximate eigenvector
of A associated with the approximate eigenvalue ‖yk‖ since

Axk − ‖yk‖xk = Aδk.

Theorem 10.3.1. Assume that A is diagonalizable, with real eigenvalues
(λ1, . . . , λn) associated to real eigenvectors (e1, . . . , en), and that the eigen-
value with the largest modulus, denoted by λn, is simple and positive, i.e.,

|λ1| ≤ · · · ≤ |λn−1| < λn.

Assume also that in the eigenvectors’ basis, the initial vector reads x0 =∑n
i=1 βiei with βn 	= 0. Then, the power method converges, that is,

lim
k→+∞

‖yk‖ = λn, lim
k→+∞

xk = x∞, where x∞ = ±en.

Moreover, the convergence speed is proportional to the ratio |λn−1|/|λn|:
∣∣∣‖yk‖ − λn

∣∣∣ ≤ C

(
|λn−1|
|λn|

)k

, and ‖xk − x∞‖ ≤ C

(
|λn−1|
|λn|

)k

.
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Remark 10.3.1. The assumption that the largest eigenvalue is real is crucial.
However, if it is negative instead, we can apply Theorem 10.3.1 to −A. In
practice, if we apply the above algorithm to a matrix whose largest-modulus
eigenvalue is negative, it is the sequence (−1)kxk that converges, while −‖yk‖
converges to this eigenvalue. Let us recall that the simplicity condition on the
eigenvalue λn expresses the fact that the associated generalized eigenspace is
of dimension 1, or that λn is a simple root of the characteristic polynomial.
Should there be several eigenvalues of maximal modulus, the sequences ‖yk‖
and xk will not converge in general. Nevertheless, if the eigenvalue λn is mul-
tiple but is the only one with maximum modulus, then the sequence ‖yk‖
always converges to λn (but the sequence xk may not converge).

Proof of Theorem 10.3.1. The vector xk is proportional to Akx0, and be-
cause of the form of the initial vector x0, it is also proportional to

n∑
i=1

βiλ
k
i ei,

which implies

xk =
βnen +

∑n−1
i=1 βi

(
λi

λn

)k

ei∥∥∥∥βnen +
∑n−1

i=1 βi

(
λi

λn

)k

ei

∥∥∥∥
.

Note in passing that since βn 	= 0, the norm ‖yk‖ never vanishes and there
is no division by zero in Algorithm 10.1. From the assumption |λi| < λn for
i 	= n, we deduce that xk converges to βn

‖βnen‖en. Likewise, we have

‖yk+1‖ = λn

∥∥∥∥βnen +
∑n−1

i=1 βi

(
λi

λn

)k+1

ei

∥∥∥∥∥∥∥∥βnen +
∑n−1

i=1 βi

(
λi

λn

)k

ei

∥∥∥∥
,

which therefore converges to λn. �
It is possible to compute the smallest eigenvalue (in modulus) of A by

applying the power method to A−1: it is then called the inverse power method;
see Algorithm 10.2 below. The computational cost of the inverse power method
is higher, compared to the power method, because a linear system has to be
solved at each iteration. If δk = xk−xk−1 is small, then xk−1 is an approximate
eigenvector associated to the approximate eigenvalue 1/‖yk‖, since

Axk−1 −
xk−1

‖yk‖
= −Aδk.

Theorem 10.3.2. Assume that A is nonsingular and diagonalizable, with real
eigenvalues (λ1, . . . , λn) associated to real eigenvectors (e1, . . . , en), and that
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Data: A . Output: a ≈ λ1 smallest (in modulus) eigenvalue of A
xk ≈ u1 eigenvector associated with λ1

Initialization:
choose x0 ∈ R

n such that ‖x0‖ = 1.
Iterations

For k ≥ 1 and ‖xk − xk−1‖ ≤ ε,
solve Ayk = xk−1

xk = yk/‖yk‖
End

a = 1/‖yk‖
Algorithm 10.2: Inverse power method.

the eigenvalue with the smallest modulus, denoted by λ1, is simple and positive,
i.e.,

0 < λ1 < |λ2| ≤ · · · ≤ |λn|.
Assume also that in the basis of eigenvectors, the initial vector reads x0 =∑n

i=1 βiei with β1 	= 0. Then the inverse power method converges, that is,

lim
k→+∞

1
‖yk‖

= λ1, lim
k→+∞

xk = x∞ such that x∞ = ±e1.

Moreover, the convergence speed is proportional to the ratio |λ1|/|λ2|:
∣∣∣‖yk‖−1 − λ1

∣∣∣ ≤ C

(
|λ1|
|λ2|

)k

and ‖xk − x∞‖ ≤ C

(
|λ1|
|λ2|

)k

.

Proof. The vector xk is proportional to A−kx0 and thus to

n∑
i=1

βiλ
−k
i ei,

which implies

xk =
β1e1 +

∑n
i=2 βi

(
λ1
λi

)k

ei∥∥∥∥β1e1 +
∑n

i=2 βi

(
λ1
λi

)k

ei

∥∥∥∥
.

Note again that the norm ‖yk‖ never vanishes, so there is no division by zero
in Algorithm 10.2. From λ1 < |λi| for i 	= 1, we deduce that xk converges to

β1
‖β1e1‖e1, and that ‖yk‖−1 converges to λ1. �

When the matrix A is real symmetric, the statements of the previous
theorems simplify a little, since A is automatically diagonalizable and the as-
sumption on the initial vector x0 simply requests that x0 not be orthogonal
to the eigenvector en (or e1). Furthermore, the convergence toward the eigen-
value is faster in the real symmetric case. We only summarize, hereinafter,
the power method; a similar result is also valid for the inverse power method.
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Theorem 10.3.3. Assume that the matrix A is real symmetric, with eigenval-
ues (λ1, . . . , λn) associated to an orthonormal basis of eigenvectors (e1, . . . , en),
and that the eigenvalue with the largest modulus λn is simple and positive, i.e.,

|λ1| ≤ · · · ≤ |λn−1| < λn.

Assume also that the initial vector x0 is not orthogonal to en. Then the power
method converges, and the sequence ‖yk‖ converges quadratically to the eigen-
value λn, that is, ∣∣∣‖yk‖ − λn

∣∣∣ ≤ C

(
|λn−1|
|λn|

)2k

.

Remark 10.3.2. The convergence speed of the approximate eigenvector xk is
unchanged compared to Theorem 10.3.1. However, the convergence of the

approximate eigenvalue ‖yk‖ is faster, since
(

|λn−1|
|λn|

)2

< |λn−1|
|λn| .

Proof of Theorem 10.3.3. In the orthonormal basis (ei)1≤i≤n we write the
initial vector in the form x0 =

∑n
i=1 βiei. Thus, xk reads

xk =
βnen +

∑n−1
i=1 βi

(
λi

λn

)k

ei(
β2

n +
∑n−1

i=1 β2
i

(
λi

λn

)2k
)1/2

.

Then,

‖yk+1‖ = ‖Axk‖ = λn

(
β2

n +
∑n−1

i=1 β2
i

(
λi

λn

)2(k+1)
)1/2

(
β2

n +
∑n−1

i=1 β2
i

(
λi

λn

)2k
)1/2

,

which yields the desired result. �

Remark 10.3.3. To compute other eigenvalues of a real symmetric matrix (that
is, not the smallest, nor the largest), we can use the so-called deflation method.
For instance, if we are interested in the second-largest-modulus eigenvalue,
namely λn−1, the deflation method amounts to the following process. We
first compute the largest-modulus eigenvalue λn and an associated unitary
eigenvector en such that Aen = λnen with ‖en‖ = 1. Then, we apply again
the power method to A starting with an initial vector x0 orthogonal to en.
This is equivalent to computing the largest eigenvalue of A, restricted to the
subspace orthogonal to en (which is stable by A), that is, to evaluating λn−1.
In practice, at each iteration the vector xk is orthogonalized against en to be
sure that it belongs to the subspace orthogonal to en. A similar idea works
for computing the second-smallest-modulus eigenvalue λ2 in the framework
of the inverse power method. In practice, this technique is suitable only for
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the computation of some extreme eigenvalues of A (because of numerical loss
of orthogonality). It is not recommended if all or only some intermediate
eigenvalues have to be computed.

Let us conclude this section by mentioning that the convergence of the inverse
power method can be accelerated by various means (see the next remark).

Remark 10.3.4. Let µ /∈ σ(A) be a rough approximation of an eigenvalue λ
of A. Since the eigenvectors of (A − µIn) are those of A and its spectrum is
just shifted by µ, we can apply the inverse power method to the nonsingular
matrix (A − µIn) in order to compute a better approximation of λ and a
corresponding eigenvector. Note that the rate of convergence is improved,
since if µ was a “not too bad” approximation of λ, the smallest-modulus
eigenvalue of (A − µIn) is (λ − µ), which is small.

10.4 Jacobi Method

In this section we restrict our attention to the case of real symmetric matrices.
The purpose of the Jacobi method is to compute all eigenvalues of a matrix
A. Its principle is to iteratively multiply A by elementary rotation matrices,
known as Givens matrices.

Definition 10.4.1. Let θ ∈ R be an angle. Let p 	= q be two different integers
between 1 and n. A Givens matrix is a rotation matrix Q(p, q, θ) defined by
its entries Qi,j(p, q, θ):

Qp,p(p, q, θ) = cos θ,
Qq,q(p, q, θ) = cos θ,
Qp,q(p, q, θ) = sin θ,
Qq,p(p, q, θ) = − sin θ,
Qi,j(p, q, θ) = δi,j in all other cases.

The Givens matrix Q(p, q, θ) corresponds to a rotation of angle θ in the plane
span {ep, eq}. It has the following shape:

Q(p, q, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

. . .

1
cos θ sin θ

1

. . .

1
− sin θ cos θ

1

. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← p

← q

↑ ↑
p q
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Lemma 10.4.1. The Givens rotation matrix Q(p, q, θ) is an orthogonal ma-
trix that satisfies, for any real symmetric matrix A,∑

1≤i,j≤n

b2
i,j =

∑
1≤i,j≤n

a2
i,j ,

where B = Qt(p, q, θ)AQ(p, q, θ). Moreover, if ap,q 	= 0, there exists a unique
angle θ ∈

]
−π

4 ; 0
[
∪]0; π

4 ], defined by cot(2θ) = aq,q−ap,p

2ap,q
, such that

bp,q = 0 and
n∑

i=1

b2
ii =

n∑
i=1

a2
ii + 2a2

p,q. (10.4)

Proof. Since Q(p, q, θ) is a rotation matrix, it is orthogonal, i.e., QQt = In.
A simple computation gives

n∑
i,j=1

b2
i,j = ‖B‖2

F = tr (BtB) = tr (Qt(p, q, θ)AtAQ(p, q, θ)),

where ‖ · ‖F denotes the Frobenius norm. Since tr (MN) = tr (NM), we
deduce

tr (Qt(p, q, θ)AtAQ(p, q, θ)) = tr (AAt),

and thus
n∑

i,j=1

b2
i,j = tr(AtA) =

n∑
i,j=1

a2
i,j .

We note that for any angle θ, only rows and columns of indices p and q of B
change with respect to those of A. In addition, we have(

bp,p bp,q

bp,q bq,q

)
=
(

cos θ − sin θ
sin θ cos θ

)(
ap,p ap,q

ap,q aq,q

)(
cos θ sin θ
− sin θ cos θ

)
, (10.5)

which leads to⎧⎨
⎩

bp,p = −2ap,q sin θ cos θ + ap,p cos2 θ + aq,q sin2 θ,
bp,q = ap,q(cos2 θ − sin2 θ) + (ap,p − aq,q) sin θ cos θ,
bq,q = 2ap,q sin θ cos θ + ap,p sin2 θ + aq,q cos2 θ.

Consequently, bp,q = 0 if and only if the angle θ satisfies

ap,q cos 2θ +
ap,p − aq,q

2
sin 2θ = 0.

Such a choice of θ is always possible because cot 2θ is onto on R. For this
precise value of θ, we deduce from (10.5) that bp,q = 0 and

b2
p,p + b2

q,q = a2
p,p + a2

q,q + 2a2
p,q.

Since all other diagonal entries of B are identical to those of A, this proves
(10.4). �
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Definition 10.4.2. The Jacobi method for computing the eigenvalues of a
real symmetric matrix A amounts to building a sequence of matrices Ak =
(ak

i,j)1≤i,j≤n defined by

{
A1 = A,
Ak+1 = Qt(pk, qk, θk)AkQ(pk, qk, θk),

where Q(pk, qk, θk) is a Givens rotation matrix with the following choice:

(i) (pk, qk) is a pair of indices such that |ak
pk,qk

| = maxi�=j |ak
i,j |,

(ii) θk is the angle such that ak+1
pk,qk

= 0.

Remark 10.4.1. During the iterations, the previously zeroed off-diagonal en-
tries do not remain so. In other words, although ak+1

pk,qk
= 0, for further itera-

tions l ≥ k + 2 we have al
pk,qk

	= 0. Thus, we do not obtain a diagonal matrix
after a finite number of iterations. However, (10.4) in Lemma 10.4.1 proves
that the sum of all squared off-diagonal entries of Ak decreases as k increases.

Remark 10.4.2. From a numerical viewpoint, the angle θk is never computed
explicitly. Indeed, trigonometric functions are computationally expensive,
while only the cosine and sine of θk are required to compute Ak+1. Since
we have an explicit formula for cot 2θk and 2 cot 2θk = 1/ tan θk − tan θk, we
deduce the value of tan θk by computing the roots of a second-degree polyno-
mial. Next, we obtain the values of cos θk and sin θk by computing again the
roots of another second-degree polynomial.

Theorem 10.4.1. Assume that the matrixe A is real symmetric with eigenval-
ues (λ1, . . . , λn). The sequence of matrices Ak of the Jacobi method converges,
and we have

lim
k→+∞

Ak = diag (λσ(i)),

where σ is a permutation of {1, 2, . . . , n}.

Theorem 10.4.2. If, in addition, all eigenvalues of A are distinct, then the
sequence of orthogonal matrices Qk, defined by

Qk = Q(p1, q1, θ1)Q(p2, q2, θ2) · · ·Q(pk, qk, θk),

converges to an orthogonal matrix whose column vectors are the eigenvectors
of A arranged in the same order as the eigenvalues λσ(i).

To prove these theorems, we need a technical lemma.

Lemma 10.4.2. Consider a sequence of matrices Mk such that

(i) limk→+∞ ‖Mk+1 − Mk‖ = 0;
(ii) there exists C, independent of k, such that ‖Mk‖ ≤ C for all k ≥ 1;
(iii) the sequence Mk has a finite number of cluster points (limit points).
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Then the sequence Mk converges.

Proof. Let A1, . . . , Ap be all the cluster points of the sequence Mk. For every
Ai, 1 ≤ i ≤ p, there exists a subsequence Mk(i) that converges to Ai. Let us
show that for all ε > 0, there exists an integer k(ε) such that

Mk ∈
p⋃

i=1

B(Ai, ε), ∀k ≥ k(ε),

where B(Ai, ε) is the closed ball of center Ai and radius ε. If this were not
true, there would exist ε0 > 0 and an infinite subsequence k′ such that

‖Mk′ − Ai‖ ≥ ε0, 1 ≤ i ≤ p.

This new subsequence Mk′ has no Ai as a cluster point. However, it is bounded
in a finite-dimensional space, so it must have at least one other cluster point,
which contradicts the fact that there is no other cluster point of the sequence
Mk but the Ai. Thus, for ε = 1

4 min
i�=i′

‖Ai − Ai′‖, there exists k(ε) such that

‖Mk+1 − Mk‖ ≤ ε, and Mk ∈
p⋃

i=1

B(Ai, ε), ∀k ≥ k(ε).

In particular, there exists i0 such that Mk(ε) ∈ B(Ai0 , ε). Let us show that
Mk ∈ B(Ai0 , ε) for all k ≥ k(ε). Let k1 be the largest integer greater than
k(ε) such that Mk1 belongs to B(Ai0 , ε), but not Mk1+1. In other words, k1

satisfies
‖Mk1 − Ai0‖ ≤ ε and ‖Mk1+1 − Ai0‖ > ε.

Accordingly, there exists i1 such that ‖Mk1+1−Ai1‖ ≤ ε. Therefore we deduce

‖Ai0 − Ai1‖ ≤ ‖Mk1 − Ai0‖ + ‖Mk1+1 − Mk1‖ + ‖Mk1+1 − Ai1‖

≤ 3ε ≤ 3
4

min
i�=i′

‖Ai − Ai′‖,

which is not possible because min
i�=i′

‖Ai − Ai′‖ > 0. Therefore k1 = +∞. �

Proof of Theorem 10.4.1. We split the matrix Ak = (ak
i,j)1≤i,j≤n as follows:

Ak = Dk + Bk with Dk = diag (ak
i,i).

Let εk = ‖Bk‖2
F , where ‖ · ‖F is the Frobenius norm. It satisfies

εk = ‖Ak‖2
F − ‖Dk‖2

F .

From ‖Ak‖F = ‖Ak+1‖F and ‖Dk+1‖2
F = ‖Dk‖2

F − 2|ak
pkqk

|2 (by Lemma
10.4.1), we deduce that
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εk+1 = εk − 2|ak
pkqk

|2.

Since |ak
pkqk

| = maxi�=j |ak
i,j |, we have

εk ≤ (n2 − n)|ak
pkqk

|2,

and so

εk+1 ≤
(

1 − 2
n2 − n

)
εk.

As a result, the sequence εk tends to 0, and

lim
k→+∞

Bk = 0.

