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Summary. The condition number  of a problem measures the sensitivity of 
the answer to small changes in the input. We call the problem ill-posed 
if its condition number  is infinite. It turns out that for many problems of 
numerical analysis, there is a simple relationship between the condition 
number of a problem and the shortest distance from that problem to an 
ill-posed one: the shortest distance is proport ional  to the reciprocal of the 
condition number (or bounded by the reciprocal of the condition number). 
This is true for matrix inversion, computing eigenvalues and eigenvectors, 
finding zeros of polynomials, and pole assignment in linear control systems. 
In this paper  we explain this phenomenon by showing that in all these 
cases, the condition number  • satisfies one or both of the differential inequali- 
ties m. Kz<]IDKII<M.K 2, where IIDMh is the norm of the gradient of K. 
The lower bound on qIDKII leads to an upper bound 1/(m~c(x)) on the distance 
from x to the nearest ill-posed problem, and the upper  bound on IIOKIt 
leads to a lower bound I/(M~(X)) on the distance. The attraction of this 
approach is that it uses local information (the gradient of a condition number) 
to answer a global question: how far away is the nearest ill-posed problem ? 
The above differential inequalities also have a simple interpretation: they 
imply that computing the condition number  of a problem is approximately 
as hard as computing the solution of the problem itself. In addition to deriv- 
ing many  of the best known bounds for matrix inversion, eigendecomposi- 
tions and polynomial zero finding, we derive new bounds on the distance 
to the nearest polynomial with multiple zeros and a new perturbation result 
on pole assignment. 

Subject Classifications: AMS(MOS):  15A12, 15A60, 65F35; CR:  F.2.1, 
G.1.0. 

1. Introduction 

The condition number  of a problem measures the sensitivity of the answer 
to small changes in the input. We call the problem ill-posed if its condition 
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number is infinite. The ill-posed problems typically form a lower dimensional 
surface in the space of problems. It turns out that for many problems of numeri- 
cal analysis, there is a simple relationship between the condition number of 
a problem and the shortest distance from that problem to the surface of ill-posed 
ones: the shortest distance is proportional to the reciprocal of the condition 
number, or bounded by the reciprocal of the condition number. Sometimes, 
the distance is bounded below by the reciprocal of the condition number squared. 
This is true for matrix inversion, computing eigenvalues and eigenvectors, finding 
zeros of polynomials, and pole assignment in linear control systems. 

For  example, in the case of matrix inversion, if A is perturbed to A+6A,  
then to first order the solution A-  ~ becomes A-  1 + X where 

IIxll 
< IIA-111 �9 II6AII 

IIA-111 

(II'IP is any operator norm). Thus the condition number of this problem may 
be taken as IIA-111. It is well known I-8] that the shortest distance from A 
to the surface of singular (ill-posed) matrices is 1/IIA-111. Similar results for 
computing eigendecompositions and zeros of polynomials are due to Wilkinson 
[16] and Hough [7] and will be discussed further below. 

In this paper we explain this phenomenon and unify the techniques used 
to obtain these results by showing that in all these cases, the condition number 
x satisfies one or both of the following differential inequalities 

m "to2< tlO~ll <~ M'tc2 (1.1) 

almost everywhere, where O < m < M  and IIDKII is the norm of the gradient 
of K. From the lower bound on IIDKII we will deduce that there is a curve 
x(s) (the "steepest ascent" curve of K), parametrized by arclength s and with 
x(0) = x, such that 

d 
d s  K(x(s)) >_ m- K 2 (x(s)). 

This last inequality can be integrated explicitly (see Lemma 1 below), yielding 
an upper bound on the distance dist(x, P) (which depends on ]l" H) from x to 
the set P of ill-posed problems 

1 
dist (x, P) < m. s:(x)" 

From the upper bound on []D•ll we will deduce that if x(s) is any smooth 
curve parametrized by arclength with x(0)= x, then 

d 
dss ~ (x (s)) < M./~2 (X (S)). 

This inequality can also be integrated explicitly (Lemma 2), yielding a lower 
bound 

1 
_< dist (x, P) 

M. ~(x) 

on the distance to the nearest problem with an infinite condition number. 
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For some problems we can prove a differential inequality of the form II D~c II 
M. ~c 3 which yields a lower bound on the distance 1/(2 M~c 2 (x))< dist(x, P). 

The attraction of this approach is that it uses purely local information (the 
norm of the gradient of the condition number) to answer a global question: 
how far away is the nearest point in a (generally quite complicated) set of 
ill-posed problems? This approach is quite similar in spirit to Wilkinson's "fast 
perturbation theory" for eigenvalues [17], with which we compare our method 
in Sect. 4 below. In fact, we argue in Sect. 4 that the idea behind using inequalities 
(1.1) to get distance estimates, doing steepest ascent on the condition number 
x, generalizes Wilkinson's fast perturbation theory to a numerical approach 
applicable to a large class of problems. 

The differential inequalities (1.1) have two simple and attractive interpreta- 
tions. To state the first one we need to define the relative condition number 
of the mapping g at x as 

I[g(x +6x)-g(x)lt/llg(x)lt 
~:re~ (g, X) = limsup 

a~-o {laxll/llxl{ 

_ I l D g ( x ) l ] "  lixll 

IIg(x)ll ' 

where the second definition is only true if the Fr6chet derivative Dg of g exists. 
As is well known, Xre~ measures the maximum instantaneous relative change 
in g per relative change in x. It is easy to see that by multiplying (1.1) by 
llx[l/tc(x), we get 

m.tc(x)<Gel(rc, x)<_M.tc(x) if Ilxdl = 1. (1.2) 

Inequalities (t.2) mean that solving the problem x, normalized so tixli = 1, is 
essentially just as hard (within factors m and M) as computing the condition 
number tc of the problem x. If we further assume that K is homogeneous, i.e. 
x(c~x)=akrc(x) for all real positive ~, then inequalities (1.1) and (1.2) can be 
shown nearly equivalent (see Sect. 7). The near equivalence of inequalities (1.1) 
and (1.2) is very satisfying because it says that if the condition number x has 
the utterly reasonable property of being just as hard to compute as the solution 
x itself, then it has the attractive geometric property of being the reciprocal 
of the distance to the nearest infinitely ill-conditioned problem. Indeed, the 
common formulas for relative condition numbers (e.g., NAIl" Ilh-~l[ for matrix 
inversion) lead one to believe that one must solve the problem (e.g., compute 
A - t )  to within reasonable accuracy to get a reasonably accurate condition 
number. This intuition is corroborated by the results in this paper. 

The second interpretation of (1.i) is as a restatement of Newton's method. 
This interpretation applies only when the mapping g, which maps a problem 
to its solution, has as domain and range either the real or the complex numbers, 
and is smooth except for poles. For  example, g may be a rational function 
of a single real or complex variable. As condition number we take the absolute 
condition number, which is just a multiple of the relative condition number 
defined above: 

[[g(x +6x)-g(x)l{/llg(x)l] IlDg(x){I 
Gbs(g, x) =-- limsup 

ax-~O Ilaxll Ilg(x) l( " 
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Since both domain and range are one dimensional, /labs(g, X) can be written 
as Jg'(x)/g(x)l. If g is smooth except at poles, the condition number  can be 
infinite only at poles and zeros of g. The problem of finding the distance to 
the nearest ill-posed problem thus becomes the zero (or pole) finding problem. 
If  we are close enough to a zero, we expect the absolute value of the Newton 
correction g/g' to be a good estimate of the distance to the nearest zero. But 
Ig/g'l is just the reciprocal of the condition number  ~:,b~- In Sect. 8 we show 
that (1.1) will asymptotically hold with m = M = 1 in a sufficiently small neighbor- 
hood of the set of ill-posed problems, thus yielding the Newton correction as 
the correct distance estimate. This also works in the neighborhood of multiple 
zeros and poles. 

This connection with Newton's  method becomes weaker when the domain 
and range of g are just linear spaces of the same dimension greater than one. 
Nonetheless, there is a connection which we also explore in Sect. 8. 

For  eigenvalue problems, polynomial zero finding, and pole placement this 
interpretation does not apply. The reasons are twofold: first, the problem space 
and solution space are of different dimensions, and ill-posed problems occur 
not at zeros and poles but at branch points. It is natural to ask if some general 
statement can be made about  the condition number  and distance to the nearest 
branch point. It turns out we can show that in a sufficiently small neighborhood 
of a branch point of  any algebraic function, the distance is bounded below 
by a multiple of the reciprocal of the square of the condition number. We 
show this in Sect. 9. This result is reflected in gaps between the best known 
upper and lower bounds on the shortest distance for eigenvalue problems 
(Sect. 4)) and polynomial  zero finding (Sect. 5). 

The rest of the paper  is organized as follows. In Sect. 2 we present our 
differential inequalities and solve them. Sects. 3 through 6 cover matrix inversion, 
eigendecompositions, polynomial  zero finding, and pole assignment. Sects. 3 
through 6 may be read independently. The results on matrix inversion and 
some of the results on eigendecompositions are known, but others are new. 
Much related work on the eigenvalue problem has been done by Wilkinson 
[17, 18] and we compare  our approaches in Sect. 4. One of our upper bounds 
on the distance from a polynomial  to one with a double zero is known but 
another  is new. Our lower bound on this distance is new. Our results on pole 
assignment are also new. Sect. 7 discusses the equivalence of inequalities (1.1) 
and (1.2) when the condition number  is homogeneous.  In Sect. 8 we discuss 
the connection with Newton's  method mentioned above. In Sect. 9 we show 
that when the solution of the problem is any algebraic function we expect a 
lower bound on the distance in terms of the reciprocal of the square of the 
condition number. Sect. 10 discusses extensions. 

2. Differential Inequalities 

The differential inequalities we need are given in the following lemmas. The 
first one will be used to derive an upper bound on the distance to the nearest 
ill-posed problem in terms of the condition number. 
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Lemma 1. Suppose m > 0, Yo > 0, c~ > 1 and 

d 
ds Y(S)>-m y~(s), y(0)  = yo.  

Then y(s) becomes infinite for some satisfying 

1 
0 < s <  

(c~-- 1).m.y~ -1" 

Proof. The differential inequality implies y is positive and strictly increasing, 
so by a standard result in the theory of ordinary differential equations [6, Thm. 
III. 4.1] it is hounded below by the solution of 

d 
d~ z(s) = raze(s), z (O):  Yo 

which, as easily verified, is 

z ( s )  = Yo 
( l_(o~_ l )my~-  l s)~- l) - ' " 

Since z(s) has a pole at 1/((~-  1) my~- 1), y(s) must have a pole before that. q.e.d. 
Now suppose x were continuously differentiable wherever it was finite and 

that the norm [ID~c(x)[I were an operator  norm induced by some vector norm:  
HD~:(x)II = sup D~c(x).y. Suppose further that Dx(x) had a continuous dual 

Hrr[ = 1 

vector field y(x). In other words y(x) should satisfy ]ly(x)H =1  and Dx(x).  
y(x)= HD~c(x)tl. Then we could define a curve x(s), parameterized by arclength 
(l[~(s)ll = 1), as the integral curve of the vector field y(x) passing through x (0)= x. 
The curve x(s) is simply the curve along which x increases most  rapidly at 
each point (the curve of " steepest ascent"). If  Dx(x) satisfied [IOx(x)lI >m'~c2(x), 
then by the chain rule ~c(x(s)) would satisfy 

d 
~c (x (s)) = D K  ( x ( s ) ) .  ~(s)  = II O ~:(x (s))II >- m-  ~:2 (x (s)) 

so by Lemma 1 i/(m.~c(x)) would be an upper bound on the distance in the 
I1' II norm from x to the nearest ill-posed problem. Unfortunately, x is not every- 
where continuously differentiable for the problems we consider in this paper. 
Nonetheless, we will see that it is always smooth enough to construct a smooth 
curve x(s) along which ~c(x(s)) increases sufficiently fast to apply Lemma 1. 

The next differential inequality will yield a lower bound on the distance 
to the nearest ill-posed problem in terms of the condition number. First define 
the right derivate of a continuous function f as 

f ( x  + h ) - f ( x )  
D + f(x) - limsup 

h ~ O +  h 

Lemma 2. Suppose M > 0 ,  y(s)>Ofor all s, yo>0 ,  f l>  1 and 

D + y (s) _< M y '  (s), y (0) = Yo. 
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Then y(s) is finite for 
1 

O<--s < ( f l_ l). M .  yFo- l " 

Proof. Since y(s) is positive, the same standard result as used in the proof of 
Lemma 1 implies that it is bounded above by the solution of 

d 
~sZ(S)=MzP(s), z(0)=y0 

which, as in the last lemma, is 

Yo 
z ( s )  = 

(1 --(fl-- l) My~o -~ s) (p- 1) ' '  

Since z(s) is finite for all s less than 1/((fl- i) My~o - 1), so is y(s). q.e.d. 
Now suppose tc were continuously differentiable wherever it was finite and 

satisfied [IDx(x)lt-< M-lc 2 (x), the norm on D x an operator norm as before. Then 
for every smooth curve x(s) parameterized by arclength and passing through 
x(0)=x,  ~c(x(s)) would by the chain rule satisfy the conditions of Lemma 2, 
thus yielding a lower bound 1/(M.ic(x)) on the distance from x to the nearest 
ill-posed problem. As mentioned above, x is not continuously differentiable 
for the problems we consider, but it is smooth enough to satisfy the constraints 
of Lemma 2 for smooth curves x(s). 

3. Matrix Inversion 

In this section II" II will denote an arbitrary vector norm, I1~ lID the dual norm" 

ilyrll/)= sup lyrxl 
x,O Itxll 

and IIAII the induced matrix norm" 

l l ax l l  
lial] = s a p  

x , o  Ilxll 

Let P be the set of singular matrices. Let dist (A, P) denote the minimum distance 
from the matrix A to the set P: dist(A, P )=  inf [FA-SII. 

S ~ P  

As discussed in the introduction, IIA- ~ll is a condition number for the prob- 
lem of inverting the matrix A. This is true because to first order 

( A + 6 A ) - l = A - 1 - A - 1 6 A A - l  +O(II6AlI2)=_A-X + X 

so that for small 6A 
IIXII 

IIA-111 
[I A-1 II-116All. 

The following result is originally due to Eckart and Young 1-4] when I[" I[ is 
the Euclidean norm and to Gastinel [8] for arbitrary norm: 
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Theorem 1. [Gastinel] Let P be the set of singular matrices. Then 

dist (A, P)=  IIA- 11/- x, 

i.e. the reciprocal of the condition number IIA-111 of the problem of inverting 
A. 

Proof If 116A II < IIa-111-1 then A + 6A is invertible since 

(A+bA)-~=(I+A-X bA) - IA  -1 and IIh-'6Zl[<llh-Il1116All<l. 