Since the off-diagonal part of Ak tends to 0, it remains to prove the con-
vergence of its diagonal part Dk. For this purpose we check that Dk satis-
fies the assumptions of Lemma 10.4.2. The sequence Dk is bounded, because
‖Dk‖F ≤ ‖Ak‖F = ‖A‖F . Let us show that Dk has a finite number of cluster
points. Since Dk is a bounded sequence in a normed vector space of finite
dimension, there exists a subsequence Dk′ that converges to a limit D. Hence,
Ak′ converges to D. As a consequence,

det (D − λI) = lim
k′→+∞

det (Ak′ − λI) = lim
k′→+∞

det Qt
k′(A − λI)Qk′

= det (A − λI),

where Qk is the orthogonal matrix defined in Theorem 10.4.2. Since D is
diagonal and has the same eigenvalues as A, D necessarily coincides with
diag (λσ(i)) for some permutation σ. There exist n! such permutations, there-
fore Dk has at most n! cluster points. Finally, let us prove that (Dk+1 − Dk)
converges to 0. By definition, dk+1

i,i = ak+1
i,i = ak

i,i = dk
i,i if i 	= p and i 	= q.

It remains to compute dk+1
p,p − dk

p,p = ak+1
p,p − ak

p,p (the case ak+1
q,q − ak

q,q is
symmetric):

ak+1
p,p − ak

p,p = −2ak
p,q sin θk cos θk + (ak

q,q − ak
p,p) sin2 θk.

By the formula cos 2θk = 1 − 2 sin2 θk = ak
q,q−ak

p,p

2ak
p,q

sin 2θk, we obtain

ak
q,q − ak

p,p = ak
p,q

1 − 2 sin2 θk

sin θk cos θk
,

from which we deduce that

ak+1
p,p − ak

p,p = −2ak
p,q sin θk cos θk + ak

p,q

sin θk

cos θk
(1 − 2 sin2 θk) = −ak

p,q tan θk.

Since θk ∈
[
−π

4 ; π
4

]
, we have | tan θk| ≤ 1. Thus
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‖Dk+1 − Dk‖2
F ≤ 2|ak

p,q|2 ≤ ‖Bk‖2
F = εk,

which tends to 0 as k goes to infinity. Then we conclude by applying Lemma
10.4.2. �
Proof of Theorem 10.4.2. We apply Lemma 10.4.2 to the sequence Qk,
which is bounded because ‖Qk‖F = 1. Let us show that Qk has a finite
number of cluster points. Since it is bounded, there exists a subsequence Qk′

that converges to a limit Q, and we have

lim
k′→+∞

Ak′+1 = diag (λσ(i)) = lim
k′→+∞

Qt
k′AQk′ = QtAQ,

which implies that the columns of Q are equal to (±fσ(i)), where fi is the
normalized eigenvector corresponding to the eigenvalue λi of A (these eigen-
vectors are unique, up to a change of sign, because all eigenvalues are simple
by assumption). Since there is a finite number of permutations and possible
changes of sign, the cluster points, like Q, are finite in number. Finally, let us
prove that (Qk+1 − Qk) converges to 0. We write

Qk+1 − Qk = (Q(pk+1, qk+1, θk+1) − I)Qk.

By definition, tan 2θk =2ak
pkqk

/(ak
qkqk

−ak
pkpk

), and Ak converges to diag (λσ(i))
with distinct eigenvalues. Consequently, for k large enough,

|ak
qkqk

− ak
pkpk

| ≥ 1
2

min
i�=j

|λi − λj | > 0.

Since limk→+∞ ak
pkqk

= 0, we deduce that θk tends to 0, and so (Qk+1 − Qk)
converges to 0. Applying Lemma 10.4.2 finishes the proof. �

10.5 Givens–Householder Method

Once again we restrict ourselves to the case of real symmetric matrices. The
main idea of the Givens–Householder method is to reduce a matrix to its
tridiagonal form, the eigenvalues of which are easier to compute.

Definition 10.5.1. The Givens–Householder method is decomposed into two
successive steps:

1. By the Householder method, a symmetric matrix A is reduced to a tridi-
agonal matrix, that is, an orthogonal matrix Q is built such that QtAQ is
tridiagonal (this first step is executed in a finite number of operations).

2. The eigenvalues of this tridiagonal matrix are computed by a bisection (or
dichotomy) method proposed by Givens (this second step is an iterative
method).
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We begin with the first step, namely, the Householder method.

Proposition 10.5.1. Let A be a real symmetric matrix. There exist (n − 2)
orthogonal matrices Hk such that

T = (H1H2 · · ·Hn−2)tA(H1H2 · · ·Hn−2)

is tridiagonal. Note that A and T have the same eigenvalues.

Proof. Starting with A, we build a sequence of matrices (Ak)1≤k≤n−1 such
that A1 = A, and Ak+1 = Ht

kAkHk, where Hk is an orthogonal matrix chosen
in such a way that Ak has the following block structure:

Ak =
(

Tk Et
k

Ek Mk

)
.

In the above, Tk is a tridiagonal square matrix of size k, Mk is a square matrix
of size n−k, and Ek is a rectangular matrix with (n−k) rows and k columns
whose last column only, denoted by ak ∈ R

n−k, is nonzero:

Tk =

⎛
⎜⎜⎜⎜⎝

× ×

× . . . . . .
. . . . . . ×

× ×

⎞
⎟⎟⎟⎟⎠ and Ek =

⎛
⎜⎜⎜⎜⎝

0 . . . 0 ak,1

...
... ak,2

...
...

...
0 . . . 0 ak,n−k

⎞
⎟⎟⎟⎟⎠ .

Thus, it is clear that An−1 is a tridiagonal matrix. We note that A is indeed
of this form for k = 1. Let Hk be the matrix defined by

Hk =
(

Ik 0
0 H̃k

)
,

where Ik is the identity matrix of order k, and H̃k is the Householder matrix
(see Lemma 7.3.1) of order n − k defined by

H̃k = Ink
− 2

vkvt
k

‖vk‖2
, with vk = ak + ‖ak‖e1, (10.6)

where e1 is the first vector of the canonical basis of R
n−k. It satisfies H̃kak =

−‖ak‖e1. We observe that Hk is orthogonal and Ht
k = Hk. The definition

(10.6) of the Householder matrix is valid only if ak is not parallel to e1;
otherwise, the kth column of Ak is already of the desired form, so we take
Hk = In−k. We compute Ak+1 = Ht

kAkHk:

Ak+1 =
(

Tk (H̃kEk)t

H̃kEk H̃kMkH̃k

)
,

where
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H̃kEk =

⎛
⎜⎜⎜⎜⎝

0 . . . 0 −‖ak‖
...

... 0
...

...
...

0 . . . 0 0

⎞
⎟⎟⎟⎟⎠ .

Accordingly, Ak+1 takes the desired form:

Ak+1 =
(

Tk+1 Et
k+1

Ek+1 Mk+1

)
,

where Tk+1 is a square tridiagonal matrix of size k+1, Mk+1 is a square matrix
of size n − k − 1, and Ek+1 is a rectangular matrix of size (n − k − 1, k + 1)
whose only nonzero column is the last one. �

Now we proceed to the second step of the algorithm, that is, the Givens
bisection method.

Lemma 10.5.1. Consider a real tridiagonal symmetric matrix

A =

⎛
⎜⎜⎜⎜⎝

b1 c1 0

c1
. . . . . .
. . . . . . cn−1

0 cn−1 bn

⎞
⎟⎟⎟⎟⎠ .

If there exists an index i such that ci = 0, then

det (A − λIn) = det (Ai − λIi) det (An−i − λIn−i)

with

Ai =

⎛
⎜⎜⎜⎜⎝

b1 c1 0

c1
. . . . . .
. . . . . . ci−1

0 ci−1 bi

⎞
⎟⎟⎟⎟⎠ and An−i =

⎛
⎜⎜⎜⎜⎝

bi+1 ci+1 0

ci+1
. . . . . .
. . . . . . cn−1

0 cn−1 bn

⎞
⎟⎟⎟⎟⎠ .

The proof of Lemma 10.5.1 is easy and left to the reader. It allows us to
restrict our attention in the sequel to tridiagonal matrices with ci 	= 0 for all
i ∈ {1, . . . , n − 1}.

Proposition 10.5.2. For 1 ≤ i ≤ n, let Ai be the matrix of size i defined by

Ai =

⎛
⎜⎜⎜⎜⎝

b1 c1 0

c1
. . . . . .
. . . . . . ci−1

0 ci−1 bi

⎞
⎟⎟⎟⎟⎠ ,
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with ci 	= 0, and let pi(λ) = det (Ai − λIi) be its characteristic polynomial.
The sequence pi satisfies the induction formula

pi(λ) = (bi − λ)pi−1(λ) − c2
i−1pi−2(λ), ∀i ≥ 2,

with
p0(λ) = 1 and p1(λ) = b1 − λ.

Moreover, for all i ≥ 1, the polynomial pi has the following properties:

1. lim
λ→−∞

pi(λ) = +∞;

2. if pi(λ0) = 0, then pi−1(λ0)pi+1(λ0) < 0;
3. the polynomial pi has i real distinct roots that strictly separate the (i + 1)

roots of pi+1.

Remark 10.5.1. A consequence of Proposition 10.5.2 is that when all entries
ci are nonzero, the tridiagonal matrix A has only simple eigenvalues (in other
words, they are all distinct).

Proof of Proposition 10.5.2. Expanding det (Ai − λIi) with respect to the
last row, we get the desired induction formula. The first property is obvious by
definition of the characteristic polynomial. To prove the second property, we
notice that if pi(λ0) = 0, then the induction formula implies that pi+1(λ0) =
−c2

i pi−1(λ0). Since ci 	= 0, we deduce

pi−1(λ0)pi+1(λ0) ≤ 0.

This inequality is actually strict; otherwise, if either pi−1(λ0) = 0 or pi+1(λ0) =
0, then the induction formula would imply that pk(λ0) = 0 for all 0 ≤ k ≤ i+1,
which is not possible because p0(λ0) = 1.

Concerning the third property, we first remark that pi(λ) has i real roots,
denoted by λi

1 ≤ · · · ≤ λi
i, because Ai is real symmetric. Let us show by

induction that these i roots of pi are distinct and separated by those of pi−1.
First of all, this property is satisfied for i = 2. Indeed,

p2(λ) = (b2 − λ)(b1 − λ) − c2
1

has two roots (λ2
1, λ

2
2) that strictly bound the only root λ1

1 = b1 of p1(λ), i.e.,
λ2

1 < λ1
1 < λ2

2. Assuming that pi(λ) has i real distinct roots separated by those
of pi−1, we now study the i + 1 real roots of pi+1. We define a polynomial qi

of degree 2i by
qi(λ) = pi−1(λ)pi+1(λ).

We already know i − 1 roots of qi (those of pi−1), and we also know that the
i roots of pi are such that qi(λi

k) < 0. In other words,

qi(λi−1
k ) = 0, for 1 ≤ k ≤ i − 1, qi(λi

k) < 0, for 1 ≤ k ≤ i,

with (see Figure 10.1)
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λi
1 < λi−1

1 < λi
2 < · · · < λi−1

i−1 < λi
i.

Between λi
k and λi

k+1, either qi vanishes at another point γk 	= λi−1
k , in which

case we have found another root of qi, hence of pi+1, or qi vanishes only at
λi−1

k , meaning it is at least a double root, since its derivative q′i has to vanish
at λi−1

k too. On the other hand, λi−1
k is a simple root of pi−1, so λi−1

k is also a
root of pi+1. Because of the induction relation, this would prove that λi−1

k is
a root for all polynomials pj with 0 ≤ j ≤ i+1, which is not possible because
p0 = 1 has no roots. As a consequence, we have proved that between each
pair λi

k, λi
k+1 there exists another root γk 	= λi−1

k of the polynomial qi, thus
of pi+1. Overall, we have just found (i − 1) distinct roots of pi+1 that bound
those of pi. Moreover, qi(λi

1) < 0 and qi(λi
i) < 0, whereas

lim
λ→±∞

qi(λ) = +∞.

So we deduce the existence of two more distinct roots of qi, hence of pi+1 (for
a total number of i + 1 roots), that intertwine those of pi. �

λ4
1 λ4

2 λ4
3

λ4
4

p4

λ3
1 λ3

2 λ3
3

p3

Fig. 10.1. Example of pi polynomials in Proposition 10.5.2.

Proposition 10.5.3. For all µ ∈ R, we define

sgn pi(µ) =
{

sign of pi(µ) if pi(µ) 	= 0,
sign of pi−1(µ) if pi(µ) = 0.

Let N(i, µ) be the number of sign changes between consecutive elements of the
set E(i, µ) = {+1, sgn p1(µ), sgn p2(µ), . . . , sgn pi(µ)}. Then N(i, µ) is the
number of roots of pi that are strictly less than µ.

Proof. First, we note that sgn pi(µ) is defined without ambiguity, since if
pi(µ) = 0, then pi−1(µ) 	= 0 because of the second point in Proposition 10.5.2.
We proceed by induction on i. For i = 1, we check the claim

µ ≤ b1 ⇒ E(1, µ) = {+1,+1} ⇒ N(1, µ) = 0,
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and
µ > b1 ⇒ E(1, µ) = {+1,−1} ⇒ N(1, µ) = 1.

We assume the claim to be true up till the ith order. Let (λi+1
k )1≤k≤i+1 be

the roots of pi+1 and (λi
k)1≤k≤i be those of pi, sorted in increasing order. By

the induction assumption, we have

λi
1 < · · · < λi

N(i,µ) < µ ≤ λi
N(i,µ)+1 < · · · < λi

i.

In addition,
λi

N(i,µ) < λi+1
N(i,µ)+1 < λi

N(i,µ)+1,

by virtue of the third point in Proposition 10.5.2. Therefore, there are three
possible cases.

� First case. If λi
N(i,µ) < µ ≤ λi+1

N(i,µ)+1, then sgn pi+1(µ) = sgn pi(µ). Thus
N(i + 1, µ) = N(i, µ).

� Second case. If λi+1
N(i,µ)+1 < µ < λi

N(i,µ)+1, then sgn pi+1(µ) = − sgn pi(µ).
Thus N(i + 1, µ) = N(i, µ) + 1.

� Third case. If µ = λi
N(i,µ)+1, then sgn pi(µ) = sgn pi−1(µ)=− sgn pi+1(µ),

according to the second point in Proposition 10.5.2. Therefore N(i +
1, µ) = N(i, µ) + 1.

In all cases, N(i + 1, µ) is indeed the number of roots of pi+1 that are strictly
smaller than µ. �

We now describe the Givens algorithm that enables us to numerically
compute some or all eigenvalues of the real symmetric matrix A. We denote
by λ1 ≤ · · · ≤ λn the eigenvalues of A arranged in increasing order.

Givens algorithm. In order to compute the ith eigenvalue λi of A, we
consider an interval [a0, b0] that we are sure λi belongs to (for instance,
−a0 = b0 = ‖A‖∞). Then we compute the number N(n, a0+b0

2 ) defined in
Proposition 10.5.3 (the values of the sequence pj(a0+b0

2 ), for 1 ≤ j ≤ n, are
computed by the induction formula of Proposition 10.5.2). If N(n, a0+b0

2 ) ≥ i,
then we conclude that λi belongs to the interval [a0,

a0+b0
2 [. If, on the contrary,

N(n, a0+b0
2 ) < i, then λi belongs to the other interval [a0+b0

2 , b0]. In both cases,
we have divided by two the initial interval that contains λi. By dichotomy,
that is, by repeating this procedure of dividing the interval containing λi, we
approximate the exact value λi with the desired accuracy.

Remark 10.5.2. The Givens–Householder method allows us to compute one
(or several) eigenvalue(s) of any rank i without having to compute all the
eigenvalues (as is the case for the Jacobi method) or all the eigenvalues be-
tween the ith and the first or the last (as is the case for the power method
with deflation).
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10.6 QR Method

The QR method is the most-used algorithm to compute all the eigenvalues of
a matrix. We restrict ourselves to the case of nonsingular real matrices whose
eigenvalues have distinct moduli

0 < |λ1| < · · · < |λn−1| < |λn|. (10.7)

The analysis of the general case is beyond the scope of this course (for more
details we refer the reader to [3], [7], [13], and [15]). A real matrix A sat-
isfying (10.7) is necessarily invertible, and diagonalizable, with distinct real
eigenvalues, but we do not assume that it is symmetric.

Definition 10.6.1. Let A be a real matrix satisfying (10.7). The QR method
for computing its eigenvalues consists in building the sequence of matrices
(Ak)k≥1 with A1 = A and

Ak+1 = RkQk,

where QkRk = Ak is the QR factorization of the nonsingular matrix Ak (see
Section 6.4).

Recall that the matrices Qk are orthogonal and the matrices Rk are upper
triangular. We first prove a simple technical lemma.

Lemma 10.6.1. 1. The matrices Ak are all similar,

Ak+1 = Qt
kAkQk, (10.8)

Ak = [Q(k)]tAQ(k), (10.9)

with Q(k) = Q1 · · ·Qk.
2. For all k ≥ 1,

AQ(k) = Q(k+1)Rk+1. (10.10)

3. The QR factorization of Ak, the kth power of A (not to be confused with
Ak), is

Ak = Q(k)R(k) (10.11)

with R(k) = Rk · · ·R1.

Proof.

1. By definition, Ak+1 = RkQk = Qt
k(QkRk)Qk = Qt

k(Ak)Qk, and by in-
duction,

Ak+1 = Qt
k(Ak)Qk = Qt

kQt
k−1(Ak−1)Qk−1Qk = · · · = [Q(k+1)]tAQ(k+1).

2. We compute

Q(k)Rk = Q1 · · ·Qk−2Qk−1(QkRk) = Q1 · · ·Qk−2Qk−1(Ak)
= Q1 · · ·Qk−2Qk−1(Rk−1Qk−1) = Q1 · · ·Qk−2(Ak−1)Qk−1

= Q1 · · ·Qk−2(Rk−2Qk−2)Qk−1 = Q1 · · · (Qk−2Rk−2)Qk−2Qk−1

= Q1 · · · (Ak−2)Qk−2Qk−1 = AQ(k−1).
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3. Using the previous identity, we get

Q(k)R(k) = (Q(k)Rk)R(k−1) = AQ(k−1)R(k−1),

and by induction, (10.11).