Therefore dist(A, P) >_ IIA-1I1-1, To show equality holds choose x and y such 
that I Ixl l=l l f f l lo=l  and yTA-1x=IIA-1II (the existence of x and y follows 
from the definitions of the norms). Let 6 A = -  IIZ-llb-lxyT. Clearly IIOAII 
= IIA-1]I-1. To see A + 6 A  singular note that (A+fA)(A- lx )=O.  q.e.d. 

We now prove this theorem using Lemmas 1 and 2. This alternate proof 
is no simpler than the above one, but illustrates the techniques we use later. 

Theorem 2. Let P be the set of singular matrices. Then 

dist (A, P)=  IIa- 111-, 

Proof To show dist(A, P)>  IIA-111 1 let A (s) be any smooth path from A(0)= A 
to A(so)~P parameterized by arclength (i.e. IIA(s)ll = 1). Then 

D + [ [ A - l ( s ) l b  = limsup 
h~O+ 

= limsup 
h~O+ 

= limsup 
h~O+ h 

[IhA- l (s) A (s) A -  l(s)][ 
< limsup < [1,4 - 1 (s)]l 2. 

h~O+ h - 

IIA-l(s+h)ll-  ]lZ- 1 (s)ll 
h 

[L(A (s) + h A  ( s ) ) -  11t - II A - 1  (s)11 

h 

IIZ-l(s)--hA-l(s)  A(s) A-1 (s) ll - IIa- l(s) ll 

Applying Lemma 2 with M = I  and f l=2  implies ][A-l(s)l[ remains finite for 
s<llA-111-1. Since the path A(s) from A to P was arbitrary, we have 
dist (A, P)>_ I]A-1N-1 

To prove the opposite inequality we need to choose a path A(s) along which 
I[A-l(s)l] increases as quickly as possible, i.e. we need an integrable vector field 
X(A), [[X(A)qI=I, where Lqa-~x(z)a-xll=lLa-lll2. Let x(A) and y(A) be 
defined as in Theorem 2 IIx(A)ll = IlyT(A)IIo=I and yT(A)A-~ x(A)= IIZ-lll. 
Now let X(A)=x(A)yT(A). Assume for the moment that X(A) is integrable, 
and let A(s) be an integral curve parameterized by arclength such that A(0)= A 
and IIA- l(s)ll is increasing. We will show that 

d 
ds HA-l(s)[[ = ]lA-l(s)ll2 
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so by  L e m m a  1 (with m = 1 and  c~ = 2) [[A 1 (s)[[ becomes  infinite for s = ILA- ill - 1 
as desired. 

We  show X(A)  is integrable by integrat ing it explicitly. Its integral curves 
are s traight  lines as they mus t  be since they are geodesics in a n o r m e d  linear 
space. To  p rove  this it suffices to show tha t  if Ilxll=[lYrllo=l and y r A - ~ x  
= [IA-~ [I, then y r ( A - - s x y  r) x =  I [ (A-sxyr ) - l l l  for s sufficiently small. This fol- 
lows f rom the S h e r m a n - M o r r i s o n  formula  [5] 

s A - t x y r  A -1 
( A - s x y r )  -1 = A -  1 _~ 

1 - - s y r A  -1 x 
SO 

sllA-~[I e I[A-al[ 
II(A--sNMT)-IH<~IIA-111-4 l _ s l tA-11[  1 - s l l A - l t l  

and 

s(yr A -1 x)(yr A -1 x ) =  iiA_111 -~ s l l A - ' l l  2 
y r ( A - s x y r ) - l  x = y r  A - l  x-~ l _ s y r  A - l  x 1 - s H A - 1 [ I  

tlA-XI[ 
1 - s l l A - ~ l t  

SO 

IIA-11[ 
yr  ( A - s x  yr ) -  i x =  II(A- s x f f  ) -  lll = 1 - s l l A  -1 tl " 

Finally, differentiating we see 

d s = O -  d [13-111 s :o  do [ l (A- sxyr ) - l l l  ds 1 - s t l a - ' l l  = IlA-l[[ 2 

as desired, q.e.d. 

In  this proof,  we explicitly in tegrated the vector  field X(A)  in order  to show 
integral  curves existed. This is not  general ly possible or  desirable, and in our  
later examples  we only show that  X(A)  is cont inuous ,  which is sufficient for 
integrability. 

4. Eigenvalue and Eigenvector Computations 

In  this section we consider  the p r o b l e m  of compu t ing  a simple eigenvalue or 
cor responding  e igenvector  of  a general  mat r ix  T. In  this section we let It'll 

denote  the 2 -norm llxll = [xil 2 , 
i 

IITxH 
[d Ttl---sup , 

~,o  IIxll 

and [I TItF=(~ IY/j[2) 1/2. Let 2 be a s imple eigenvalue of  T, x its right e igenvector  
i j  

and y r  its left eigenvector ,  where we normal ize  so tha t  f i x =  1. The  pro jec tor  
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P belonging to 2 is defined as x y  r and has norm ]IPIL = Ilx[I Ilyrll. It is well 
known [15] that if we perturb T by 6T, 2 can change at most by [62[< 
][P]] [16Tj[for small 6T, and that this bound is attainable. Therefore, we call 
NP]] the condition number of the eigenvalue 2. It is also known [9, 16] that 
the distance from T to a matrix which has a double eigenvalue (at 2) is bounded 
by j[ T[i/([JP[] 2_  1)1/2, or approximately I[ T][/[JP[I for large I]P[[. An n-tuple eigen- 
value 2 is infinitely ill-conditioned because a perturbation of size ~ in the matrix 
can change 2 by e, 1/", whose derivative at ~=0  is infinite. Therefore we may 
take the set of matrices with multiple eigenvalues as our surface of ill-posed 
problems. Thus the reciprocal of the condition number []P[] bounds the relative 
distance to the nearest infinitely ill-conditioned problem. We will obtain this 
result using Lemma 1. 

Similar considerations show that the same surface is the set of ill-conditioned 
problems when computing eigenvectors, although the condition number for 
eigenvectors differs from the one for eigenvalues. It is known that the reciprocal 
of the eigenvector condition number is a lower bound on the distance to the 
nearest matrix with multiple eigenvalues [2, 14]. We will obtain this result 
using Lemma 2. 

There can be quite a gap between these upper and lower bounds on the 
distance to the nearest matrix with a multiple eigenvalue. Several authors [2, 
9, 13, 16, 17, 18] have explored the geometry of the set of matrices with multiple 
eigenvalues, and attempted to find simple ways to measure the distance from 
a given matrix to that set, but large gaps still remain between the best known 
upper and lower bounds. Wilkinson [17, 18] in particular has pointed out the 
inadequacy of the current bounds, and suggested a numerical approach to find 
the distance from any given matrix to the nearest matrix with multiple eigen- 
values. His method also depends on using perturbations which cause the eigen- 
values to rush together and increase their condition numbers nearly as quickly 
as possible (he calls this "fast perturbation theory");  a major point of our work 
is that this approach can be used on a wide variety of problems, not just the 
eigenproblem. Such a numerical method may find a much closer ill-posed prob- 
lem then the bounds provided by our theorems can guarantee. We will point 
out the relation between our approach and his as we go, and at the end we 
will summarize and compare the various bounds in the literature. We will also 
propose an explanation of the gap between our upper and lower bounds as 
a feature of any algebraic function (see also Sect. 9). 