�

Remark 10.6.1. Remarkably, the algorithm of Definition 10.6.1 features, as a
special case, the power method and the inverse power method. Let α

(k)
1 =

(Rk)1,1, α
(k)
n = (Rk)n,n, and u

(k)
1 (resp. u

(k)
n ) denote the first (resp. last)

column of Q(k), i.e.,
Q(k) =

[
u

(k)
1 | · · · |u(k)

n

]
.

Comparing the first column on both sides of identity (10.10), we get

Au
(k)
1 = α

(k+1)
1 u

(k+1)
1 . (10.12)

Since ‖u(k+1)
1 ‖2 = 1, we have α

(k+1)
1 = ‖Au

(k)
1 ‖2, and formula (10.12) is

just the definition of the power method analyzed in Section 10.3. Under the
hypothesis of Theorem 10.3.1 we know that the sequence αk

1 converges to |λn|
and u

(k)
1 converges to an eigenvector associated to λn.

On the other hand, (10.10) reads A = Q(k+1)Rk+1[Q(k)]t, which implies
by inversion and transposition (recall that by assumption, A and Rk are non-
singular matrices)

A−tQ(k) = Q(k+1)R−t
k+1.

Comparing the last columns on both sides of this identity, we get

A−tu(k)
n =

1

α
(k+1)
n

u(k+1)
n . (10.13)

Since ‖u(k+1)
n ‖2 = 1, we deduce α

(k+1)
n = ‖A−tu

(k)
1 ‖−1

2 , and formula (10.13)
is just the inverse power method. Under the hypothesis of Theorem 10.3.2
we know that the sequence α

(k)
n converges to |λ1| and u

(k)
n converges to an

eigenvector associated to λ1.

The convergence of the QR algorithm is proved in the following theorem
with some additional assumptions on top of (10.7).

Theorem 10.6.1. Let A a be a real matrix satisfying (10.7). Assume further
that P−1 admits an LU factorization, where P is the matrix of eigenvectors
of A, i.e., A = P diag (λn, . . . , λ1)P−1. Then the sequence (Ak)k≥1, generated
by the QR method, converges to an upper triangular matrix whose diagonal
entries are the eigenvalues of A.



10.6 QR Method 211

Proof. By assumption (10.7), the matrix A is diagonalizable, i.e., A =
PDP−1 with D = diag (λn, . . . , λ1). Using the LU factorization of P−1 and
the QR factorization of P we obtain

Ak = P (Dk)P−1 = (QR)(Dk)LU = (QR)(DkLD−k)(DkU).

The matrix DkLD−k is lower triangular with entries

(DkLD−k)i,j =

⎧⎪⎨
⎪⎩

0 for i < j,
1 for i = j,(

λn−i+1
λn−j+1

)k

Li,j for i > j.

Hypothesis (10.7) implies that limk→+∞(DkLD−k)i,j = 0 for i > j. Hence
DkLD−k tends to the identity matrix In as k goes to infinity, and we write

DkLD−k = In + Ek, with lim
k→+∞

Ek = 0n

as well as

Ak = (QR)(In + Ek)(DkU) = Q(In + REkR−1)RDkU.

For k large enough, the matrix In + REkR−1 is nonsingular and admits a
QR factorization: In +REkR−1 = Q̃kR̃k. Since R̃kRDkU) is upper triangular
as a product of upper triangular matrices (see Lemma 2.2.5), it yields a QR
factorization of Ak:

Ak = (QQ̃k)(R̃kRDkU).

From (10.11) we already know another QR factorization of Ak. Thus, by
uniqueness of the QR factorization of Ak (see Remark 6.4.2) there exists a
diagonal matrix D̃k such that

Q(k) = QQ̃kD̃k with |(D̃k)i,i| = 1.

Plugging this into the expression for Ak+1 given in (10.9), we obtain

Ak+1 = [QQ̃kD̃k]∗A[QQ̃kD̃k] = D̃∗
k[Q̃∗

kQ∗AQQ̃k]D̃k. (10.14)

The entries of Ak+1 are

(Ak+1)i,j = (D̃∗
k)i,i[Q̃∗

kQ∗AQQ̃k]i,j(D̃k)j,j = ±[Q̃∗
kQ∗AQQ̃k]i,j . (10.15)

In particular, the diagonal entries of Ak+1 are

(Ak+1)i,i = (D̃∗
k)i,i[Q̃∗

kQ∗AQQ̃k]i,i(D̃k)i,i = [Q̃∗
kQ∗AQQ̃k]i,i.

Now we make two observations.

• Firstly, Q∗AQ = Q∗(PDP−1)Q = Q∗(QRD(QR)−1)Q = RDR−1.
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• Secondly, the sequence (Q̃k)k is bounded (‖Q̃k‖2 = 1); it converges to
a matrix Q̃ (consider first a subsequence, then the entire sequence). As
a consequence, the upper triangular matrices R̃k = Q̃∗

k(In + REkR−1)
converge to the unitary matrix Q̃∗, which is also triangular (as a limit of
triangular matrices), hence it is diagonal (see the proof of Theorem 2.5.1),
and its diagonal entries are ±1.

Using these two remarks, we can pass to the limit in (10.15):

lim
k→+∞

(Ak+1)i,j = ±(RDR−1)i,j ,

which is equal to zero for i > j, and

lim
k→+∞

(Ak+1)i,i = (RDR−1)i,i = Di,i = λn+1−i,

because of Lemma 2.2.5 on the product and inverse of upper triangular ma-
trices (R is indeed upper triangular). In other words, the limit of Ak is upper
triangular with the eigenvalues of A on its diagonal. �

Remark 10.6.2. For a symmetric matrix A, the matrices Ak are symmetric too,
by virtue of (10.9). From Theorem 10.6.1 we thus deduce that the limit of Ak

is a diagonal matrix D. Since the sequence (Q(k))k is bounded (‖Q(k)‖2 = 1),
up to a subsequence it converges to a unitary matrix Q(∞). Passing to the
limit in (10.9) yields D = [Q(∞)]tAQ(∞), which implies that Q(∞) is a matrix
of eigenvectors of A.

Let us now study some practical aspects of the QR method. The compu-
tation of Ak+1 from Ak requires the computation of a QR factorization and
a matrix multiplication. The QR factorization should be computed by the
Householder algorithm rather than by the Gram–Schmidt orthonormalization
process (see Remark 7.3.3). A priori, the QR factorization of a matrix of order
n requires on the order of O(n3) operations. Such a complexity can be drasti-
cally reduced by first reducing the original matrix A to its upper Hessenberg
form. An upper Hessenberg matrix is an “almost” upper triangular matrix as
explained in the following definition.

Definition 10.6.2. An n × n matrix T is called an upper Hessenberg matrix
if Ti,j = 0, for all integers (i, j) such that i > j + 1.

We admit the two following results (see [3], [7], [13], and [15] if necessary).
The first one explains how to compute the upper Hessenberg form of a matrix
(it is very similar to Proposition 10.5.1).

Proposition 10.6.1. For any n × n matrix A, there exists a unitary matrix
P , the product of n − 2 Householder matrices H1, . . . , Hn−2, such that the
matrix P ∗AP is an upper Hessenberg matrix.
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Note that the Hessenberg transformation A → P ∗AP preserves the spectrum
and the symmetry: if A is symmetric, so is P ∗AP . Hence the latter matrix is
tridiagonal (in which case Proposition 10.6.1 reduces to Proposition 10.5.1)
and the Givens algorithm is an efficient way to compute its spectrum. The
cost of the Hessenberg transformation is O(n3), but it is done only once before
starting the iterations of the QR method.

The second admitted result states that the structure of Hessenberg matri-
ces is preserved during the iterations of the QR method.

Proposition 10.6.2. If A is an upper Hessenberg matrix, then the matrices
(Ak)k≥1, defined by the QR method, are upper Hessenberg matrices too.

The main practical interest of the upper Hessenberg form is that the QR
factorization now requires only on the order of O(n2) operations, instead of
O(n3) for a full matrix.

In order to implement the QR method, we have to define a termination
criterion. A simple one consists in checking that the entries (Ak)i,i−1 are very
small (recall that the sequence Ak is upper Hessenberg). We proceed as follows:
if (Ak)n,n−1 is small, then (Ak)n,n is considered as a good approximation of
an eigenvalue of A (more precisely, of the smallest one λ1 according to Remark
10.6.1) and the algorithm continues with the (n−1)× (n−1) matrix obtained
from Ak by removing the last row and column n. This is the so-called deflation
algorithm. Actually, it can be proved that

(Ak)n,n−1 = O
(∣∣∣∣λ1

λ2

∣∣∣∣
k
)

, (10.16)

which defines the speed of convergence of the QR method.
According to formula (10.16) for the speed of convergence, it is possible

(and highly desirable) to speed up the QR algorithm by applying it to the
“shifted” matrix A−σIn instead of A. The spectrum of A is simply recovered
by adding σ to the eigenvalues of A − σIn. Of course σ is chosen in such a
way that

O
(∣∣∣∣λ1 − σ

λ2 − σ

∣∣∣∣
k
)

� O
(∣∣∣∣λ1

λ2

∣∣∣∣
k
)

,

i.e., σ is a good approximation of the simple real eigenvalue λ1. More precisely,
the QR algorithm is modified as follows;

1. compute the QR factorization of the matrix Ak − σkIn:

Ak − σkIn = QkRk;

2. define Ak+1 = RkQk + σkIn = Q∗
kAkQk.

Here the value of the shift is updated at each iteration k. A simple and efficient
choice is
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Data: matrix A and integer N (maximal number of iterations)
Output: v a vector containing the eigenvalues of A

Initialization:
ε =, N =, define the error tolerance and total number of iterations
m = n, k = 1
a = hess(A). Compute the Hessenberg reduced form of A

Iterations
While k = 1, . . . , N and m > 1

If ‖am,m−1‖ < ε
v(m) = am,m

a(:, m) = [ ] delete column m of a
a(m, :) = [ ] delete row m of a
m = m − 1

End
compute (Q, R) the QR factorization of a
a = RQ
k = k + 1

End
v(1) = a(1, 1)

Algorithm 10.3: QR method.

σk = (Ak)n,n.

The case of real matrices with complex eigenvalues is more complicated (see,
e.g., [13] and [15]). Note that these matrices do not fulfill the requirement
(10.7) on the separation of the spectrum, since their complex eigenvalues
come in pairs with equal modulus.

10.7 Lanczos Method

The Lanczos method computes the eigenvalues of a real symmetric matrix
by using the notion of Krylov space, already introduced for the conjugate
gradient method.

In the sequel, we denote by A a real symmetric matrix of order n,
r0 ∈ R

n some given nonzero vector, and Kk the Krylov space spanned by
{r0, Ar0, . . . , A

kr0}. Recall that there exists an integer k0 ≤ n − 1, called the
Krylov critical dimension, which is characterized by dimKk = k+1 if k ≤ k0,
while Kk = Kk0 if k > k0.

The Lanczos algorithm builds a sequence of vectors (vj)1≤j≤k0+1 by the
following induction formula:

v0 = 0, v1 =
r0

‖r0‖
, (10.17)

and for 2 ≤ j ≤ k0 + 1,
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vj =
v̂j

‖v̂j‖
with v̂j = Avj−1 − 〈Avj−1, vj−1〉vj−1 − ‖v̂j−1‖vj−2. (10.18)

We introduce some notation: for all integer k ≤ k0 + 1, we define an n × k
matrix Vk whose columns are the vectors (v1, . . . , vk), as well as a tridiagonal
symmetric matrix Tk of order k whose entries are

(Tk)i,i = 〈Avi, vi〉, (Tk)i,i+1 = (Tk)i+1,i = ‖v̂i+1‖, (Tk)i,j = 0 if |i − j| ≥ 2.

The Lanczos induction (10.17)–(10.18) satisfies remarkable properties.

Lemma 10.7.1. The sequence (vj)1≤j≤k0+1 is well defined by (10.18), since
‖v̂j‖ 	= 0 for all 1 ≤ j ≤ k0 + 1, whereas v̂k0+2 = 0. For 1 ≤ k ≤ k0 + 1,
the family (v1, . . . , vk+1) coincides with the orthonormal basis of Kk built by
application of the Gram–Schmidt procedure to the family (r0, Ar0, . . . , A

kr0).
Furthermore, for 1 ≤ k ≤ k0 + 1, we have

AVk = VkTk + v̂k+1e
t
k, (10.19)

where ek is the kth vector of the canonical basis of R
k,

V t
k AVk = Tk, and V t

k Vk = Ik, (10.20)

where Ik is the identity matrix of order k.

Remark 10.7.1. Beware that the square matrices A and Tk are of different
sizes, and the matrix Vk is rectangular, so it is not unitary (except if k = n).

Proof. Let us forget for the moment the definition (10.17)–(10.18) of the
sequence (vj) and substitute it with the new definition (which we will show
to be equivalent to (10.18)) v0 = 0, v1 = r0

‖r0‖ , and for j ≥ 2,

vj =
v̂j

‖v̂j‖
, where v̂j = Avj−1 −

j−1∑
i=1

〈Avj−1, vi〉vi. (10.21)

Of course, (10.21) is meaningless unless ‖v̂j‖ 	= 0. If ‖v̂j‖ = 0, we shall say
that the algorithm stops at index j. By definition, vj is orthogonal to all vi for
1 ≤ i ≤ j − 1. By induction we easily check that vj ∈ Kj−1. The sequence of
Krylov spaces Kj is strictly increasing for j ≤ k0 + 1, that is, Kj−1 ⊂ Kj and
dim Kj−1 = j − 1 < dim Kj = j. Therefore, as long as the algorithm has not
stopped (i.e., ‖v̂j‖ 	= 0), the vectors (v1, . . . , vj) form an orthonormal basis of
Kj−1. Consequently, vj , being orthogonal to (v1, . . . , vj−1), is also orthogonal
to Kj−2. Hence, according to the uniqueness result of Lemma 9.5.1, we have
just proved that the family (v1, . . . , vj), defined by (10.21), coincides with
the orthonormal basis of Kj−1 built by the Gram–Schmidt procedure applied
to the family (r0, Ar0, . . . , A

j−1r0). In particular, this proves that the only
possibility for the algorithm to stop is that the family (r0, Ar0, . . . , A

j−1r0) is
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linearly dependent, i.e., that j−1 is larger than the Krylov critical dimension
k0. Hence, ‖v̂j‖ 	= 0 as long as j ≤ k0 + 1, and v̂k0+2 = 0.

Now, let us show that definitions (10.18) and (10.21) of the sequence (vj)
are identical. Since A is symmetric, we have

〈Avj−1, vi〉 = 〈vj−1, Avi〉 = 〈vj−1, v̂i+1〉 +
i∑

k=1

〈Avi, vk〉〈vj−1, vk〉.

Thanks to the orthogonality properties of (vk), we deduce that 〈Avj−1, vi〉 = 0
if 1 ≤ i ≤ j − 3 and 〈Avj−1, vj−2〉 = ‖v̂j−1‖. Therefore, definitions (10.18)
and (10.21) coincide.

Finally, the matrix equality (10.19), taken column by column, is nothing
else than (10.18) rewritten, for 2 ≤ j ≤ k,

Avj−1 = ‖v̂j‖vj + 〈Avj−1, vj−1〉vj−1 + ‖v̂j−1‖vj−2,

and
Avk = v̂k+1 + 〈Avk, vk〉vk + ‖v̂k‖vk−1.

The property that V t
k Vk = Ik is due to the orthonormality properties of

(v1, . . . , vk), whereas the relation V t
k AVk = Tk is obtained by multiplying

(10.19) on the left by V t
k and taking into account that V t

k v̂k+1 = 0. �

Remark 10.7.2. The computational cost of the Lanczos algorithm (10.18)
is obviously much less than that of the Gram–Schmidt algorithm applied
to the family (r0, Ar0, . . . , A

kr0), which yields the same result. The point is
that the sum in (10.18) contains only two terms, while the corresponding sum
in the Gram–Schmidt algorithm contains all previous terms (see Theorem
2.1.1). When the Krylov critical dimension is maximal, i.e., k0 = n − 1, rela-
tion (10.19) or (10.20) for k = k0 + 1 shows that the matrices A and Tk0+1

are similar (since Vk0+1 is a square nonsingular matrix if k0 = n−1). In other
words, the Lanczos algorithm can be seen as a tridiagonal reduction method,
like the Householder algorithm of Section 10.5. Nevertheless, the Lanczos al-
gorithm is not used in practice as a tridiagonalization method. In effect, for
n large, the rounding errors partially destroy the orthogonality of the last
vectors vj with respect to the first ones (a shortcoming already observed for
the Gram–Schmidt algorithm).

We now compare the eigenvalues and eigenvectors of A and Tk0+1. Let us
recall right away that these matrices are usually not of the same size (except
when k0 + 1 = n). Consider λ1 < λ2 < · · · < λm, the distinct eigenvalues of
A (with 1 ≤ m ≤ n), and P1, . . . , Pm, the orthogonal projection matrices on
the corresponding eigensubspaces of A. We recall that

A =
m∑

i=1

λiPi, I =
m∑

i=1

Pi, and PiPj = 0 if i 	= j. (10.22)
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Lemma 10.7.2. The eigenvalues of Tk0+1 are simple and are eigenvalues of
A too. Conversely, if r0 satisfies Pir0 	= 0 for all 1 ≤ i ≤ m, then k0 +1 = m,
and all eigenvalues of A are also eigenvalues of Tk0+1.

Remark 10.7.3. When Pir0 	= 0 for all i, A and Tk0+1 have exactly the same
eigenvalues, albeit with possibly different multiplicities. The condition im-
posed on r0 for the converse part of this lemma is indeed necessary. Indeed,
if r0 is an eigenvector of A, then k0 = 0 and the matrix Tk0+1 has a unique
eigenvalue, the one associated with r0.

Proof of Lemma 10.7.2. Let λ and y ∈ R
k0+1 be an eigenvalue and eigenvec-

tor of Tk0+1, i.e., Tk0+1y = λy. Since v̂k0+2 = 0, (10.19) becomes for k = k0+1

AVk0+1 = Vk0+1Tk0+1.

Multiplication by the vector y yields A (Vk0+1y) = λ (Vk0+1y) . The vector
Vk0+1y is nonzero, since y 	= 0 and the columns of Vk0+1 are linearly in-
dependent. Consequently, Vk0+1y is an eigenvector of A associated with the
eigenvalue λ, which is therefore an eigenvalue of A too.

Conversely, we introduce a vector subspace Em of R
n, spanned by the

vectors (P1r0, . . . , Pmr0), which are assumed to be nonzero, Pir0 	= 0, for all
1 ≤ i ≤ m. These vectors are linearly independent, since projections on Pi

are mutually orthogonal. Accordingly, the dimension of Em is exactly m. Let
us show under this assumption that m = k0 + 1. By (10.22) we have

Akr0 =
m∑

i=1

λk
i Pir0,

i.e., Akr0 ∈ Em. Hence the Krylov spaces satisfy Kk ⊂ Em for all k ≥ 0. In
particular, this implies that dimKk0 = k0 + 1 ≤ m. On the other hand, in
the basis (P1r0, . . . , Pmr0) of Em, the coordinates of Akr0 are (λk

1 , . . . , λk
m).

Writing the coordinates of the family (r0, Ar0, . . . , A
m−1r0) in the basis

(P1r0, . . . , Pmr0) yields a matrix representation M :

M =

⎛
⎜⎝

1 λ1 λ2
1 . . . λm−1

1
...

...
1 λm λ2

m . . . λm−1
m

⎞
⎟⎠ ,

which is just a Vandermonde matrix of order m. It is nonsingular, since

det (M) =
m−1∏
i=1

∏
j>i

(λj − λi)

and the eigenvalues λi are distinct. As a result, the family (r0, Ar0, . . . , A
m−1r0)

is linearly independent, which implies that dimKm−1 = m, and accordingly
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m − 1 ≤ k0. We thus conclude that m = k0 + 1 and Em = Kk0 . On the other
hand, multiplying (10.22) by Pir0 yields

A(Pir0) = λi(Pir0).

Since Pir0 is nonzero, it is indeed an eigenvector of A associated with the
eigenvalue λi. Because Em = Kk0 and the columns of Vk0+1 are a basis of
Kk0 , we deduce the existence of a nonzero vector yi ∈ R

m such that

Pir0 = Vk0+1yi.

We multiply the first equality of (10.20) by yi to obtain

Tk0+1yi = V t
k0+1AVk0+1yi = V t

k0+1APir0

= λiV
t
k0+1Pir0 = λiV

t
k0+1Vk0+1yi = λiyi,

which proves that yi is an eigenvector of Tk0+1 for the eigenvalue λi. �
In view of Lemma 10.7.2 one may believe that the Lanczos algorithm has

to be carried up to the maximal iteration number k0 + 1, before computing
the eigenvalues of Tk0+1 in order to deduce the eigenvalues of A. Such a
practice makes the Lanczos method comparable to the Givens–Householder
algorithm, since usually k0 is of order n. Moreover, if n or k0 is large, the
Lanczos algorithm will be numerically unstable because of orthogonality losses
for the vectors vj (caused by unavoidable rounding errors; see Remark 10.7.2).
However, as for the conjugate gradient method, it is not necessary to perform
as many iterations as k0 + 1 to obtain good approximate results. Indeed, in
numerical practice one usually stops the algorithm after k iterations (with
k much smaller than k0 or n) and computes the eigenvalues of Tk, which
turn out to be good approximations of those of A, according to the following
lemma.

Lemma 10.7.3. Fix the iteration number 1 ≤ k ≤ k0 +1. For any eigenvalue
λ of Tk, there exists an eigenvalue λi of A satisfying

|λ − λi| ≤ ‖v̂k+1‖. (10.23)

Furthermore, if y ∈ R
k is a nonzero eigenvector of Tk associated to the eigen-

value λ, then there exists an eigenvalue λi of A such that

|λ − λi| ≤ ‖v̂k+1‖
|〈ek, y〉|
‖y‖ , (10.24)

where ek is the kth vector of the canonical basis of R
k.

Remark 10.7.4. The first conclusion (10.23) of Lemma 10.7.3 states that the
eigenvalues of Tk are good approximations of some eigenvalues of A, provided
that ‖v̂k+1‖ is small. The second conclusion (10.24) is the most valuable one:
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if the last entry of y is small, then λ is a good approximation of an eigenvalue
of A even if ‖v̂k+1‖ is not small. In practice, we test the magnitude of the last
entry of an eigenvector of Tk to know whether the corresponding eigenvalue
is a good approximation of an eigenvalue of A. For details of the numerical
implementation of this method we refer to more advanced monographs, e.g.,
[2]. The Lanczos method is very efficient for large n, since it gives good results
for a total number of iterations k much smaller than n, and it is at the root
of many fruitful generalizations.

Proof of Lemma 10.7.3. Consider a nonzero eigenvector y ∈ R
k such that

Tky = λy. Multiplying (10.19) by y, we get

AVky = VkTky + 〈ek, y〉v̂k+1,

from which we deduce

A(Vky) − λ(Vky) = 〈ek, y〉v̂k+1. (10.25)

Then, we expand Vky in the eigenvectors basis of A, Vky =
∑m

i=1 Pi(Vky).
Taking the scalar product of (10.25) with Vky, and using relations (10.22)
leads to

m∑
i=1

(λi − λ) |Pi(Vky)|2 = 〈ek, y〉 〈v̂k+1, Vky〉. (10.26)

Applying the Cauchy–Schwarz inequality to the right-hand side of (10.26)
yields

min
1≤i≤m

|λi − λ| ‖Vky‖2 ≤ ‖y‖ ‖v̂k+1‖ ‖Vky‖. (10.27)

Since the columns of Vk are orthonormal, we have ‖Vky‖ = ‖y‖, and simplify-
ing (10.27), we obtain the first result (10.23). This conclusion can be improved
if we do not apply Cauchy–Schwarz to the term 〈ek, y〉 in (10.26). In this case,
we directly obtain (10.24). �

10.8 Exercises

10.1. What is the spectrum of the following bidiagonal matrix (called a
Wilkinson matrix)?

W (n) =

⎛
⎜⎜⎜⎜⎜⎝

n n 0 . . . 0

0 n − 1 n 0
...

...
. . . . . .

...
... 2 n
0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

∈ Mn(R).

For n = 20, compare (using Matlab) the spectrum of W (n) with that of the
matrix W̃ (n) obtained from W (n) by modifying the single entry in row n and
column 1, W̃ (n, 1) = 10−10. Comment.
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10.2. Define

A =

⎛
⎝7.94 5.61 4.29

5.61 −3.28 −2.97
4.29 −2.97 −2.62

⎞
⎠ , T =

⎛
⎝ 1 1 1

1 0 1
0 0 1

⎞
⎠ , and b =

⎛
⎝1

1
1

⎞
⎠ .

1. Compute the spectrum of A and the solution x of Ax = b.
2. Define A1 = A + 0.01T . Compute the spectrum of A1 and the solution x1

of A1x = b.
3. Explain the results.

10.3. The goal of this exercise is to study the notion of left eigenvectors for a
matrix A ∈ Mn(C).

1. Prove the equivalence λ ∈ σ(A) ⇐⇒ λ̄ ∈ σ(A∗).
2. Let λ ∈ σ(A) be an eigenvalue of A. Show that there exists (at least) one

nonzero vector y ∈ C
n such that y∗A = λy∗. Such a vector is called a left

eigenvector of A associated with the eigenvalue λ.
3. Prove that the left eigenvectors of a Hermitian matrix are eigenvectors.
4. Let λ and µ be two distinct eigenvalues of A. Show that all left eigenvectors

associated with λ are orthogonal to all left eigenvectors associated with
µ.

5. Use Matlab to compute the left eigenvectors of the matrix

A =

⎛
⎜⎜⎝

1 −2 −2 −2
−4 0 −2 −4
1 2 4 2
3 1 1 5

⎞
⎟⎟⎠ .

10.4. Let A ∈ Mn(C) be a diagonalizable matrix, i.e., there exists an invert-
ible matrix P such that P−1AP = diag (λ1, . . . , λn), where the λi are the
eigenvalues of A. Denote by xi an eigenvector associated to λi, and yi a left
eigenvector associated to λi (see Exercise 10.3).

1. Define Q∗ = P−1. Prove that the columns of Q are left eigenvectors of
the matrix A.

2. Deduce that if the eigenvalue λi is simple, then y∗
i xi 	= 0.

10.5. We study the conditioning of an eigenvalue.

1. Define a matrix

A =

⎛
⎝ −97 100 98

1 2 −1
−100 100 101

⎞
⎠ .

Determine the spectrum of A. We define random perturbations of the
matrix A by the command B=A+0.01*rand(3,3). Determine the spectra
of B for several realizations. Which eigenvalues of A have been modified
the most, and which ones have been the least?
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2. The goal is now to understand why some eigenvalues are more sensitive
than others to variations of the matrix entries. Let λ0 be a simple eigen-
value of a diagonalizable matrix A0. We denote by x0 (respectively, y0) an
eigenvector (respectively, a left eigenvector) associated to λ0 (we assume
that ‖x0‖2 = ‖y0‖2 = 1). For ε small, we define the matrix Aε = A0 +εE,
where E is some given matrix such that ‖E‖2 = 1. We define λε to be
an eigenvalue of Aε that is the closest to λ0 (it is well defined for ε small
enough), and let xε be an eigenvector of Aε associated to λε.
(a) Show that the mapping ε �→ λε is continuous and that limε→0 λε = λ0.

We admit that limε→0 xε = x0.
(b) We denote by δλ = λε − λ0 the variation of λ, and by δx = xε − x0

the variation of x. Prove that A0(δx) + εExε = (δλ)xε + λ0(δx).
(c) Deduce that the mapping λ : ε �→ λε is differentiable and that

λ′(0) =
y∗
0Ex0

y∗
0x0

.

(d) Explain why cond(A, λ0) = 1/|y∗
0x0| is called “conditioning of the

eigenvalue λ0.”
3. Compute the conditioning of each eigenvalue of the matrix A. Explain the

results observed in question 1.

10.6 (∗). Write a function [l,u]=PowerD(A) that computes by the power
method (Algorithm 10.1) the approximations l and u of the largest eigenvalue
(in modulus) and corresponding eigenvector of A. Initialize the algorithm with
a unit vector x0 with equal entries. Test the program with each of the following
symmetric matrices and comment the obtained results.

A =

(
2 2 1 0
2 0 0 0
1 0 0 2
0 0 2 −2

)
, B =

(
15 0 9 0
0 24 0 0
9 0 15 0
0 0 0 16

)
, C =

(
1 2 −3 4
2 1 4 −3
−3 4 1 2
4 −3 2 1

)
.

10.7. Compute by the power method and the deflation technique (see Remark
10.3.3) the two largest (in modulus) eigenvalues of the following matrix

A =

⎛
⎜⎜⎜⎜⎝

2 1 2 2 2
1 2 1 2 2
2 1 2 1 2
2 2 1 2 1
2 2 2 1 2

⎞
⎟⎟⎟⎟⎠ .

Modify the function PowerD into a function l=PowerDef(A,u), where the
iteration vector xk is orthogonal to a given vector u.

10.8. Program a function [l,u]=PowerI(A) that implements the inverse
power method (Algorithm 10.2) to compute approximations, l and u, of the
smallest eigenvalue (in modulus) of A and its associated eigenvector. Test the
program on the matrices defined by A=Laplacian1dD(n), for different values
of n.



222 10 Methods for Computing Eigenvalues

10.9. Program a function T=HouseholderTri(A) that implements the House-
holder algorithm to reduce a symmetric matrix A to a tridiagonal matrix T
(following the proof of Proposition 10.5.1). Check with various examples that

• the matrix T is tridiagonal (write a function for this purpose);
• the spectra of the matrices A and T are the same.

10.10. Program a function Givens(T,i) that computes the eigenvalue λi

(labeled in increasing order) of a symmetric tridiagonal matrix T using the
Givens method. Test the program by computing the eigenvalues of matrices
obtained by the instructions

u=rand(n,1);v=rand(n-1,1);T=diag(u)+diag(v,1)+diag(v,-1)
for various values of n.

10.11. By gathering the routines of the two previous exercises, program the
Givens–Householder algorithm to compute the eigenvalues of a real symmetric
matrix. Run this program to obtain the eigenvalues of the matrix A defined
in Exercise 10.7.

10.12. The goal is to numerically compute the eigenvalues of the matrix

A =

⎛
⎜⎜⎜⎝

5 3 4 3 3
3 5 2 3 3
4 2 4 2 4
3 3 2 5 3
3 3 4 3 5

⎞
⎟⎟⎟⎠

by the Lanczos method. The notation is that of Lemma 10.7.1.

1. Let r0 = (1, 2, 3, 4, 5)t. Compute the sequence of vectors vj . Deduce k0,
the critical dimension of the Krylov space associated with A and r0.

2. For k = k0 + 1, compute the matrix Tk, as well as its eigenvalues and
eigenvectors. Which eigenvalues of A do you find in the spectrum of T?

3. Answer the same questions for r0 = (1, 1, 1, 1, 1)t, then for
r0 = (1,−1, 0, 1,−1)t.

10.13. Let A=Laplacian2dD(n) be the matrix of the discretized Laplacian on
an n×n square mesh of the unit square; see Exercise 6.7. The notation is that
of the previous exercise. We fix n = 7.

1. Starting with r0 = (1, . . . , 1)t ∈ R
n2

, compute the matrix Tn. Plot the
eigenvalues of A (by a symbol) and those of Tn (by another symbol) on
the same graph. Are the eigenvalues of Tn good approximations of some
eigenvalues of A?

2. Same questions starting with the vector r0 = (1, 2, . . . , n2)t. Comment on
your observations.
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Solutions and Programs

11.1 Exercises of Chapter 2

Solution of Exercise 2.1

1. u is the ith vector of the canonical basis of R
n.

2. The scalar product 〈v, u〉 = utv is computed by u’*v (or by the Matlab
function dot).

>> n=10;u=rand(n,1);v=rand(n,1);
>> w=v-u’*v*u/(u’*u);
>> fprintf(’ the scalar product <w,u> = %f \n’,u’*w)
the scalar product <w,u> = 0.000000

The two vectors are orthogonal. We recognize the Gram–Schmidt ortho-
normalization process applied to (u, v).

3. The scalar product 〈Cx, x〉 = xtCx is computed by the Matlab instruc-
tion x’*C*x.
(a) The matrix C being antisymmetric, i.e., Ct = −C, we have

〈Cx, x〉 = 〈x,Ctx〉 = −〈x,Cx〉 = −〈Cx, x〉 =⇒ 〈Cx, x〉 = 0.

(b) Since A = B + C, we have 〈Ax, x〉 = 〈Bx, x〉. The matrix B is called
the symmetric part of A, and the matrix C its antisymmetric (or
skew-symmetric) part.

Solution of Exercise 2.2 The following functions are possible (nonunique)
solutions.

1. function A=SymmetricMat(n)
A=rand(n,n);
A=A+A’;

2. function A=NonsingularMat(n)
A=rand(n,n);
A=A+norm(A,’inf’); % make the diagonal of A dominant
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3. function A=LowNonsingularMat(n)
A=tril(rand(n,n));
A=A+norm(A,’inf’)*eye(size(A));% make the diagonal of A dominant

4. function A=UpNonsingularMat(n)
A=triu(rand(n,n));
A=A+norm(A,’inf’)*eye(size(A));% make the diagonal of A dominant

5. function A=ChanceMat(m,n,p)
%nargin = number of input arguments of the function
switch nargin % arguments of the function

case 1
m=n;A=rand(m,n); % The entries of A

case 2 % take values
A=rand(m,n); % between 0 and 1

else
A=rand(m,n);A=p*(2*A-1); % affine transformation

end;

We may call this function with 1, 2 or 3 arguments.
6. function A=BinChanceMat(m,n)

A=rand(m,n);
A(A<0.5)=0;A(A>=0.5)=1;

7. function H = HilbertMat(n,m)
% this function returns a Hilbert matrix
%nargin = number of input arguments of the function
if nargin==1, m=n; end;
H=zeros(n,m);
for i=1:n

for j=1:m
H(i,j)=1/(i+j-1);

end;
end;

For square Hilbert matrices, use the Matlab function hilb.

Solution of Exercise 2.7 Matrix of fixed rank.

function A= MatRank(m,n,r)
s=min(m,n);S=max(m,n);
if r>min(m,n)

fprintf(’The rank cannot be greater than %i ’,s)
error(’Error in function MatRank.’)

else
A=NonsingularMat(s);
if m>=n

A=[A; ones(S-s,s)]; % m × n matrix of rank r
for k=r+1:s,A(:,k)=rand()*A(:,r);end;

else
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A=[A ones(s,S-s)]; % m × n matrix of rank r
for k=r+1:s,A(k,:)=rand()*A(r,:);end;

end;
end

Solution of Exercise 2.10 The Gram–Schmidt algorithm.

1. To determine the vector up, we compute (p−1) scalar products of vectors
of size m and (p − 1) multiplications of a scalar by a vector (we do not
take into account the test if), that is, 2m(p − 1) operations. The total
number of operations is then

∑n
p=1 2m(p − 1) ≈ mn2.