First we need some notation. Since our matrix norm is invariant under 
orthogonal transformations, we may assume without loss of generality that our 
matrix T is in Schur canonical form [5] : 

i 0x;] 
Occasionally we will write 2(T) to emphasize the (cointinuous) dependence of 
2 on T. Let r - (B - -2 ) - 'Cx .  It is easy to show that in this coordinate system 
the right and left eigenvectors of 2 may be written x = [ 1 , 0  . . . . .  0] T and yr  
=[1,  --rT], SO that (NPI]2-1) 1/2= 1]rl]. It is to this last quantity we shall apply 
Lemma 1. If we perturb T to T+ 6 T, with 
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[,~ T, 1 6T12] 
6 T = [ b  T21 6T2z ] 

partitioned conformally with T, then to first order in 3T P is perturbed to 
[10] 

P + f P =  P + S 6 T P  + PfiTS (4.1) 

where S is the reduced resolvent, or 

S - ! i m ( I - P ) . ( r - z ) - ' =  ( B - A ) - '  ] 

in this coordinate system. Expanding (4.1) yields 

p + b p = [  1 --rT] [rr(B--,~) -1 ~T21 

1o o ]+[ 
6T, 1 rT(B--2) - '  + b TI 2 (B--,~)- ' 

- r T  3 T22(B-- )O - ' -- rT (B-- )O-16 Tzl rr-- rT b Tz l rT (B-- 2) -1 

- - (B- -2 ) - '  6T2, rr]. (4.2) 

We consider two perturbations, one where only 6T22 is nonzero (this is 
the perturbation used in [163) and one where only 6T2, is nonzero. It is easy 
to find the smallest perturbation of 6T22 that makes T + ~ T  have a double 
eigenvalue at 2: 

Theorem 3. [Wilkinson] I f  f[P[[> 1 then there exists a 6Twi th  only r 
such that T+ ~ T has a double eigenvalue at 2 and 

/ITII 
tI6TII _< (][pll2 -- 1)a/2" 

Proof. The 6T22 we seek is the smallest perturbation such that B--2+6Tz2 
is singular, which has norm H6TzzH= H(B-2 ) - ' I I -L  But since r = ( B - - 2 ) - r x ,  
[]rll-< nx][ H(B-2)- '  11 _< IITH rl(B-2)-  '[1 or 

]]TN I]Tt] 
[I(B- 2)- 1[1-1 < [Irll -(llPll 2-1) ' /2  

as desired, q.e.d. 

As pointed out by Wilkinson, this upper bound can be much weaker than 
the simpler upper bound I](B- 2)-1 I[- 1. For example, if 

the upper bound of Theorem 3 is infinite and t I (B-2)- ' I1-a  is ~. Nonetheless, 
it does provide a one-sided inequality between the shortest distance and the 
reciprocal of the condition number. 
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Theorem 4 . / f  [IP]J > 1 then there exist a 3T with only 6T22#0 such that T + 6 T  
has a double eigenvalue at 2 and 

II TH 
IIOTII-< (llPII2-1y/2" 

Proof To apply  L e m m a  1 when only 3T224:0 we need to compute  

(IIP +6PIIZ-1)1/z-(IIPII2-1)I/2=(][Io - -rr--rr  6T22(B--2)-O 1] 2_1)1/2 

= I l r r+  rT6T22(B--2)-111- Ilrrll 

when 116T H approaches  zero. Let t ing r,=r/llrH, it is easy to see this last expres- 
sion is 

r f T22(B_ 2)- - Re [Irll r,, 1G 

to first order  in 6T22. N o w  since r=(B- -2) - rx ,  

SO 

tlrll2=xr(B_X) l ( B _ 2 ) - , . y ~ = x r ( B _ 2 )  - 1?<_ [jxll I I (B-2 )  ~?11 

Ilrll 2 Hrll 2 
II(B-~)-1 ~11 ~ I~-]/~ IITII " 

Therefore by choosing 6 T22 to be a small multiple of  

we get 

frr(B - 2)- 1, (4.3) 

r 6T22(B-2)-l~, ,> Re Ilrll r.  
I laTzzl[  [Irll 2 

IITII 

This implies thai  we m a y  choose 3 T  so that  the rate of  change of (]]PI] 2 -  1) 1/2 

= [[rl[ is at least [[r[[ z/[[ Tll. The  vector  field given by (4.3) above  is clearly smoo th  
and integrable,  so we m a y  let y(s) = - [Ir(s)[I where r(s) is c o m p u t e d  a long an 
integral curve of the vector  field. Thus  

and we m a y  apply  L e m m a  I to y(s) with m = II T l l -  a and  e = 2 to get the desired 
upper  bound  

I[Tll IITIF 

y(0) - (ll PII 2 _ 1)1/2 

on the dis tance to the neares t  matr ix  with 2 as a double  eigenvalue, q.e.d. 

We may  prove  a similar t h o r e m  when we only per turb  T21. Intuit ively we 
would expect such a pe r tu rba t ion  to be at least as effective as one in the 6T22 
position since it can move  bo th  the eigenvalues of  B and 2 ( T +  6 T). 
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Theorem5. I f  IIPll >1 then there exists a 5T  such that T + f T  has a double 
eigenvalue at 2(T+ 5 T) and 

211TIIF 
}16TI] < (11P112_ 1),/2 

Proof. Setting all but 6T2, to 0 in (4.2) yields 

oq 
[rr(B--2)-16T21 - r r ( B - 2 ) - i S T 2 1  r r - r r 6 T 2 ,  rr(B--2) -1] 

+[ (B--2)-'cST21 --(B--2)-16TzI r r J" 
When 6T is small the square of the norm of this perturbed projector is at 
least 

l + 2 R e r T ( B - - 2 ) - ' 6 T 2 1 +  HrH 2 

+2{Irll Re(rT(B--2)-16T21 rT~.+rT 6T2, rT(B--2)  -1 ru) 
= 1 + IIr[IZ + 2 R e  r~ (B- - , , t )  - '  E(llrll= + 1)+ Ilrl lZ~.r~] ~T2a 

where r, = r/HrH. Now 
21Lr[I 

]I2rT(B--2) -1 [(l[rl12 + 1)+ Ilrll2 f.  r.T] II >_ 
IIB-,tll II [(IFrll2 + 1)+ Ilrll 2 ~u r. ~3 -111 
IIrll 3 

> - - -  

- II TII ,~  
(4.4) 

where IITIIF is the Frobenius norm (the reason for this choice instead of the 
smaller I[ T I[ will be clear in a moment). Thus by choosing 3 T2~ a small multiple 
o f [ 2 r r ( B _ 2 )  ,[(][r[tE+l)+[]r[[2- T , r , r  u]] we get 

(liP+ 6PII 2 - 1) 1/2 -(I[PII 2 -  1) '/2 ~ (IIPII 2 - 1 )  115 r2~ I[ 
2 IL T[I~ 

Since all quantities defining 6T21 are analytic [10] the vector field defined by 
5T2, is integrable. Furthermore, it is orthogonal to T (in the tr T*6T21 inner 
product) for all T. Therefore its integral curves lie on spheres of constant 11TIIF- 
Thus, along an integral curve the function y (s) = (t[ P IF 2 _ 1)~/2 = I[ r (s)[I satisfies 

Z[llllv 

so we may apply Lemma 1 with m=i/(21ITIIv) and c~=2. Note that IITllF is 
constant along the curve. Lemma 1 implies that there is a perturbation ~T21 
of 2-norm at most 2]]TJ[v/([[P[I2-1) '/2 that makes the eigenvalue 2(T+6T) 
double, q.e.d. 

Perturbations in T2~ were also considered by Wilkinson [17, 18] under the 
name "fast perturbations," since for many nearly defective matrices they can 
make the eigenvalues rush together as fast as possible. In a series of examples 
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Wilkinson showed one could expect to find a smallest  pe r tu rba t ion  to make  
"c lose"  eigenvalues coalesce of size approx imate ly  rain 1/212-2'1/(11P~ II + II ~ ,  II), 

A'ea(B) 

where a(B) is the spec t rum of B, instead of IITll/llPll. The intuit ion behind 
Wilkinson's  es t imate is this: the distance 2 and 2' have to move  to merge  is 
]2-2 '1  and their speeds are II~ll and IIe~,ll. The factor  1/2 comes f rom their 
accelerat ion as they app roach  one another .  At  the end of this section we show 
that  Wilkinson 's  es t imate  is nearly a lower bound  on the no rm of the smallest  
per tu rba t ion  needed (al though it m a y  occasional ly be a gross underest imate)  
and in fact belongs to a family of  lower bounds  including the one in Theo rem 
7 below. 

We can mot iva te  Wilkinson 's  es t imate f rom the p roof  of  Theo rem 5. In 
mak ing  the est imate (4.4) we used the bound  

i l r r (B_2)_ , l l  > Ilrl 
l iB-All 

which a l though a t ta inable  is often pessimistic. When  2 is very close to an eigen- 
value of B 

Ilrll 
Ilrr(B-2) 111 

rain I)~- 21 
A'~(B) 

is a much  bet ter  approx imat ion ,  and leads to Wilkinson 's  es t imate when IIP~ll 
> IIP~,II. 

We turn now to comput ing  eigenvectors.  Let Ill" I]l denote  an a rb i t ra ry  opera-  
tor norm.  F r o m  (4.1) we can see that  if T i s  per tu rbed  by 6T, P can be per tu rbed  
to first order  by at mos t  11[6PIIl<_21[[SI]l.[I]Plll.l[[6T[[]. A close examina t ion  of 
(4.2) shows this bound  can be nearly at tained,  so II[Slll.llIPlII m a y  be used as 
a condi t ion n u m b e r  for P. The next theorem will use L e m m a  2 to show that  
i/([lISll [ �9 [[IPl[I) is a lower bound  on the distance to the surface of i l l-posed p rob-  
lems. This result is essentially identical to other  results in the l i terature [2, 
143. 

Theorem 6. The distance in the Ill'Ill norm from T to the nearest matrix T + f T  
where 2 ( T +  6 T) is a multiple eigenvalue is at least 

1 

7-111sI[I.IIIPIII" 

Proof. We need to compu te  the gradient  of  IlISlll' IllPlll. Since we are only inter- 
ested in an upper  bound,  it will suffice to use the first order  bound  

Ills + 6Sill- [liP + 6 P i l l -  IllSlil" IlIPlll -< IllSIll" Ill6 Pill + 11[6Slll" IlIPlll. 

Following K a t o  [103 we m a y  compu te  to first order  

S + 6 S = ( I -  P - 6  P)(A + ~ A - ( I -  P - 6  P)( T+ 6 T))- I ( I -  P - 6  P) 

= S - P 6 T S S - S S f T P -  2(tr P6T)  SS + S b T S  

so that  

1116siii-< 5 IIIPIII" IIISIII 2" 1116 Till. 
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Here we use the fact that P is of rank 1 to bound I tr 6 TPI ~1116 Till-IIIPIII. Similarly 
from (4.1) 

Ill'Pill-< 2 IIISIII. IIIPlll" II1~ Till. 

Therefore 
IllS + ~sIII. IIIP + ~PIII-  IIISIII. IIIPIll ~ 7(lllSIII. IIIPIII) 2. II1~ Till. 

Now let y(s)=lltS(s)lll'lllP(s)lll where T(s) is any smooth curve parameterized 
by arclength from y(0)= T to T(so) where 2(T(so)) is a double eigenvalue. Then 

d 2 
y(s) < 7 y (s) 

so we may apply Lemma 2 with M = 7  and f l=2  to get that So, the distance 
in the Ill" III norm to the matrix T+ 6 Twith 2 (T+ 6 T) a double eigenvalue, satisfies 

1 
So > 7. IIISIll" IIIPIII" 

q.e.d. 

By choosing a specific Ill-Ill we will see that this result recovers a number 
of lower bounds in the literature. For  example, if we choose IIIXlll-IIKXK-~II 
where K diagonalizes T, we get the lower bound of the Bauer-Fike Theorem. 
We can also recover one of the best current lower bounds in the literature 
to within a constant factor [2, 14]. Let 

R =[10 --rr 
IrPIJ/] 

It is easy to see that R TR -1 =diag(2, B), and in fact the condition number 

x ( e ) =  Ilel[ l ie -  11[ = IlPll +(I[PI[ 2 -  1) 1/2 

of R is the minimum over all matrices which block diagonalize T I-1]. Now 
choose 

IlIxlll- I[RXR- 'II. 

Then it is easy to see that the lower bound of Theorem 6 becomes 

1 _ 1  [0 0 0 ] - 1 .  [10 00 ] - 10 - mi n ( B __2)  

7" IlISlll" IIIPlll 7 (B-,~) -1 7 

Since IlXll ~lllXlll/~c(R), we see that a lower bound in the I1" II norm on the 
distance from T to the nearest matrix T+6Twhere 2(T+fT)  is a double eigen- 
value is 

Gmi n (B -- 2) 
7(llPI1 +(IIPII 2 -  1)1/2) ' 

which is within a constant factor of the lower bound amin(B-2)/(411Pll ) on 
the distance in the II" JIF norm in the literature. (This lower bound may be 
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improved by at most a factor of 4 to infmax(12-2 ' l ,  ~mi,(B-2'))/([IPl[ +(IIP{I 2 
- 1) ' /2)  E23).  ~' 

We can recover the lower bound ~rmi.(B-2)/(411PII ) by using a quantity 
proportional to it rather than IIISIII'IIIPIII as a condition number. In fact, we 
can prove a more general version by considering a group of eigenvalues of 
T rather than a single one 2, and using a condition number  for the projector 
associated with the entire group. This condition number  will be finite until 
one of the eigenvalues in the group merges with one outside the group;  the 
eigenvalues within the group may or may not be multiple. Following Stewart 
[I4],  we assume T is initially in Schur canonical form 

whee the eigenvalues of A consist of the group in whose projector we are inter- 
ested. We exhibit this projector by solving 

['0 c][I0 ,"]=[o ~ 
which upon manipulat ion yields the equation R B - A R  = C, a nonsingular sys- 
tem of linear equations as long as the eigenvalue of A and B are disjoint, which 
we have assumed. Then the projector associated with the eigenvalues of A is 

,=[; o 
The equation R B - A R = C  can be rewritten using Kronecker  products as 
(Br|  - I |  col R = col C, where V| W~_ [V 0 W] and col C is a column matrix 
made from stacking the columns of C atop one another from left to right. 
If we define sep(A, B)=--amln(BTQI--I| then clearly HRIIv<_ hlCIIF/sep(A, B). 
The lower bound on the distance (measured with LG" lie) from T to the nearest 
matrix where an eigenvalue of A merges with one from B is sep(A, B)/(4-IIPII) 
[t4].  We prove this result by using llPll/sep(A, B) as a condition number and 
using Lemma 2: 

Theorem 7. Let T, A, B, and P be as above. Then the distance in the I1"11~ norm 
from T to the nearest matrix where an eigenvalue of A merges with one in B 
is at least 

sep (A, B) 

4 '  LI/'ll 

Sketch of proof This result requires some technical machinery found in 1-14]. 
Briefly, if T is perturbed to T+6T, then to first order I]PNI and sep(A,B) are 
perturbed as follows: 

2.}IPII2.ptaTtIe 
16 IIPIJI< 

sep(A, B) 
and 

16 sep(A, B)l _< 2-IlPll-Ira TIIv. 
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Combining these we get 

6( IIP]t < 4 . (  f]Pi] 2 
\ s e p ( A , B ) ) -  \sep(A, B)) ]i6Ttlv. 