2. function B = GramSchmidt(A)
pres=1.e-12;
[m,n]=size(A);
B=zeros(m,n);
for i=1:n

s=zeros(m,1);
for k=1:i-1

s=s+(A(:,i)’*B(:,k))*B(:,k);
end;
s=A(:,i)-s;
if norm(s) > pres

B(:,i) =s/norm(s);
end;

end;

For the matrix defined by

>> n=5;u=1:n; u=u’; c2=cos(2*u); c=cos(u); s=sin(u);
>> A=[u c2 ones(n,1) rand()*c.*c exp(u) s.*s];

we get

>> U=GramSchmidt(A)
U =

0.1348 -0.2471 0.7456 0 0.4173 0
0.2697 -0.3683 0.4490 0 -0.4791 0
0.4045 0.8167 0.2561 0 0.1772 0
0.5394 0.0831 -0.0891 0 -0.5860 0
0.6742 -0.3598 -0.4111 0 0.4707 0

(a) We have
>> U’*U
ans =

1.0000 0.0000 0.0000 0 0.0000 0
0.0000 1.0000 -0.0000 0 -0.0000 0
0.0000 -0.0000 1.0000 0 -0.0000 0

0 0 0 0 0 0
0.0000 -0.0000 -0.0000 0 1.0000 0
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0 0 0 0 0 0
Explanation: the (nonzero) columns of U being orthonormal, it is clear
that (U tU)i,j = 〈ui, uj〉 = δi,j if ui and uj are nonzero. If one of the
vectors is zero, then (U tU)i,j = 0. The situation is different for UU t:
>> U*U’
ans =

0.8092 0.2622 0.1175 -0.2587 0.0697
0.2622 0.6395 -0.1616 0.3556 -0.0958
0.1175 -0.1616 0.9276 0.1594 -0.0430
-0.2587 0.3556 0.1594 0.6491 0.0945
0.0697 -0.0958 -0.0430 0.0945 0.9745

Note: If all columns of U are orthonormal, then U is nonsingular and
U t = U−1. In this case, we also obtain UU t = I (U is an orthogonal
matrix).

(b) The algorithm is stable in the sense that applied to an orthogonal
matrix U , it provides the same matrix, up to a small remainder term.
>> V=GramSchmidt(U);norm(V-U)
ans =

7.8400e-16

3. The following function answers the question:

function B = GramSchmidt1(A)
pres=1.e-12;
colnn=0; % points out the current nonzero column
[m,n]=size(A);
B=zeros(m,n);
for i=1:n

s=zeros(m,1);
for k=1:i-1 % we can describe k=1:colnn

s=s+(A(:,i)’*B(:,k))*B(:,k);
end;
s=A(:,i)-s;
if norm(s) > pres

colnn=colnn+1;
B(:,colnn) =s/norm(s);

end;
end;
>> W=GramSchmidt1(A)
W =

0.1348 -0.2471 0.7456 0.4173 0 0
0.2697 -0.3683 0.4490 -0.4791 0 0
0.4045 0.8167 0.2561 0.1772 0 0
0.5394 0.0831 -0.0891 -0.5860 0 0
0.6742 -0.3598 -0.4111 0.4707 0 0

Solution of Exercise 2.11 The modified Gram–Schmidt algorithm.
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1. For p = 1 ↗ n
If ‖ap‖ 	= 0 then

up = ap/‖ap‖
Otherwise

up = 0
End
For k = p + 1 ↗ n

ak = ak − 〈ak, up〉up

End
End

Modified Gram-Schmidt algorithm

Note that both algorithms have the same algorithmic complexity. Here is
a Matlab programming of the modified Gram–Schmidt algorithm.

function B = MGramSchmidt(A)
pres=1.e-12;
[m,n]=size(A);
B=zeros(m,n);
for i=1:n

s=A(:,i);
if norm(s) > pres

B(:,i) =s/norm(s);
for k=i+1:n

A(:,k)=A(:,k)-(A(:,k)’*B(:,i))*B(:,i);
end;

else
error(’linearly dependent vectors’)

end;
end;

2. Comparison of the two algorithms. For a randomly chosen matrix (rand),
we do not observe a noteworthy difference between the two algorithms.
For a Hilbert matrix, we get

>> n=10;A=hilb(n);
>> U=GramSchmidt1(A);V=MGramSchmidt(A);I=eye(n,n);
>> norm(U’*U-I), norm(V’*V-I)
ans =

2.9969
ans =

2.3033e-04

We remark on this example that the modified Gram–Schmidt algorithm
is more accurate than the standard Gram–Schmidt algorithm.

3. We improve the Gram–Schmidt algorithm by iterating it several times:
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>> U=GramSchmidt1(A);norm(U’*U-I)
ans =

2.9969
>> U=GramSchmidt1(U);norm(U’*U-I)
ans =

1.3377e-07
>> U=GramSchmidt1(U);norm(U’*U-I)
ans =

3.4155e-16

Solution of Exercise 2.12 Warning: the running times obtained depend on
what computer is used. However, their ordering on each computer is always
the same.

>> t1,t2
t1 =

1.6910
t2 =

0.7932

Explanation: it is clearly more efficient to declare beforehand the (large-sized)
matrices by initializing them. This prevents Matlab from resizing the matrix
at each creation of a new entry Ai,j .

>> t2,t3
t2 =

0.7932
t3 =

0.7887

Explanation: since matrices being stored column by column, it is slightly
better to “span” a matrix in this order and not row by row, since the entries
Ai,j and Ai+1,j are stored in neighboring “slots” in the computer’s memory
(for 1 ≤ i ≤ n − 1)). In this way, we reduce the access time to these slots.

>> t3,t4
t3 =

0.7887
t4 =

0.0097

Explanation: a tremendous speedup is obtained by using a “vectorizable”
definition of the matrices. Efficient Matlab programs will always be written
this way.

Solution of Exercise 2.18 The following script produces Figure 11.1.

>> A=[10 2; 2 4];
>> t=0:0.1:2*pi;x=cos(t)’;y=sin(t)’;
>> x=[x;x(1)];y=[y;y(1)];
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>> for i=1:length(x)
>> z(i)=[x(i),y(i)]*A*[x(i);y(i)];
>> end;
>>plot3(x,y,z,x,y,zeros(size(x)),’MarkerSize’,10,’LineWidth’,3);

box
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Fig. 11.1. Computation of the Rayleigh quotient on the unit circle.

We deduce from Figure 11.1 that the minimal value is close to 3.4 and the
maximal value is close to 10.6. The spectrum of A is

>> eig(A)
ans =

3.3944
10.6056

The eigenvalues are therefore very close to the minimal and maximal values
of xtAx on the unit circle. Since A is symmetric, we know from Theorem 2.6.1
and Remark 2.6.1 that the minimum of the Rayleigh quotient is equal to the
minimal eigenvalue of A and its maximum is equal to the maximal eigenvalue
of A.

Solution of Exercise 2.20 Let us comment on the main instructions in the
definition of A:
A=PdSMat(n) % symmetric matrix
[P,D]=eig(A);D=abs(D); % diagonalization: PDP−1 = A
D=D+norm(D)*eye(size(D)) % the eigenvalues of D are > 0
A=P*D*inv(P) % positive definite symmetric matrix

1. We always have det (A) > 0, because the determinant of a matrix is equal
to the product of its eigenvalues, which are positive here.
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2. We easily check that all the main subdeterminants are strictly positive.
For x ∈ C

k a nonzero vector, we denote by x̃ the vector in C
n obtained

by adding n − k zero entries to x. We have

xtAkx = x̃tAx̃ > 0,

since A is positive definite on R
n.

3. The spectrum of Ak is not (always) included in that of A, as illustrated
by the following example:

>> n=5;A=PdSMat(n);Ak=A(1:3,1:3);
>> eig(A)
ans =

10.7565
5.5563
6.6192
6.0613
6.2220

>> eig(Ak)
ans =

9.0230
5.6343
6.1977

Solution of Exercise 2.23 We fix n = 5. For A=rand(n,n), we have the
following results:

1. >> sp=eig(A)
sp =

2.7208
-0.5774 + 0.1228i
-0.5774 - 0.1228i
0.3839 + 0.1570i
0.3839 - 0.1570i

2. The command sum(abs(X),2) returns a column vector whose entry 
 is
equal to the sum of the entries of row 
 of matrix X.
(a) >> Gamma=sum(abs(A),2)-diag(abs(A))

Gamma =
2.5085
3.5037
1.2874
1.8653
2.1864

(b) n=length(sp);
for lambda=sp
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ItIsTrue=0;
for k=1:n % = length(Gamma)

if abs(lambda-A(k,k))<=Gamma(k)
ItIsTrue=1;break;

end;
end;
if ~ItIsTrue

fprintf(’Error with the eigenvalue %f\n’,lambda);
end;

end;

Thus the spectrum seems to be included in the union of the Gershgorin
disks.

(c) We prove the previous remark, known as the Gershgorin–Hadamard
theorem. Let λ ∈ σ(A) be an eigenvalue of matrix A and u(	= 0) ∈ R

n

a corresponding eigenvector. We have

(λ − ai,i)ui =
∑
j �=i

ai,juj .

In particular, if i is such that |ui| = maxj |uj |, we have

|(λ − ai,i)ui| ≤
∑

j �=i |ai,j | |uj |,
|λ − ai,i| ≤

∑
j �=i |ai,j | |uj |

|ui| ,

|λ − ai,i| ≤
∑

j �=i |ai,j | = γi.

We deduce that any λ ∈ σ(A) belongs to at least one disk Di, and so
σ(A) ⊂

⋃n
i=1 Di.

3. (a) function A=DiagDomMat(n,dom)
% returns a square strictly diagonally dominant matrix
% dom determines the extent of the dominance of the diagonal
A=rand(n,n);
%nargin = number of input arguments of the function
if nargin==1 dom=1, end; % default value
A=A-diag(diag(A));
A=A+diag(sum(abs(A),2))+dom*eye(size(A))

(b) We note that the matrix A=DiagDomMat(n) is always nonsingular.
(c) Assume that A is singular. Then 0 is an eigenvalue of A, and by the

previous calculation, there would exist an index i such that 0 ∈ Di,
i.e.,

|ai,i| ≤
∑
j �=i

|ai,j | = γi,

which contradicts the fact that matrix A is diagonally dominant. Thus
A is nonsingular.
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4. function PlotGersh(a)
% plots the Gershgorin-Hadamard circles
[m,n]=size(a);
if m~=n, error(’the matrix is not square’), end;
d=diag(a);
radii=sum(abs(a),2);
radii=radii-abs(d);
% define a large rectangle containing all the circles
% determine the ‘‘lower-left’’ corner
cornerx=real(diag(a))-radii;cornery=imag(diag(a))-radii;
mx=min(cornerx);my=min(cornery);mx=round(mx-1);my=round(my-1);
% we determine the ‘‘upper-right’’ corners
cornerx=real(diag(a))+radii;cornery=imag(diag(a))+radii;
Mx=max(cornerx);My=max(cornery);Mx=round(Mx+1);My=round(My+1);
% specify eigenvalues by symbol +
eigA=eig(a);
plot(real(eigA),imag(eigA),’+’,’MarkerSize’,10,’LineWidth’,3)
axis([mx Mx my My]);
set(gca,’XTick’,-5:2:10,’YTick’,-5:2:5,’FontSize’,24);
grid on;
%
Theta = linspace(0,2*pi);
for i=1:n

X=real(a(i,i))+radii(i)*cos(Theta);
Y=imag(a(i,i))+radii(i)*sin(Theta);
hold on;plot(X,Y) %circle i

end
The eigenvalues of A and At being the same, we have at our disposal
two bounds on the spectrum of A by applying the Gershgorin–Hadamard
theorem to both matrices. We display in Figure 11.2 the Gershgorin circles
of A (left) and those of At (right). Of course, we obtain a better bound
of the spectrum of A by superposing the two figures.
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Fig. 11.2. Gershgorin disks for a matrix (left) and its transpose (right).
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Solution of Exercise 2.29 Another definition of the pseudoinverse matrix.

1. >> m=10,n=7;A=MatRank(m,n,5);
>> % determination of P
>> X=orth(A’); % note: Im (At) = ( Ker A)⊥

>> P=X*X’;
2. >> X=orth(A); % image of A

>> Q=X*X’;
3. We note that

>> norm(pinv(A)*A-P)
ans =

2.7981e-14
>> norm(A*pinv(A)-Q)
ans =

1.5443e-14

Let us show that indeed P = A†A and Q = AA†.
(a) We first check that X = A†A is an orthogonal projection, i.e., that

X = X∗ and X2 = X. This is a consequence of the Moore–Penrose
relations
i. X∗ = (A†A)∗ = A†A = X,
ii. X2 = (A†A)(A†A) = (A†AA†)A = A†A = X.

To prove that P = A†A, it remains to show that Im X = (Ker A)⊥.
We know that (Ker A)⊥ = Im (A∗). Let us prove that Im X =
Im (A∗).
• For any y ∈ Im (A†A), there exists x ∈ C

n such that

y = A†Ax = (A†A)∗x = A∗(A†)∗x =⇒ y ∈ Im A∗.

• For any y ∈ Im (A∗), there exists x ∈ C
m such that y = A∗x

y = (AA†A)∗x = (A†A)∗A∗x = A†AA∗x =⇒ y ∈ Im (A†A).

(b) Similarly, we now check that Y = AA† is an orthogonal projection:
i. Y ∗ = (AA†)∗ = AA† = Y ,
ii. Y 2 = (AA†)(AA†) = (AA†A)A† = AA† = Y .

It remains to show that ImY = Im A.
• y ∈ Im (AA†) =⇒ ∃x ∈ C

m, y = AA†x =⇒ y ∈ Im A.
• y∈ Im A =⇒ ∃x∈ C

n,y = Ax = AA†Ax =⇒ y∈ Im (AA†).
4. First, there exists at least one x such that Ax = Qy, since Q = AA†,

and thus the existence of at least one x1 = Px is obvious. Let us prove
the uniqueness of x1. For x and x̃ in C

n such that Qy = Ax = Ax̃, since
P = A†A, we have

Ax = Ax̃ ⇐⇒ x − x̃ ∈ Ker A =⇒ x − x̃ ∈ Ker P ⇐⇒ Px = P x̃.

By definition, Ax = Qy = AA†y, and multiplying by A† and using the
relation A† = A†AA†, we deduce that A†Ax = A†y. Since A†A = P , we
conclude that A†y = Px = x1, which is the desired result.
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11.2 Exercises of Chapter 3

Solution of Exercise 3.3 We observe that all these norms coincide for
a diagonal matrix A, and are equal to maxi |ai,i|. Let us prove this result.
We start with the case p = ∞. Let x be such that ‖x‖∞ = 1 we have
‖Ax‖∞ = maxi |Ai,ixi|, so that ‖A‖∞ ≤ maxi |Ai,i|. Let I be an index for
which |AI,I | = maxi |Ai,i|. We have ‖AeI‖∞ = maxi |Ai,i|, which implies that
‖A‖∞ = maxi |Ai,i|.

For p ∈ [1,∞) and x such that ‖x‖p = 1, we have ‖Dx‖p
p =

∑
i |Di,ixi|p,

whence ‖Dx‖p
p ≤ (maxi |Di,i|p) ‖x‖p

p, and so ‖D‖p ≤ maxi |Di,i|. We end the
proof as in the case p = ∞.

Solution of Exercise 3.7

1. We recall the bounds

λmin‖x‖2
2 ≤ 〈Ax, x〉 ≤ λmax‖x‖2

2,

from which we easily infer the result.
2. Plot of SA for n = 2.

(a) 〈Ax, x〉=
〈

A
(

x1

px1

)
,
(

x1

px1

)〉
= |x1|2Ap setting Ap =

〈
A
( 1

p

)
,
( 1

p

)〉
.

Then, x = (x1, x2)t belongs to the intersection of Γp and SA if and
only if |x1| = 1/

√
Ap and x2 = p/

√
Ap.

(b) We rotate the half-line x2 = px1 around the origin and determine for
each value of p the intersection of Γp and SA.
function [x,y]=UnitCircle(A,n)
% add a test to check that the matrix
% is symmetric positive definite
>> x=[];y=[];h=2*pi/n;
>> for alpha=0:h:2*pi
>> p=tan(alpha);
>> ap=[1 p]*A*[1;p];
>> if cos(alpha)>0
>> x=[x 1/sqrt(ap)];
>> y=[y p/sqrt(ap)];
>> else
>> x=[x -1/sqrt(ap)];
>> y=[y -p/sqrt(ap)];
>> end;
>> end;

(c) >> n=100;A= [7 5; 5 7];
>> [x1,y1]=UnitCircle(A,n);
>> [x2,y2]=UnitCircle(eye(2,2),n);
>> plot(x1,y1,x2,y2,’.’,’MarkerSize’,10,’LineWidth’,3)
>> axis([-1.2 1.2 -1.2 1.2]);grid on; axis equal;
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Fig. 11.3. Unit circles for the Euclidean and the norm induced by the matrix A;
see (3.12).

>> set(gca,’XTick’,-1:.5:1,’YTick’,-1:.5:1,’FontSize’,24);
In view of Figure 11.3, it seems that SA is an ellipse. Let us prove
that it is indeed so. Let A be a symmetric positive definite matrix of
size n×n. It is diagonalizable in an orthonormal basis of eigenvectors,
A = PDP t:

〈Ax, x〉 = 1 ⇐⇒ 〈DP tx, P tx〉 = 1 ⇐⇒
n∑

i=1

λiy
2
i = 1,

where y = P tx and λi are the eigenvalues of A. The last equation may
be written

n∑
i=1

(
yi
1√
λi

)2

= 1,

since the eigenvalues are positive. We recognize the equation, in the
basis of eigenvectors yi, of an ellipsoid of semiaxes 1/

√
λi.

(d) The results of the following instructions (with n = 100) are shown in
Figure 11.4.
>> [x1,y1]=UnitCircle(A,n);
>> [x2,y2]=UnitCircle(B,n);
>> [x3,y3]=UnitCircle(C,n);
>> plot(x1,y1,x2,y2,’.’,x3,y3,’+’,...
>> ’MarkerSize’,10,’LineWidth’,3)
>> grid on; axis equal;
>> set(gca,’XTick’,-.8:.4:.8,’YTick’,-.8:.4:.8,...
>> ’FontSize’,24);
The most elongated ellipse corresponds to the matrix C, and the least
elongated one to A. Explanation (see previous question): the three
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Fig. 11.4. Unit circles for the norms defined by matrices defined in (3.12).

matrices have a common first eigenvalue, equal to 12. The second
eigenvalue is equal to 2 for A, 1 for B, and 1/2 for C.

Solution of Exercise 3.8 We fix the dimension n. The execution of the
following instructions,

>> A=rand(n,n); s=eigs(A,1)
>> for i=1:10
>> k=i*10;
>> abs((norm(A^k))^(1/k)-s)
>> end

shows that ‖Ak‖1/k seemingly tends to �(A), whatever the chosen norm. Let
us prove that it is actually the case. Consider a square matrix A and a matrix
norm ‖.‖.
1. Since λ ∈ σ(A) =⇒ λk ∈ σ(Ak), we have |λ|k ≤ �(Ak) ≤ ‖Ak‖, and in

particular, �(A)k ≤ �(Ak) ≤ ‖Ak‖ so �(A) ≤ ‖Ak‖1/k.
2. By construction of the matrix Aε, we indeed have �(Aε) < 1 and thus

limk→+∞ ‖Ak
ε‖ = 0. We deduce that there exists an index k0 such that for

all k ≥ k0, we have ‖Ak
ε‖ ≤ 1, or even �(A) + ε ≥ ‖Ak‖1/k.

3. Conclusion: for all ε > 0, there exists then k0 such that k ≥ k0 implies
that �(A) ≤ ‖Ak‖1/k ≤ �(A) + ε, and therefore

�(A) = lim
k→+∞

‖Ak‖1/k.
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11.3 Exercises of Chapter 4

Solution of Exercise 4.1

1. The computation of a scalar product 〈u, v〉 =
∑n

i=1 uivi is carried out in
n multiplications (and n − 1 additions, but we do not take into account
additions in operation counts). The computation of ‖u‖2 =

√
〈u, u〉 is

carried out in n multiplications and one square root extraction (which is
negligible when n is large). Computing the rank-one matrix uvt requires
n2 operations, since (uvt)i,j = uivj .

2. We denote by ai the rows of A. Each entry (Au)i being equal to the scalar
product 〈ai, u〉, the total cost of the computation of Au is n2 operations.
We call bj the columns of matrix B. Each element (AB)i,j being equal to
the scalar product 〈ai, bj〉, the total cost for computing AB is n3 opera-
tions.

3. The result of the instructions below is displayed in Figure 11.5.

>> n1=500;in=1:5;
>> for k=in;
>> d=k*n1;a=rand(d,d);b=rand(d,d);
>> tic;x=a*b;time(k)=toc;
>> end
>> n=n1*in’;plot(n,time,’-+’,’MarkerSize’,10,’LineWidth’,3)
>> text(2200,.5,’n’,’FontSize’,24);
>> text(600,5.2,’T(n)’,’FontSize’,24)

500 1000 1500 2000 2500
0

1

2

3

4

5

6

n

T(n)

Fig. 11.5. Running time for computing a product of two matrices.

4. The assumption T (n) ≈ Cns defines an affine relation between logarithms
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ln T (n)) ≈ s ln n + D, (11.1)

with D = ln C. We display in Figure 11.6 the result of the following
instructions:

>> x=log(n);y=log(time);
>> plot(x,y,’-+’,’MarkerSize’,10,’LineWidth’,3)
>> text(7.5,-3.5,’log(n)’,’FontSize’,24);
>> text(6.2,1.5,’log(T(n))’,’FontSize’,24)

6 6.4 6.8 7.2 7.6 8
−4

−3

−2

−1

0

1

2

log(n)

log(T(n))

Fig. 11.6. Running time for computing a product of two matrices (log-log scale).

The curve is close to a line of slope s:

>> s=(y(5)-y(1))/(x(5)-x(1))
s =

2.9234

The practical running time is close to the theoretical computational time.

Solution of Exercise 4.2

1. Since the matrix A is lower triangular, we have

ci,j =
n∑

k=1

ai,kbk,j =
i∑

k=1

ai,kbk,j .

So ci,j is computed in i multiplications; moreover, there are n elements to
be computed per row i. The total cost is

n∑
i=1

ni = n
n(n + 1)

2
≈ n3

2
.
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2. For i = 1 ↗ n computing row i of matrix C
For j = 1 ↗ n

s = 0
For k = 1 ↗ i

s = s + ai,kbk,j

End For k
ci,j = s

End For j
End For i

3. If both matrices A and B are lower triangular, so is the product C = AB.
We have, for j ≤ i,

ci,j =
i∑

k=j

ai,kbk,j .

Hence, ci,j is computed in i − j + 1 multiplications. Furthermore, there
are only i elements left to be computed per row i. The total cost is

n∑
i=1

i∑
j=1

(i − j + 1) =
n∑

i=1

i∑
j=1

j =
n∑

i=1

i(i + 1)
2

≈ n3

6
.

4. The function LowTriMatMult defined below turns out to be slower than the
usual matrix computation by Matlab (which does not take into account
the triangular character of the matrices).

function C=LowTriMatMult(A,B)
% Multplication of two lower triangular matrices
[m,n]=size(A);[n1,p]=size(B);
if n~=n1

error(’Wrong dimensions of the matrices’)
end;
C=zeros(m,p);
for i=1:m

for j=1:i
s=0;
for k=j:i

s=s+A(i,k)*B(k,j);
end;
C(i,j)=s;

end;
end;

This is not a surprise, since the above function LowTriMatMult is not
vectorized and optimized as are standard Matlab operations, such as the
product of two matrices. In order to see the computational gain in taking
into account the triangular structure of matrices, one has to compare
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LowTriMatMult with a function programmed in Matlab language that
executes the product of two matrices without vectorization.

5. Now we compare LowTriMatMult with the function MatMult defined be-
low:

function C=MatMult(A,B)
% Multiplication of two matrices
% tests whether the dimensions are compatible
% as in function LowTriMatMult

[m,n]=size(A);p=size(B,2);
C=zeros(m,p);
for i=1:m

for j=1:p
s=0;
for k=1:n

s=s+A(i,k)*B(k,j);
end;
C(i,j)=s;

end;
end;

The comparison gives the advantage to LowTriMatMult: the speedup is
approximately a factor 6:

>> n=1000;a=tril(rand(n,n));b=tril(rand(n,n));
>> tic;c=MatMult(a,b);t1=toc;
>> tic;d=LowTriMatMult(a,b);t2=toc;
>> t1, t2
t1 =

23.5513
t2 =

4.1414

6. With the instruction sparse, Matlab takes into account the sparse struc-
ture of the matrix:

>> n=300;
>> a=triu(rand(n,n));b=triu(rand(n,n));
>> tic;a*b;t1=toc
>> sa=sparse(a);sb=sparse(b);
>> tic;sa*sb;t2=toc
t1 =

0.0161
t2 =

0.0291

There is no gain in computational time. Actually, the advantage of sparse
relies on the storage
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>> n=300;a=triu(rand(n,n));spa=sparse(a);
>> whos a
Name Size Bytes Class
a 300x300 720000 double array

Grand total is 90000 elements using 720000 bytes
>> whos spa
Name Size Bytes Class
spa 300x300 543004 double array (sparse)

Grand total is 45150 elements using 543004 bytes

11.4 Exercises of Chapter 5

Solution of Exercise 5.2

1. function x=ForwSub(A,b)
% Computes the solution of system Ax = b
% A is nonsingular lower triangular
[m,n]=size(A);o=length(b);
if m~=n | o~=n, error(’dimension problem’), end;
small=1.e-12;
if norm(A-tril(A),’inf’)>small

error(’non lower triangular matrix’)
end;
x=zeros(n,1);
if abs(A(1,1))<small, error(’noninvertible matrix’), end;
x(1)=b(1)/A(1,1);
for i=2:n

if abs(A(i,i))<small
error(’noninvertible matrix’)

end;
x(i)=(b(i)-A(i,1:i-1)*x(1:i-1))/A(i,i);

end;
2. function x=BackSub(A,b)

% Computes the solution of system Ax = b
% A is nonsingular upper triangular
[m,n]=size(A);o=length(b);
if m~=n | o~=n, error(’dimension problem’), end;
small=1.e-12;
if norm(A-triu(A),’inf’)>small

error(’non upper triangular matrix’)
end;
x=zeros(n,1);
if abs(A(n,n))<small, error(’noninvertible matrix’), end;
x(n)=b(n)/A(n,n);
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for i=n-1:-1:1
if abs(A(i,i))<small

error(’noninvertible matrix’)
end;
x(i)=(b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);

end;

Solution of Exercise 5.3 We store in a vector u the lower triangular matrix
A row by row, starting with the first one. The mapping between indices is
Ai,j = uj+i(i−1)/2. Here are the programs:

1. function aL=StoreL()
fprintf(’Storage of a lower triangular matrix’)
fprintf(’the matrix is stored row by row’)
n=input(’enter the dimension n of the square matrix’)
for i=1:n

fprintf(’row %i \n’,i)
ii=i*(i-1)/2;
for j=1:i

fprintf(’enter element (%i,%i) of the matrix’,i,j)
aL(j+ii)=input(’ ’);

end;
end;

2. function y=StoreLpv(a,b)
% a is a lower triangular matrix stored by StoreL
[m,n]=size(b);
if n~=1

error(’b is not a vector’)
end;
if m*(m+1)/2~=length(a)

error(’incompatible dimensions’)
end;
for i=1:m

ii=i*(i-1)/2;
s=0;
for j=1:i

s=s+a(j+ii)*b(j);
end;
y(i)=s;

end;
The inner loop could be replaced by the more compact and efficient in-
struction

y(i)=a(ii+1:i)*b(1:i);

3. function x=ForwSubL(a,b)
% a is a lower triangular matrix stored by StoreL
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% add the compatibility tests of function StoreLpv(a,b)
m=length(b);
for i=1:m

ii=i*(i-1)/2;
s=0;
for j=1:i-1

s=s+a(j+ii)*x(j);
end;
x(i)=(b(i)-s)/a(i+ii); % check if a(i+ii) is zero

end;

Solution of Exercise 5.13 Hager algorithm.

1. Proposition 3.1.2 furnishes a formula for ‖A‖1 (at a negligible computa-
tional cost):

‖A‖1 = max
1≤j≤n

(
n∑

i=1

|ai,j |
)

.

2. From the previous formula we deduce that there exists an index j0 such
that

‖A−1‖1 =
n∑

i=1

|(A−1)i,j0 | = ‖(A−1)j0‖1,

where (A−1)j0 is the j0 column of A−1. Hence

‖A−1‖1 = ‖A−1ej0‖1 = f(ej0).

3. We write

f(x) =
n∑

i=1

|(A−1x)i| =
n∑

i=1

|x̃i| =
n∑

i=1

six̃i = 〈x̃, s〉.

4. We compute x̄t(a − x):

x̄t(a − x) = (A−ts)t(a − x) = stA−1(a − x) = 〈A−1a, s〉 − 〈x̃, s〉.

According to question 3,

f(x) + x̃t(a − x) = 〈A−1a, s〉 =
n∑

j=1

(A−1a)jsj .

Each term in this sum is bounded from above by |(A−1a)j |; we therefore
deduce

f(x) + x̃t(a − x) ≤
n∑

j=1

|(A−1a)j | = ‖A−1a‖1 = f(a),

from which we get the result.
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5. According to question 4, we have

f(ej) − f(x) ≥ x̄t(ej − x) = 〈x̄, ej〉 − 〈x, x̄〉 = x̄j − 〈x, x̄〉 > 0,

which yields the result.
6. (a) According to question 3, we have f(y) = 〈ỹ, s′〉, where s′ is the sign

vector of ỹ. However, for y close enough to x, the sign of ỹ = A−1y is
equal to the sign of x̃ (we have assumed that x̃i 	= 0 for all i). Thus
we have

f(y) = 〈ỹ, s〉 = f(x) + 〈ỹ − x, s〉 = f(x) + 〈A−1(y − x), s〉
= f(x) + stA−1(y − x),

which proves the result.
(b) x is a local maximum of f if and only if for all y close enough to x,

we have stA−1(y − x) ≤ 0. We write

stA−1(y − x) = 〈A−1(y − x), s〉 = 〈y − x,A−ts〉 = 〈y − x, x̄〉
= 〈y, x̄〉 − 〈x, x̄〉.

We infer that if ‖x̄‖∞ ≤ 〈x, x̄〉, we have

stA−1(y − x) ≤ 〈y, x̄〉 − ‖x̄‖∞ ≤ (‖y‖1 − 1)‖x̄‖∞ = 0,

for y ∈ S.
7. The Hager algorithm in pseudolanguage:

choose x of norm ‖x‖1 = 1
compute

x̃ by Ax̃ = x
s by si = sign(x̃i)
compute x̄ by Atx̄ = s

While ‖x̄‖∞ > 〈x, x̄〉
compute j such that x̄j = ‖x̄‖∞
set x = ej

compute x̃, s and x̄
If ‖x̄‖∞ ≤ 〈x, x̄〉

cond1(A) ≈ ‖A‖1 ‖x̄‖∞
End If

End While
8. The Hager algorithm in Matlab.

function conda=Cond1(a)
% computes an approximation of the 1-norm
% condition number of a square matrix
% by optimization criteria
%
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% initialization
n=size(a,1);
x=ones(n,1)/n; % xi = 1/n
xt=a\x;ksi=sign(xt);xb=a’\ksi;
notgood=norm(xb,’inf’)>xb’*x;
conda=norm(xt,1)*norm(a,1);
% loop
while notgood

[maxx,j]=max(abs(xb));
x=zeros(n,1);x(j)=1;
xt=a\x;ksi=sign(xt);xb=a’\ksi;
if norm(xb,’xinf’)<=xb’*x

conda=norm(xt,1)*norm(a,1);
notgood=0;

else
[maxx,j]=max(abs(xb));
x=zeros(n,1);x(j)=1;

end;
end;

This algorithm gives remarkably precise results:

>> n=5;a=NonsingularMat(n);
>> [Cond1(a), norm(a,1)*norm(inv(a),1)]
ans =
238.2540 238.2540

>> n=10;a=NonsingularMat(n);
>> [Cond1(a), norm(a,1)*norm(inv(a),1)]
ans =
900.5285 900.5285

Solution of Exercise 5.15 Polynomial preconditioner C−1 = p(A).

function PA=PrecondP(A,k)
% Polynomial preconditioning
% check the condition ‖I − A‖ < 1
PA=eye(size(A));
if k~=0

C=eye(size(A))-A;
if max(abs(eig(C)))>=.99 % compute �(C)

error(’look for another preconditioner’)
end;
for i=1:k

PA=PA+C^i;
end;

end;

Some examples:
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>> n=10;a=PdSMat(n);a=a/(2*norm(a));
>> cond(a)
ans =

1.9565
>> ap=PrecondP(a,1);cond(ap*a)
ans =

1.6824
>> ap=PrecondP(a,10);cond(ap*a)
ans =

1.0400
>> ap=PrecondP(a,20);cond(ap*a)
ans =

1.0020

The larger k is, the better is the conditioning; however, its computational cost
increases.

Solution of Exercise 5.16 Finite difference approximation of Laplace equa-
tion.

1. Computation of the matrix and right-hand side of (5.19).
(a) The following function gives the value of the matrix An.

function A=Laplacian1dD(n)
% computes the 1D Laplacian matrix
% discretized by centered finite differences
% with Dirichlet boundary conditions.
A=zeros(n,n);
for i=1:n-1

A(i,i)=2;
A(i,i+1)=-1;
A(i+1,i)=-1;

end;
A(n,n)=2;
A=A*(n+1)^2;
There are other ways of constructing An. For instance,
i. Function toeplitz(u), which returns a symmetric Toeplitz ma-

trix whose first row is the vector u. The instruction
Ah=toeplitz([2, -1, zeros(1, n-2)])*(n+1)^2

then defines An.
ii. The following instructions define also An.

u=ones(n-1,1);v=[1;u];a=(n+1)^2;
Aht=2*a.*diag(v,0)-a.*diag(u,-1)-a.*diag(u,1);

iii. The reader can check that the instructions
A=[eye(n,n) zeros(n,1)];A=eye(n,n)-A(:,2:n+1);
A=A+A’;A=A*(n+1)^2;

also define the matrix An.
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(b) The following function gives the value of the right-hand side b(n).
function v=InitRHS(n)
x=1:n;h=1./(n+1);
x=h*x’;v=f(x);

It calls a function f that corresponds to the right-hand side f(x) of
the differential equation.

2. Validation.
(a) When f(x) ≡ 1, ue(x) = x(1−x)/2 is the solution of problem (5.18).

function [exa,sm]=Check(n)
x=1:n;h=1./(n+1);x=h*x’;
exa=x.*(1-x)/2;
sm=ones(n,1);

Examples:
>> n=10;Ah=Laplacian1dD(n);
>> [exasol,sm]=Check(n);sol=Ah\sm;
>> norm(sol-exasol)
ans =

2.6304e-16
We note that no error was made; the solution is exactly computed
with the accuracy of the machine. This was predictable, since the
discretization of u′′ performed in (5.19) is exact for polynomials of
degree less than or equal to 3.