Therefore along any smooth curve T(s) parameterized by arclength and passing 
through T(0)=T,  the quantity x(T(s))- IIP(s) ll/sep(A(s),B(s)) satisfies 
D+~c(T(s))<4.KZ(T(s)) so by Lemma 2 the distance to the nearest T(s) with 
K(T(s)) infinite is at least sep(A, B)/(4. N P rl)- (This lower bound may be improved 
to sepa(A, B)/(NPN +(]IPI] 2-1)1/2), where sepa(A, B)=-infmax(amin(A--2' ), 

2' 

ami, (B -- 2')). This improved lower bound is often close to sep(A, B)/(4 IIPIL) but 
can be much larger [2].) 

Now we compare and evaluate the various bounds on the distance from 
a matrix to the nearest one with a multiple eigenvalue. We assume for the 
moment that we have chosen an eigenvalue 2(T) and wish to compute the 
distance d~-116 T I] to the nearest matrix T+ 6T where 2(T+ 6 T) is a multiple 
eigenvalue; later we will consider the choice of 2. Assume without loss of general- 
ity that the matrix Thas  norm liTtle= 1 and is in the form 

B J  

Let P~ denote the projector associated with 2. Then the upper and lower bounds 
on d~ we have discussed so far may be summarized as: 

1 a,.in(B~ - )3 
(lIPall2-1) 1/2>-amin(Bx-)O>-da>- 4 IlP~ll (4.5) 

The lower bound on da was improved by at most a small constant factor in 
[2] but is good enough for our purposes. Since (I]P~ll 2 -  1)- l/2 >_ O-rni,(Bz-- 2), 
we see that the lower bound on d~ can be no smaller than the square of the 
upper bound O-min(Bz-)~ ) (recall that H Tllv= 1 so that these are all bounds on 
the relative distance and generally less than I). This is the maximum gap between 
the upper and lower bounds. We explain in Sect. 9 why we expect such a gap 
for algebraic functions (such as eigenvalues) in general. Examples [2, 9, 17, 
18] have shown that either bound may be a better approximation of dx; for 
example, the lower bound is nearly exact for 2 by 2 matrices. 

By slightly modifying the proof of the Bauer-Fike theorem, we can show 
Wilkinson's estimate of dx is nearly a lower bound: 

1 12 -2 ' [  
d~ > min . (4.6) 

- a , , v  n IIP~II + IIP~,II 

b = l  

In fact, given any partitioning a (B)=  (._) a i of the spectrum of B into disjoint 
i = l  

pieces there is a lower bound of the form in (4.5) or (4.6); these correspond 
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to the extreme part i t ions b = l ,  a ~ = a ( B )  in (4.5) and b=n, ai={2'i} in (4.6). 
These results are stated in the next theorem: 

Theorem 8. Suppose 

T =  

- )~ , �9 

B 1 * , 

B2 * 

Bb- 1 

is block upper triangular. Suppose Bi has spectrum ai, dimension ni and associated 
projector Pi, with B o = [-2] for consistency. Let S i be an n by n i matrix of orthonor- 
real columns spanning the right invariant subspace of T belonging to al, and let 
S = [So I.-. [ Sb- ,  ]. Then S block diagonalizes T: S -  1 TS = D = diag (Do . . . . .  O h -  1), 

where Di has spectrum al. Then 

l O'mi n ( D  i - -  ~ )  
min 

dx>2b-- O<i<b max(llPoll, IIP/ll)" 

Proof We claim that  if X - - 2 ( T + 6 T )  is an eigenvalue of the per turbed matr ix  
T+ J T, then 6 T satisfies 

1 Gmin (Di -- Z) 
]I~TII-> ~ miin I[P~[I (4.7) 

In other words, 2 -mus t  lie in an inclusion region about  one of  the ai, but  
the size depends only on the sensitivity of the cluster IIP~II ra ther  than the maxi- 
mum sensitivity max  IIP~LI which is the usual form of the Bauer-Fike theorem. 

We prove (4.7) as follows. It is easy to see that  IlSI1-<]fb [1, Thm 2] and that  

S - 1  

S(;_' ,~J 

(S(7)' is ni by n) satisfies ILS~) 111 = IIP~II [1, Thm 3]. Assuming that  2-is not  already 
an eigenvalue of T, we have 

O=det(r+ a T-- 2-)=det((T-- X)(t + ( r -  70- ' a T))=det(I + ( r -  ~)- l a r) 

= d e t ( I + ( D - 2 )  1S-16TS)  

implying 1 _< H(D - Z)- t S -  ~ 6 rs][. 
So far this is the usual proof. What  changes is that  now we write 

1 _< ]I(D- Z) - 1 S - ' 6 r s l l  _<]/@-max H(D,--s 10TSII 

< b . II 6 T II max }[(Di--2-)-11111P/ll 
i 
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o r  

1 O'min (Di  - -  ~- ) 
116TII > _ ~ m i n  IIP~ll 

proving (4.7). 
From (4.7) we proceed as follows. If 2- is a multiple eigenvalue of T+ 6 T, 

then it must lie within the inclusion regions 

10"min(Di - -  2- ) 
I I ~ T I I >  

b lIP, IT 

for both i=  0 and at least one i > 0. In other words 

1 /I).-7q O'min (Di -- ~)) 
116TtI>~ min min O</<b  ~. max~l jP  ~ ' jlPi]j 

1 1 
> ~ min min max(12- ~1, O-min(Di- X)) 

o<i<b max(41Poll, I[P/ll) 

1 1 
> - -  min m~ O'min (Oi  - -  ,~ ) 2b o<i<b max(llPolP, IIP/II) __k_n 
I 

(where we have used [2, Corollary 4.9]). This is the desired result, q.e.d. 

When b=  1, we can take D 1 =B1, thus providing an alternate proof of the 
lower bound in (4.5). Similarly, when b = n, we can strengthen the result slightly 
to get (4.6). No particular partitioning of ~r(B) is always best; for example, some- 
times the lower bound in (4.5) is stronger and sometimes (4.6) is stronger, and 
both may simultaneously be gross underestimates. These results have also been 
obtained by Wilkinson. 

If we let d-=min d~ be the shortest distance from T to any matrix with 
2 

a multiple eigenvalue, we see that any upper bound on any dz is an upper 
bound on d and that a lower bound on d is given by the minimum of all 
lower bounds of all da. For example, (4.5) leads to the lower bound 

O'min (B2 - -  )t ) 
d > min (4.8) 

and (4.6) leads to the lower bound 

1 12-2' [  
d_> min 

~ , , v  n IIP~II + IIP~,II " 
(4.9) 

Even though neither (4.5) nor (4.6) is uniformly better than the other, it is 
easy to show that the bound in (4.9) may never be much smaller than bound 
in (4.8), but it may be much larger. Unfortunately, (4.9) may occasionally also 
be pessimistically small. 