(b) Convergence of the method. We use here the function
function [exa,sm]=Check2(n)
x=1:n;h=1./(n+1);x=h*x’;
exa=(x-1).*sin(10*x);
sm=-20*cos(10*x)+100*(x-1).*sin(10*x);

and the approximation error is given by the script
for i=1:10

n=10*i;[exasol,sm]=Check2(n);
Ah=Laplacian1dD(n);sol=Ah\sm;
y(i)=log(norm(sol-exasol,’inf’));
x(i)=log(n);

end
plot(x,y,’.-’,’MarkerSize’,20,’LineWidth’,3)
grid on;
set(gca,’XTick’,2:1:5,’YTick’,-7.5:1:-3,’FontSize’,24);

In view of Figure 11.7, the logarithm of the error is an affine function
of the logarithm of n; the slope of this straight line is about −2. Thus,
we deduce that ‖sol− exasol‖∞ ≈ Cste × n−2, which was predicted
by Theorem 1.1.1.

3. Eigenvalues of the matrix An.
(a) Solving the differential equation u′′ + λu = 0 shows that the eigen-

values of the operator u �→ −u′′ endowed with homogeneous Dirichlet
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Fig. 11.7. Logarithm of the error in terms of logarithm of n (log-log scale).

boundary conditions are exactly λk = k2π2, for k > 0, with cor-
responding eigenfunctions ϕk(x) = sin(kπx). When n tends to +∞
(i.e., h tends to 0) and for a fixed k, we obtain the limit

λh,k =
4
h2

sin2

(
kπh

2

)
≈ k2π2 = λk.

In other words, the “first” eigenvalues of An are close to the eigenval-
ues of the continuous operator; see Figure 11.8.
n=20;x=(1:n)’;h=1./(n+1);
Ahev=(1-cos(pi.*h.*x)).*2./h./h;
contev=pi.*pi.*x.*x;
plot(x,contev,x,Ahev,’.-’,’MarkerSize’,20,’LineWidth’,3)

(b) The function eig(X) returns a vector containing the eigenvalues of
matrix X:
n=500;Ah=Laplacian1dD(n);
x=(1:n)’;h=1./(n+1);
exacev=(1-cos(pi.*h.*x)).*2./h./h;
matlabev=eig(Ah);
plot(x,matlabev-exacev)

The eigenvalues of An are accurately computed by Matlab: for exam-
ple, for n = 500 the maximal error committed is less than 10−9.

(c) We plot on a log-log scale the condition number of An:
for i=1:7

n=50*i;Ah=Laplacian1dD(n);
en(i)=log(n);condn(i)=log(cond(Ah));

end
plot(en,condn)
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Fig. 11.8. Comparison of the eigenvalues of the continuous and discrete problems
for n = 20 (left) and n = 100 (right).

We observe that the 2-norm conditioning of An behaves as Cste ×n2.
This result agrees with the theory, since, An being symmetric, its
2-norm conditioning is equal to the ratio of its extremal eigenvalues

cond2(An) =
maxk |λh,k|
mink |λh,k|

≈ 4
π2

n2.

4. (a) We have, of course, Ãn = An + cIn, and the eigenvalues of Ãn are
λ̃h,k = λh,k + c. In particular, the first eigenvalue is

λ̃h,1 =
4
h2

sin2

(
πh

2

)
+ c.

(b) We solve the linear system for n = 100, f = 1.
>> n=100;Ah=Laplacian1dD(n);
>> s=eig(Ah);c=-s(1); % Warning: it may be necessary
>> At=Ah+c*eye(n,n); % to sort out vector s with
>> b=InitRHS(n);sol=At\b; % command sort
To check the reliability of the result we compute the norm of the
solution sol given by Matlab:

>> norm(sol)
ans =

1.0470e+12
which is a clear indication that something is going wrong . . . . Since c is
an eigenvalue of An, the matrix Ãn is singular. Thanks to the rounding
errors, Matlab nevertheless find a solution without any warning.



250 11 Solutions and Programs

11.5 Exercises of Chapter 6

Solution of Exercise 6.3 The function Gauss(A,b) computes the solution
of the linear system Ax = b by the Gauss method; the pivot in step k is the first
nonzero entry in the set (Aj,k)j≥k. In the function GaussWithoutPivot there
is no pivot strategy; the program stops if the entry Ak,k is too small. Partial
pivoting and complete pivoting are used in the functions GaussPartialPivot
and GaussCompletePivot.

1. function x=Gauss(A,b)
% solve system Ax = b by
% the Gauss method with partial pivoting
[m,n]=size(A);o=length(b);
if m~=n | o~=n, error(’dimension problem’), end;
% Initialization
small=1.e-16;
for k=1:n-1
% Search for the pivot

u=A(k,k:n);pivot=A(k,k);i0=k;
while abs(pivot)<small

i0=i0+1;pivot=A(i0,k);
end;
if abs(pivot)<small

error(’singular matrix’)
end;

% Exchange rows for A and b
if i0~=k

u=A(i0,k:n);A(i0,k:n)=A(k,k:n);A(k,k:n)=u;
s=b(i0);b(i0)=b(k);b(k)=s;

end
for j=k+1:n

s=A(j,k)/pivot;v=A(j,k:n);
A(j,k:n)=v-s*u;b(j)=b(j)-s*b(k);

end;
end;
% A = An is an upper triangular matrix
% we solve Anx = bn by back substitution
x=zeros(n,1);
if abs(A(n,n))>=small

x(n)=b(n)/A(n,n);
else

error(’singular matrix’)
end;
for i=n-1:-1:1

x(i)=(b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);
end;
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2. function x=GaussWithoutPivot(A,b)
% solve system Ax = b by
% the Gauss method without pivoting
[m,n]=size(A);o=length(b);
if m~=n | o~=n, error(’dimension problem’), end;
% Initialization
small=1.e-16;
for k=1:n-1

u=A(k,k:n);pivot=A(k,k);i0=k;
if abs(pivot)<small, error(’stop: zero pivot’), end;
for j=k+1:n

s=A(j,k)/pivot;v=A(j,k:n);
A(j,k:n)=v-s*u;b(j)=b(j)-s*b(k);

end;
end;
% A = An is an upper triangular matrix
% we solve Anx = bn by the back substitution method
x=zeros(n,1);
if abs(A(n,n))>=small

x(n)=b(n)/A(n,n);
else

error(’singular matrix’)
end;
for i=n-1:-1:1

x(i)=(b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);
end;

3. function x=GaussPartialPivot(A,b)
% solve system Ax = b by
% the partial pivoting Gauss method
[m,n]=size(A);o=length(b);
if m~=n | o~=n, error(’dimension problem’), end;
% Initialization
small=1.e-16;
for k=1:n-1

B=A(k:n,k);
% We determine i0

[pivot,index]=max(abs(B));
if abs(pivot)<small

error(’singular matrix’)
end;
i0=k-1+index(1,1);;

% Exchange rows for A and b
if i0~=k

u=A(i0,k:n);A(i0,k:n)=A(k,k:n);A(k,k:n)=u;
s=b(i0);b(i0)=b(k);b(k)=s;
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end
% We carry out the Gauss elimination

u=A(k,k:n);pivot=A(k,k);
for j=k+1:n

s=A(j,k)/pivot;v=A(j,k:n);
A(j,k:n)=v-s*u;b(j)=b(j)-s*b(k);

end;
end;
% A = An is an upper triangular matrix
% we solve Anx = bn by the back substitution method
x=zeros(n,1);
if abs(A(n,n))>=small

x(n)=b(n)/A(n,n);
else

error(’singular matrix’)
end;
for i=n-1:-1:1

x(i)=(b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);
end;

4. function x=GaussCompletePivot(A,b)
% solve system Ax = b by
% the complete pivoting Gauss method
[m,n]=size(A);o=length(b);
if m~=n | o~=n, error(’dimension problem’), end;
% Initialization
small=1.e-8;
ix=1:n;
for k=1:n-1

B=A(k:n,k:n);
% We determine i0, j0

[P,I]=max(abs(B));
[p,index]=max(P); pivot=B(I(index),index);
if abs(pivot)<small, error(’singular matrix’), end;
i0=k-1+I(index);j0=k-1+index;

% Exchange rows for A and b
if i0~=k

u=A(i0,k:n);A(i0,k:n)=A(k,k:n);A(k,k:n)=u;
s=b(i0);b(i0)=b(k);b(k)=s;

end
% Exchange columns of A and rows of x

if j0~=k
u=A(:,k);A(:,k)=A(:,j0);A(:,j0)=u;
s=ix(j0);ix(j0)=ix(k);ix(k)=s;

end
% We carry out the Gauss elimination
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u=A(k,k:n);pivot=A(k,k);
for j=k+1:n

s=A(j,k)/pivot;
v=A(j,k:n);
A(j,k:n)=v-s*u;
b(j)=b(j)-s*b(k);

end;
end;
% A = An is an upper triangular matrix
% we solve Anxn = bn by the back substitution method
y=zeros(n,1);
if abs(A(n,n))>=small

y(n)=b(n)/A(n,n);
else

error(’singular matrix’)
end;
for i=n-1:-1:1

y(i)=(b(i)-A(i,i+1:n)*y(i+1:n))/A(i,i);
end;
% we rearrange the entries of x
x=zeros(n,1);x(ix)=y;

5. (a) Dividing by a small pivot yields bad numerical results because of
rounding errors:

>> e=1.E-15;
>> A=[e 1 1;1 1 -1;1 1 2];x=[1 -1 1]’;b=A*x;
>> norm(Gauss(A,b)-x)
ans =
7.9928e-04

>> norm(GaussPartialPivot(A,b)-x)
ans =

2.2204e-16
(b) Now we compare the strategies complete pivoting/partial pivoting.

i. We modify the headings of the programs by adding a new out-
put argument. For instance, we now define the function Gauss,
function [x,g]=Gauss(A,b). The rate g is computed by adding
the instruction g=max(max(abs(A)))/a0 just after the computa-
tion of the triangular matrix. The variable a0=max(max(abs(A)))
is computed at the beginning of the program.

ii. For diagonally dominant matrices, we note that the rates are all
close to 1.

>> n=40;b=rand(n,1);A=DiagDomMat(n);
>> [x gwp]=GaussWithoutPivot(A,b);[x,g]=Gauss(A,b);
>> [x gpp]=GaussPartialPivot(A,b);
>> [x,gcp]=GaussCompletePivot(A,b);
>> [gwp, g, gpp, gcp]
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ans =
0.9900 0.9900 0.9900 1.0000

The same holds true for positive definite symmetric matrices.
>> n=40;b=rand(n,1);A=PdSMat(n);
>> [x gwp]=GaussWithoutPivot(A,b);[x,g]=Gauss(A,b);
>> [x gpp]=GaussPartialPivot(A,b);
>> [x,gcp]=GaussCompletePivot(A,b);
>> n=40;b=rand(n,1);A=PdSMat(n);
>> [gwp, g, gpp, gcp]
ans =

0.9969 0.9969 0.9969 1.0000
We can therefore apply, without bad surprises, the Gauss method
to these matrix classes. For “random” matrices, the result is dif-
ferent:

>> n=40;b=rand(n,1);A=rand(n,n);
>> [x gwp]=GaussWithoutPivot(A,b);[x,g]=Gauss(A,b);
>> [x gpp]=GaussPartialPivot(A,b);
>> [x,gcp]=GaussCompletePivot(A,b);
>> [gwp, g, gpp, gcp]
ans =
128.3570 128.3570 3.0585 1.8927

For these matrices, it is better to use the Gauss methods with
partial or complete pivoting.

iii. Comparison of �GPP and �GCP .
A. The following instructions produce Figure 11.9, which clearly

shows that complete pivoting is more stable. The drawback
of this method is its slow speed, since it performs (n − k)2

comparisons (or logical tests) at each step of the algorithm,
whereas partial pivoting requires only n − k comparisons.

>> for k=1:10
>> n=10*k;b=ones(n,1);
>> A=n*NonSingularMat(n);
>> [x g]=GaussPartialPivot(A,b);Pp1(k)=g;
>> [x g]=GaussCompletePivot(A,b);Cp1(k)=g;
>> A=n*NonSingularMat(n);
>> [x g]=GaussPartialPivot(A,b);Pp2(k)=g;
>> [x g]=GaussCompletePivot(A,b);Cp2(k)=g;
>> A=n*NonSingularMat(n);
>> [x g]=GaussPartialPivot(A,b);Pp3(k)=g;
>> [x g]=GaussCompletePivot(A,b);Cp3(k)=g;
>> end;
>> n=10*(1:10);
>> plot(n,Pp1,’+’,n,Pp2,’+’,n,Pp3,’+’,n,Cp1,...
>> ’x’,n,Cp2,’x’,n,Cp3,’x’,’MarkerSize’,10,...
>> ’LineWidth’,3)
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>> set(gca,’XTick’,0:20:100,’YTick’,0:3:6,...
>> ’FontSize’,24);

0 20 40 60 80 100
0

3

6

Fig. 11.9. Growth rate, in terms of n, for several runs of Gaussian elimination with
partial pivoting (+) and complete pivoting (x).

B. The following matrix has been cooked up so that �GPP = 2n−1,
while, as for any matrix, �

GCP
does not grow much more

quickly than n. However, in usual practice, the partial piv-
oting strategy is as efficient as the complete pivoting Gauss
method.

>> for k=1:5
>> n=2*k;b=ones(n,1);
>> A=-tril(ones(n,n))+2*diag(ones(n,1));
>> A=A+[zeros(n,n-1) [ones(n-1,1);0]];
>> [x g]=GaussPartialPivot(A,b);Pp(k)=g;
>> [x g]=GaussCompletePivot(A,b);Cp(k)=g;
>> end;
>> dim=2*(1:5);
[dim; Pp;Cp]
ans =

2 4 6 8 10
2 8 32 128 512
2 2 2 2 2

Solution of Exercise 6.5 Storage of a band matrix.

1. function aB=StoreB(p)
fprintf(’Storage of a triangular band matrix\n’)
fprintf(’of bandwidth 2*p+1\n’)
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fprintf(’the matrix is stored row by row \n’)
n=input(’enter the dimension n of the square matrix ’)
for i=1:n

fprintf(’row %i \n’,i)
ip=(2*i-1)*p;
for j=max(1,i-p):min(n,i+p)

fprintf(’enter entry (%i,%i) of the matrix’,i,j)
aB(j+ip)=input(’ ’);

end;
end;

2. function aBb=StoreBpv(a,p,b)
% a is a band matrix
% stored by StockB
% Warning: execute all compatibility tests
% here we assume that a and b are compatible
[m,n]=size(b);aBb=zeros(m,1);
for i=1:m

ip=(2*i-1)*p;
s=0;
for j=max(1,i-p):min(m,i+p)

s=s+a(j+ip)*b(j);
end;
aBb(i)=s;

end;

Solution of Exercise 6.6

function aB=LUBand(aB,p)
% Compute the LU factorization of
% a band matrix A with half-bandwidth p.
% A (in aB), L and U (also in aB)
% are in the form computed by program StoreB
n=round(length(aB)/(2*p+1));zero=1.e-16;
for k=1:n-1
if abs(aB((2*k-1)*p+k))<zero, error(’error : zero pivot’),end;
Ind=min(n,k+p);
for i=(k+1):Ind
aB((2*i-1)*p+k)=aB((2*i-1)*p+k)/aB((2*k-1)*p+k);
IndR=(k+1):Ind;
aB((2*i-1)*p+IndR)=aB((2*i-1)*p+IndR)- ...
aB((2*k-1)*p+IndR)*aB((2*i-1)*p+k);

end;
end;
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11.6 Exercises of Chapter 7

Solution of Exercise 7.5 The following function computes the QR factor-
ization of a square matrix by the Householder algorithm.

function [Q,R]=Householder(A)
% QR decomposition computed by
% the Householder algorithm
% Matrix A is square
[m,n]=size(A);
R=A;Q=eye(size(A));
for k=1:m-1

i=k-1;j=n-i;v=R(k:n,k);w=v+norm(v)*[1;zeros(j-1,1)];
Hw=House(w);
Hk=[eye(i,i) zeros(i,j); zeros(j,i) Hw];
Q=Hk*Q;
R(k:n,k:n)=Hw*R(k:n,k:n);

end;
Q=Q’;

The function House computes the Householder matrix of a vector.

function H=House(v)
% Elementary Householder matrix
[n,m]=size(v);
if m~=1

error(’enter a vector’)
else

H=eye(n,n);
n=norm(v);
if n>1.e-10

H=H -2*v*v’/n/n;
end;

end;

We check the results.

>> n=20;A=rand(n,n);[Q,R]=Householder(A);
% we check that QR = A
>> norm(Q*R-A)
ans =

3.3120e-15
% we check that Q is unitary
>> norm(Q*Q’-eye(size(A))), norm(Q’*Q-eye(size(A)))
ans =

1.8994e-15
ans =

1.8193e-15
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% we check that R is upper triangular
>> norm(R-triu(R))
ans =

4.3890e-16

Finally, we compare the results with the modified Gram–Schmidt method of
Exercise 2.11.

>>n=10;A=HilbertMat(n);B=MGramSchmidt(A);norm(B*B’-eye(size(A)))
ans =
2.3033e-04

>> [Q,R]=Householder(A);norm(Q*Q’-eye(size(A)))
ans =
1.0050e-15

For larger values of n, we have

>>n=20;A=HilbertMat(n);B=MGramSchmidt(A);norm(B*B’-eye(size(A)))
?? Error using ==> MGramSchmidt
linearly dependent vectors
>> [Q,R]=Householder(A);norm(Q*Q’-eye(size(A)))
ans =
1.6434e-15

The Householder method is more robust and provides an orthogonal ma-
trix, whereas the Gram–Schmidt algorithm finds zero vectors (more precisely
of norm less than 10−12).