In short, estimating da and d explicitly seem to be quite difficult analytical 
problems. In practice, for a given matrix, the technique of following a condition 
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number "uphil l"  until it reaches infinity is still a practical optimization method 
for getting upper bounds on da and d even if it is hard to prove sharper explicit 
bounds in general. 

A related problem to estimating d is computing the distance to the nearest 
matrix with an eigenvalue of higher multiplicity. Wilkinson has constructed 
examples where even though it is possible to coalesce any two eigenvalues with 
a perturbation of some very small size, it requires a far larger perturbation 
to make all the eigenvalues coalesce simultaneously [17, 18]. Much work remains 
to be done to understand the geometry of the set of matrices with multiple 
eigenvalues. 

5. Polynomial Zero Finding 

i �9 Let p(z)= piz'  be a complex polynomial  with a simple zero at x: p(x)=0.  
i = 0  

Let FIpH denote the Euclidean norm of its vector of coefficients. If p is perturbed 

by adding a sufficiently small polynomial e(z)= ~ ei z ~, then to first order p + e 
i = 0  

will have a simple zero at x + 6 x = x -  e(x)/p' (x). This follows from simply solving 
the Taylor expansion 

O-=(p+e)(x +~x )=p(x )+6xp ' ( x )+e (x )+O([ l e I I2 )=~xp ' ( x )+O( t l e l [  2) 

for 6x. Thus, we may use I1/p'(x)[ as a condition number  for the zero x. In 
this section we will find relationships between the reciprocal of the condition 
number Ip'(x)l and the distance from p (measuring using I1" N) to the nearest 
polynomial where x merges into a multiple zero. An n-tuple eigenvalue is infinite- 
ly ill-conditioned because a perturbation of p of norm e can cause a perturbation 
of x of size e 1/" which has an infinite derivative at ~=0. Therefore we may 
take the set of polynomials with multiple zeros as our set of ill-posed problems. 

In this section we will show that the distance to the nearest polynomial 
where x merges into a multiple zero is indeed bounded by a small multiple 
of the reciprocal of the condition number. As a lower bound we get a quantity 
proportional to the reciprocal of the condition number  squared. The zero x 
is an algebraic function of the coefficients of p, and in Sect. 9 we explain why 
we expect a lower bound proport ional  to the reciprocal of the condition number  
squared for any algebraic function. 

The most  general previous result relating Ip'(x)[ to the distance to the nearest 
polynomial where x becomes double is due to Hough [7]. We need some nota- 

tion- if p is a polynomial  p(z)= ~ p~ z i of degree at most n, let p-= [Po,- . . ,  p,]r  
i = 0  

denote the vector of its coefficients. For  any complex number  z, let z 
~ [1, z, z 2 . . . .  , z"] r. Therefore, p(z) =pr_z. Also, let z ' -  [0, 1, 2z, 3z 2 . . . .  , nz" -  ~]; 
thus p'(z) .~prz '. Finally, " -  - , let _z = [0, O, 2, 6z . . . . .  n ( n -  1) z"-2] �9 thus p"( z )=p  r z_". 
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Theorem 9. [Hough] Suppose p is a polynomial of degree at least 2 and p(x)=0. 
Then the smallest polynomial e of degree no greater than p such that p+e  has 
a double zero at x has norm 

Ilel l  = 
Ip'(x)l 
--x*- x ~  II <]/21p'(x)l'min(1,1xl/-"). 

x' -,1 112 

Sketch of Proof This is an underdetermined linear least squares problem 

[ o 
. . . . . .  . e l  

0 1 2x . . .  i x  i - 1  . . .  nx "-~ - p ' ( x  

n 

which can be solved explicitly for a solution of minimum norm, giving the 
claimed solution. 

Our approach proceeds by computing the gradient of ll/p'(x)l under changes 
in p, subject to p(x)--0. We compute this gradient in the next lemma. 

Lemma 3. Let p be a polynomial of degree at least 1. Let D e denote the directional 
derivative of 1/Ip'(x)l (x a zero of p) in the direction of the polynomial e, where 
Ile[I = 1. Then 

~X "~X ~ X' ] 1 ~ T I - P [ )  D'-IP'(X)I r(ee- L ~  p~(x)'] 
Furthermore, 

x_p"(x) 
if(x) x_' 

IDe l<A-  
Ip'(x)l 2 

Proof The directional derivative of 1/Ip'(x)l in the direction of a unit vector 
_e is 

D e = l i m l [ _  1 1 ] 
~ o  I(p+ee)'(x+ax)l Ip'(x)l ' 

where x + 6 x  is a zero o f p + e e .  From our earlier formula for 6x we have 

p'(x) 1 O( ~,2 ) De :~ im le ~(x)p"(x) ~-ee'(x)+ 

p'(x) 
Ip'(x)l 

1 ] 
= ~ i m ~  i ee(x)p"(x) ~e'(x) ~-2,1 1 . 
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Noting tha t  if q is a small  complex  number ,  

we see that  
II+nl 

- 1 - R e  ~ / +  O ( f f l l 2 ) ,  

1 . [e(x)p"(x) ~ ]  

X ,i "X" X - - ]  _ 1 ~ r l - P t )  

Ip'(x)l Ke-e [ ~  P %1 
as claimed. We can clearly pick a unit  vector  f to make  D e equal  its upper  
bound 

_xp"(x) 
p ( x )  - _x' 

A ~  
Ip'(x)l 2 

q.e.d. 

Applying  this l emma  for e perpendicular  to x (i.e. e ( x ) = 0 )  yields the same 
result as in Theo rem 9: 

Theorem 10. Suppose p is a polynomial of  degree at least 2 and p ( x ) = 0 .  Then 
the smallest polynomial e of  degree no greater than p such that p + e has a double 
zero at x has norm 

Ip'(x)l 
x* _x' Ilell _x' ~_xllZ _x 

Proof. By choosing e such that  e r_x=0  in L e m m a  3 we get a vector  field in 
the space of po lynomia l s  a long whose integral curves the zero x of  p will not  
move. The  unit vector  e which satisfies erx_=O and maximizes  De is clearly 
the one in the direct ion of the vector  c o m p o n e n t  of  x'  o r thogona l  to _x, or  

e r x  ' =  _X'-- _x*x' 
[l_xl12 ._x - n ( x ) .  

This vector  field is clearly cont inuous,  so let p~ be an integral parameter ized  
by arclength. Let  y ( s )=  I1/p'~(x)l. Then  from L e m m a  3 we have 

d 
ds  y (s) = n (x) yZ (s) 

so by L e m m a s  1 and 2 y(s) has a pole at So=lp'(x)l/n(x), i.e. P~o has a double  
zero at x. To  see that  no closer po lynomia l  to p has this proper ty ,  note  that  
under the const ra in t  tha t  e r x  = 0, [Del < n(x)/lP '2 (x)[, so by L e m m a  2 [p'(x)l/n(x) 
is the m i n i m u m  distance to a po lynomia l  with a double  root  at x as well. q.e.d. 
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Withou t  much  more  effort, we get a similar theorem with a different con- 
straint on  e. 

Theorem 11. Let  p be a polynomial o f  degree at least 3 and p(x )=0 .  Then there 
is a quadratic polynomial e o f  norm at most 2]p'(x)[ such that p + e  has a double 
zero. This double zero corresponds to x in that as e increases f rom 0 to 1, the 
polynomial p +  ee has a simple zero which moves f rom x when e = 0  until it merges 
with another zero to fo rm a double zero at ~ = 1. 