11.7 Exercises of Chapter 8

Solution of Exercise 8.6 Program for the relaxation method.

function [x, iter]=Relax(A,b,w,tol,MaxIter,x)
% Computes by the relaxation method the solution of system Ax=b
% w = relaxation parameter
% tol = ε of the termination criterion
% MaxIter = maximum number of iterations
% x = x0 initial vector
[m,n]=size(A);
if m~=n, error(’the matrix is not square’), end;
if abs(det(A)) < 1.e-12

error(’the matrix is singular’)
end;
if ~w, error(’omega = zero’);end;
% nargin = number of input arguments of the function
% Default values of the arguments
if nargin==5 , x=zeros(size(b));end;



11.7 Exercises of Chapter 8 259

0 0.4 0.8 1.2 1.6 2
0

200

400

600

800

1000

1.75 1.8 1.85 1.9
60

80

100

120

140

160

Fig. 11.10. Relaxation method: number of iterations in terms of ω.

if nargin==4 , x=zeros(size(b));MaxIter=200;end;
if nargin==3 , x=zeros(size(b));MaxIter=200;tol=1.e-4;end;
if nargin==2 , x=zeros(size(b));MaxIter=200;tol=1.e-4;w=1;end;
M=diag((1-w)*diag(A)/w)+tril(A);
% Initialization
iter=0;r=b-A*x;
% Iterations
while (norm(r)>tol)&(iter<MaxIter)

y=M\r;
x=x+y;
r=r-A*y;
iter=iter+1;

end;

We run the program for ω ∈ (0.1, 2).

>> n=20;A=Laplacian1dD(n);b=sin((1:n)/(n+1))’;sol=A\b;
>> pas=0.1;
>> for i=1:20
>> omega(i)=i*pas;
>> [x, iter]=Relax(A,b,omega(i),1.e-6,1000,zeros(size(b)));
>> itera(i)=iter;
>> end;
>> plot(omega,itera,’-+’,’MarkerSize’,10,’LineWidth’,3)

In view of the results in Figure 11.10 (left), it turns out that the optimal
parameter is between 1.7 and 1.9. Hence, we zoom on this region.

pas=0.01;
for i=1:20

omega(i)=1.7+i*pas;
[x, iter]=Relax(A,b,omega(i),1.e-6,1000,zeros(size(b)));
itera(i)=iter;
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end;
plot(omega,itera,’-+’,’MarkerSize’,10,’LineWidth’,3)

The optimal parameter seems be close to 1.75 in Figure 11.10 (right). Since
A is tridiagonal, symmetric, and positive definite, Theorem 8.3.2 gives the
optimal parameter

ωopt =
2

1 +
√

1 − �(J )2
.

Let us compute this value with Matlab

>> D=diag(diag(A));J=eye(size(A))-inv(D)*A;rhoJ= max(abs(eig(J)))
rhoJ =

0.9888
>> wopt=2/(1+sqrt(1-rhoJ^2))
wopt =

1.7406

which is indeed close to 1.75.

11.8 Exercises of Chapter 9

Solution of Exercise 9.3

1. function [x, iter]=GradientC(A,b,tol,MaxIter,x)
% Computes by the conjugate gradient method
% the solution of system Ax = b
% tol = ε termination criterion
% MaxIter = maximal number of iterations
% x =x0

% nargin = number of input arguments of the function
% Default values of the arguments
if nargin==4 , x=zeros(size(b));end;
if nargin==3 , x=zeros(size(b));MaxIter=2000;end;
if nargin==2 , x=zeros(size(b));MaxIter=2000;tol=1.e-4;end;
% Initialization
iter=0;r=b-A*x;tol2=tol*tol;normr2=r’*r;p=r;
% Iterations
while (normr2>tol2)&(iter<MaxIter)

Ap=A*p;
alpha=normr2/(p’*Ap);
x=x+alpha*p;
r=r-alpha*Ap;
beta=r’*r/normr2;
p=r+beta*p;
normr2=r’*r;
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iter=iter+1;
end;

2. The number of required iterations is always much smaller for the conjugate
gradient method.

>> n=5;A=Laplacian1dD(n);xx=(1:n)’/(n+1);b=xx.*sin(xx);
>> [xVG, iterVG]=GradientV(A,b,1.e-4,10000);
>> [xCG, iterCG]=GradientC(A,b,1.e-4,10000);
>> [iterVG, iterCG]
ans =

60 5
>> n=10;A=Laplacian1dD(n);xx=(1:n)’/(n+1);b=xx.*sin(xx);
>> [xVG, iterVG]=GradientV(A,b,1.e-4,10000);
>> [xCG, iterCG]=GradientC(A,b,1.e-4,10000);
>> [iterVG, iterCG]
ans =
220 10

>> n=20;A=Laplacian1dD(n);xx=(1:n)’/(n+1);b=xx.*sin(xx);
>> [xVG, iterVG]=GradientV(A,b,1.e-4,10000);
>> [xCG, iterCG]=GradientC(A,b,1.e-4,10000);
>> [iterVG, iterCG]
ans =
848 20

>> n=30;A=Laplacian1dD(n);xx=(1:n)’/(n+1);b=xx.*sin(xx);
>> [xVG, iterVG]=GradientV(A,b,1.e-4,10000);
>> [xCG, iterCG]=GradientC(A,b,1.e-4,10000);
>> [iterVG, iterCG]
ans =

1902 30

3. >> n=5;A=toeplitz(n:-1:1)/12;b=(1:n)’;
>> x0=[-2,0,0,0,10]’;
>> [xCG, iter0]=GradientC(A,b,1.e-10,50,x0);
>> x1=[-1,6,12,0,17]’;
>> [xCG, iter1]=GradientC(A,b,1.e-10,50,x1);
>> [iter0 iter1]
ans =

3 5
For the initial guess x0, the conjugate gradient algorithm has converged
in three iterations. Let us check that the Krylov critical dimension corre-
sponding to the residual b − Ax0 is equal to 2.

>> r=b-A*x0;
>> X=[];x=r;
>> for k=1:n
>> X=[X x];[k-1 rank(X)]
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>> x=A*x;
>> end;
ans =

0 1
ans =

1 2
ans =

2 3
ans =

3 3
ans =

4 3

For the second initial guess, the Krylov critical dimension turns out to be
4.

4. System Ax = b is equivalent to AtAx = Atb, whose matrix AtA is sym-
metric, positive definite. The conjugate gradient algorithm can be applied
to the latter system. However, observe that computing AtA costs n3/2
operations, which is very expensive, and therefore it will not be done if
we want to minimize the computational time. Remember that the explicit
form of AtA is not required: it is enough to know how to multiply a vector
by this matrix.

11.9 Exercises of Chapter 10

Solution of Exercise 10.6 Here is a a program for the power method.

function [l,u]=PowerD(A)
% Computes by the power method
% l = approximation of |λn|
% u = a corresponding eigenvector
% Initialization
n=size(A,1);x0=ones(n,1)/sqrt(n); % x0

converge=0;eps=1.e-6;
iter=0;MaxIter=100;
% beginning of iterations
while (iter<MaxIter)&(~converge)
u=A*x0;
x=u/norm(u);
converge=norm(x-x0)<eps;
x0=x;iter=iter+1;

end
l=norm(u);

Application to the three suggested matrices:
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� For matrix A, everything seems to work as expected. The algorithm re-
turns the maximal eigenvalue that is simple.

>> A=[2 2 1 0;2 0 0 0; 1 0 0 2;0 0 2 -2];
[l,u]=PowerD(A); fprintf(’l =%f’,l)
l =3.502384>>
>> A=[2 2 1 0;2 0 0 0; 1 0 0 2;0 0 2 -2];
[l,u]=PowerD(A); fprintf(’l =%f \n’,l)
l =3.502384
>> disp(eig(A)’)

-3.3063 -1.2776 1.0815 3.5024

� For matrix B, we also get the maximal eigenvalue, although it is double;
see Remark 10.3.1.

>> B=[15 0 9 0;0 24 0 0;9 0 15 0;0 0 0 16];
>> [l,u]=PowerD(B);
>> fprintf(’l =%f \’,l)
>> l =24.000000
>> disp(eig(B)’)

6 16 24 24

� For matrix C, the algorithm does not compute the eigenvalue of maximal
modulus, even though all eigenvalues are simple.

>> C=[1 2 -3 4;2 1 4 -3;-3 4 1 2;4 -3 2 1];
>> [l,u]=PowerD(C);
>> fprintf(’l =%f \’,l)
l =4.000000
>> disp(eig(C)’)

-8.0000 2.0000 4.0000 6.0000
disp(eig(C)’)

Explanation: let us calculate the eigenvectors of matrix D, then compare
them with the initial data of the algorithm x0 =

(
1
2 , 1

2 , 1
2 , 1

2

)t.

>> [P,X]=eig(C); P, X
P =

0.5000 -0.5000 -0.5000 -0.5000
-0.5000 -0.5000 -0.5000 0.5000
0.5000 0.5000 -0.5000 0.5000
-0.5000 0.5000 -0.5000 -0.5000

X =
-8.0000 0 0 0

0 2.0000 0 0
0 0 4.0000 0
0 0 0 6.0000



264 11 Solutions and Programs

We see that x0 is an eigenvector of C corresponding to the eigenvalue
λ = 4. In this case, it is easy to see that the sequence of approximated
eigenvectors, generated by the power method, is stationary (equal to x0).
The sequence of eigenvalues is stationary too.
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conjugate gradient, 171
convergence of an iterative method,

144, 145
Courant–Fisher, 31
Cramer formulas, 72
critical dimension (Krylov), 170

decimal base, 77
deflation, 197, 213
determinant, 20
diagonal, 20, 26
diagonalization, 29
diagonal matrix, 22
dichotomy, 203
differential, 165
digits, 78
direct method, 77, 97
direct sum, 25
discretization, 1
double-precision, 78

eigenspace (generalized), 25
eigensubspace, 25
eigenvalue, 24

algebraic multiplicity, 24
multiple, 24
simple, 24

eigenvalue problem, 191
eigenvector, 24
elementary operation, 62

equation
normal, 7

Euclidean norm, 45

factorization
Cholesky, 112
LU, 104
QR, 117, 132
Schur, 28
SVD, 35
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finite difference, 2, 11
Fisher, 31
fixed-point representation, 77
floating-point

arithmetic, 79
representation, 77

forward substitution, 74, 97
frequencies, 8
Frobenius, 46, 53

Galois, 191
Gauss–Seidel, 148
Gaussian elimination, 97
Gauss method, 97
generalized eigenspace, 25
Givens, 198, 203

rotation, 198
Givens–Householder, 203
gradient, 163, 165

conjugate, 171
variable step, 169

Gram–Schmidt, 15
algorithm, 15
modified, 40
theorem, 15

Hermitian
matrix, 20
product, 15

Hessenberg, 212
hexadecimal base, 77
Householder, 136, 203

identity matrix, 18
ill conditioned, 82
image, 19
Inf, 79
inverse matrix, 18
inverse power, 195
invertible, 18
iterative method, 76, 143

by blocks, 157
convergence, 144, 145
error, 144
programming, 156

residual, 144
termination criterion, 156

Jacobi, 147, 200

kernel, 19
Kronecker symbol, 18
Krylov

critical dimension, 170
space, 169

Lanczos, 214
Laplace, 1
Laplacian, 85
least squares fitting line, 5
linear regression, 5
linear regression line, 5
linear system, 71

conditioning, 79
overdetermined, 75
underdetermined, 75

lower triangular matrix, 20
LU, 103

machine precision, 79
mantissa, 78
matrix, 17

adjoint, 20
band, 110
block, 22, 157
companion, 191
determinant, 20
diagonal, 20, 22, 26
eigenvalue, 24
eigenvector, 24
exponential, 56
function, 56
Givens, 198
Hermitian, 20, 30
Hessenberg, 212
Householder, 136, 204
identity, 18
ill conditioned, 82
image, 19
inverse, 18
invertible, 18
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kernel, 19
lower triangular, 20
nonnegative, 30
nonsingular, 18
norm, 46
normal, 20, 29
null space, 19
orthogonal, 20
permutation, 22, 99
polynomial, 25
positive definite, 30
pseudoinverse, 36
range, 19
rank, 19
self-adjoint, 30
sequence, 54
series, 55
singular, 19
size, 18
sparse, 146
spectral radius, 24
spectrum, 24
square, 18
symmetric, 18
trace, 19
transpose, 18
tridiagonal, 3
unitary, 20
upper Hessenberg, 212
upper triangular, 20
Vandermonde, 217
well-conditioned, 82
Wilkinson, 219

matrix series, 55
method

gradient
variable step, 169

bisection, 203
Cholesky, 112
conjugate gradient, 171
deflation, 197, 213
dichotomy, 203
direct, 77
finite differences, 2
Gauss–Seidel, 148

by blocks, 148
Givens, 203
Givens–Householder, 203
gradient

conjugate, 171
gradient, 163
inverse power, 195, 196
iterative, 76
Jacobi, 147, 200

by blocks, 148
Lanczos, 214
LU decomposition, 103
normal equation, 131
power, 194
QR, 209
QR factorization, 116, 132
relaxation, 149

by blocks, 149
Richardson’s, 163
SOR, 149
successive overrelaxation, 149

min–max, 32
min–max principle, 31
minimal polynomial, 25
modes, 8
modified Gram–Schmidt, 40
Moore–Penrose conditions, 37
multiple eigenvalue, 24
multiplicity, 24

NaN, 79
nonnegative, 30
nonsingular, 18
norm, 45

Euclidean, 45
Frobenius, 46, 53
matrix, 46
Schur, 46, 53
subordinate, 47

normal equation, 7, 126, 131
normal matrix, 20
null space, 19

operation
elementary, 62
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orthogonal matrix, 20
overdetermined system, 75
overflow, 79

partial pivoting, 102
permutation, 19, 99

signature, 19
permutation matrix, 22
pivot, 99
pivoting

complete, 102
partial, 102

Poisson, 1
polynomial

characteristic, 23
matrix, 25
minimal, 25
preconditioning, 91

positive definite, 30
power, 194
precision

double, 78
machine, 79
single, 78

preconditioner, 91
preconditioning, 91, 182

diagonal, 91
incomplete Cholesky, 114
LU incomplete, 106
polynomial, 91
right, 91
SSOR, 184

principle (min–max), 31, 32
problem

eigenvalue, 191
programming, 156
pseudoinverse, 36
pseudolanguage, 63

QR, 117, 132, 209

range, 19
rank, 19
Rayleigh, 31
Rayleigh quotient, 31

reduction
simultaneous, 31

regular decomposition, 143
relaxation, 149
residual, 144, 170
Richardson, 163
rounding, 78

scalar product, 15
Schur, 28, 46, 53

complement, 68, 70
self-adjoint, 30
sequence of matrices, 54
signature, 19
significand, 78
simple eigenvalue, 24
simultaneous reduction, 31
single-precision, 78
singular, 34
singular matrix, 19
singular value, 34
size, 18
SOR, 149
space

Krylov, 169
null, 19

sparse, 146
spectral radius, 24
spectrum, 24
splitting, 143
square matrix, 18
SSOR, 184
stability, 76
storage

band matrices, 110
Morse, 146
of sparse matrices, 146
triangular matrices, 75

Strassen, 65
subordinate norm, 47
subspace

direct sum, 25
eigen, 25

substitution
(back), 97



(forward), 74, 97
sum

direct, 25
supremum, 47
SVD decomposition, 35
symmetric, 18
system

linear, 71
overdetermined, 75
underdetermined, 75

termination criterion, 156
theorem

Bauer–Fike, 193
Cayley–Hamilton, 25
Courant–Fisher, 32
Gaussian elimination, 99
Gram–Schmidt, 15
simultaneous reduction, 31

trace, 19
transpose matrix, 18
triangular, 26
triangularization, 26
tridiagonal, 3

underdetermined system, 75
underflow, 79
unitary matrix, 20
upper Hessenberg matrix, 212
upper triangular matrix, 20

Vandermonde, 217
variable step, 169
vibrating string, 10
vibrations of a system, 8

well-conditioned, 82
Wilkinson, 219
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BackSub, 92, 241
BinChanceMat, 38, 224
ChanceMat, 38, 224
Check2, 247
Check, 247
Cholesky, 119
Cond1, 94, 244
Cramer, 93
DiagDomMat, 43
ForwSubL, 92, 242
ForwSubU, 92
ForwSub, 92, 241
GaussCompletePivot, 120, 252
GaussPartialPivot, 120, 251
GaussSeidelCvg, 159
GaussWithoutPivot, 120, 251
Gauss, 120, 250
Givens, 222
GradientCP, 190
GradientC, 190, 260
GradientS, 189
GradientV, 189
GramSchmidt1, 40, 226
GramSchmidt, 40, 225
HilbertMat, 38, 224
HouseholderTri, 222
Householder, 142, 257
House, 257
ILUfacto, 124
InTheImage, 93
InitRHS, 96, 247
JacobiCvg, 159
Jacobi, 159
LUBand, 121, 256
LUfacto, 119
Laplacian1dD, 95, 246
Laplacian2dDRHS, 123
Laplacian2dDSparse, 123
Laplacian2dD, 123
Lcond, 94
LnormAm1, 94

Lnorm, 94
LowNonsingularMat, 38, 224
LowTriMatMult, 69, 239
MGramSchmidt, 40, 227
MatMult, 69, 240
MatRank, 39, 224
NonsingularMat, 38, 223
NormAs, 57
NormA, 57
PdSMat, 42
PlotGersh, 43, 232
PowerDef, 221
PowerD, 221, 262
PowerI, 221
PrecondP, 95, 245
RelaxJacobi, 160
Relax, 160, 258
StoreBpv, 121, 256
StoreB, 121, 255
StoreLpU, 93
StoreLpv, 92, 242
StoreL, 92, 242
StoreUpv, 92
StoreU, 92
Strassen, 70
SymmetricMat, 38, 223
UnitCircle, 58, 234
UpNonsingularMat, 38, 224
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