Proo f  The first three componen t s  of 

x p"(x) 
x' 

p'(x) 

are 

[p"(x)/p'(x),  x .  p " ( x ) / p ' ( x ) -  1, x z .p"(x) /p ' (x)  - 2x]  -= [y, x y -  1, x 2 y  - 2x]  (5.1) 

For  any x or  y, one of  the componen t s  of this last vector has to have absolute 
value at least 1/2. To show this, assume to the cont ra ry  that all there componen t s  
are smaller than 1/2. Then I x y -  11 < 1/2 implies Ixyl > I/2 or IxL > 1/(21yl)> 1. 
Thus l x 2 y -  2 x] = ]x]. ] x y - 2 ]  > 1 - ] x y -  i [ >  1/2, a contradict ion.  Therefore by 
choosing e a unit vector  point ing the same direction as the vector in (5.1), 
we get 

1 
D~>~Zlp,(x)12" 

The vector  field defined by this choice of e is smoo th  since the componen t s  
in (5.1) are smooth,  so let p~ be an integral curve with zero xs, where s is 
arclength. Define y ( s )=  L1/ps(x~)l. Thus 

d y2(s) 

d s  y(s)>- 2 

so by L e m m a  1 there is a polynomial  Pso with a double  zero with So= lip 
-Psoll <_2lp'(x)l. q.e.d. 

Just  as we used L e m m a  1 to derive an upper  bound  on the distance to 
nearest polynomial  with a multiple zero, we will use L e m m a  2 to derive a lower 
bound.  

Theorem 12. Let  p be a polynomial o f  degree n >_ 2. Le t  ps be a continuous map 
f rom se [0 ,  So] to the space o f  polynomials o f  degree no greater than n, such 
that Po=P, and such that s is the arclength parameter. Let  x~ be a zero o f  Ps 
such that x~ is a continuous funct ion o f  s and Xo= x. Then i f  x.~ o is a multiple 

zero o f  P~o, 

[p'(x)l 2 

IIP-Psoll-> 4n 3 ' max  (IIP, II, IIP~II IxJ 2"-z) 
O<-s<so 
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Proof. F r o m  L e m m a  3 we know that  if []etl = 1 then 

Ilx_ p ' ( x ) -  x_' p'(x)l[ 
[DeI <_ A = ]p'(x)[ 3 

IIx_ pr x_"- x_'pr x_'II 
Ip'(x)l 3 

Ilxx"r p -  x_' x 'r  pll 
Ip'(x)l 3 

II_x_x"r--x'_x'rll IlPll _< 
Ip'(x)l 3 

where I1"11 is the 2 -norm of a matr ix .  The  mat r ix  x _ x ' r - _ x ' x  ' r  is an n + l  by 
n + 1 matr ix  whose no rm we m a y  bound  simply by 

IF-X_x'T--_X'_x'TIL ~ II_xl/" II_x'TII + li_x'tl2 ~ 2 n  3 m a x ( l ,  Ixl2"-2), 

This implies 

2n 3 m a x ( l ,  [xl 2"-2) IlPll 
IOel <- ]p'(x)] 3 

Now consider  the function y ( s ) -  1/Ip;(xs)l. We have just  shown 

d 
ds y(s) < 2 n 3 max ( l ,  [x~[ 2"-  z)IIpsll" y3 (S) 

so that  by L e m m a  2 y(s) remains  finite for 

Ip'(x)l 2 

S < S o -  4n3. max  (llp, lL, IIp~IL Ixsl 2"-2) 
O<_s<_So 

as claimed, q.e.d. 

At first glance it would seem hard  to apply  Theo rem 12 since So is defined 
in terms of itself. In practice, however ,  one would apply  the theorem when 
it is possible to make  x a mult iple zero by only a small per tu rba t ion  in p. 
Thus, x s should not  vary  much  f rom x nor  should IlPsll vary much  from IlPli- 
In such cases an app rox ima te  lower bound  is thus provided by the expression 

Ip'(x)l 2 
4n 3" LIPIL . m a x ( l ,  Ixl 2" 2)' 

Alternatively,  if we scale p appropr ia te ly ,  we can effectively es t imate  bo th  
llpsll and Ix~l. F o r  example,  if we assume that  the coefficients Pi of  p are no 
larger than  the leading coefficient p. divided by n: IPi]-< Ip,I/n for i<n  (which 
can be achieved by the simple change of variable x--* e x for appropr ia t e  c0, 
we get the following bounds :  
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Corollary 1. I f  p is a polynomial of degree n where the coefficients Pi satisfy 
[pil<<_lP.l/n for i<n, and if z is a simple zero of p, then the distance from p 
to the nearest polynomial q where z coalesces into a multiple root (in the sense 
of Theorem 12) is bounded below by 

> . 

I I P - q l l - m m k  n~ ,(5e2+9(3/8)l/2)n31lpl) >min , n3 Iipll ] 

Proof Assume q =  [Ip-qll ~ Ilpll/n2; otherwise the theorem holds trivially. Since 
[pil<lP.l/n, it is easy to see any zero z of p satisfies [zl<l.  Since I lp-ql l=t / ,  
if p~ is any polynomial on the line segment connecting p and q, IIP-P~II <q, 
so the coefficients Psi of p~ satisfy IPs.l>lP.l-~/ and IPs~l<lP~l+q. If z' is a zero 
of p~, it is easy to see z'/~ is a zero of the polynomial ~(x)=p~(~ x) whose 
coefficients Psi satisfy h0s~l = I~' psi. If we choose c~ = ([p.[ + nq)/([p.[-q) then 

I/%il < i IPi1-4- r / <  1 [ p . l / n  + tl _ 1 

I/%.1--~ ~ - ~  IP.l--q n 

so Iz'/c~[ < 1 or [z'[ < ~. Thus by Theorem 12 t /must  satisfy 

Ip'(z)l z Ip'(z)l 2 
r/> 4n3 (]]pl ] +q) max(l ,  c~ z"-z) >-- 

4n3( l+12~) l lP l [ ( i+~ . ]~  2"-2 

which is true only if 

4n3(1 + n~ ) ]'PI[ 
[ n~l'~2n-2 [ q ~2n-2  

which, since IlPll ~ Ip.l(1 + 1/n) 1/2 and n tl/IP.I ~ ]lP]ll(n2lp.l)~(n -2-1-n-3) 1/2 _<(n 
- -  1)- 1, is in turn true only if 

4n3 ( 1 + ~ 0  IlPl[ (2 n-- 2) (1 q-1)l/2 t/ 

> 1 14pll ,p,(z),2 '/ 1 + n_~l  1) 2 ' " - "  

o r  

Now 

1 

q>-4n3(l+n-2)  e2 IlPll ( 2 n - 2 ) ( l + n - 1 )  1/2" 
ip,(z)l 2 4 IlPl] 

3n--1  3 n - 1  
lp'(z)l<nlp.l+ ~ j < l p . I - - ~ - - <  IJptl 2 

j<n 
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so q is in turn bounded below by 

Ip'(z)l  2 

( n -  1)(3 n-- 1)2(1 
IlPlq 4 n a ( l + n  2)e2-f 2 

Ip'(z)l  2 0.0235 Ip'(z)l  2 

> ~-P Jl n3(5e2+9(3/8)l/2)>- n3 I]pll 

+ n - 1)1/2.) 

as claimed, q.e.d. 

6. Pole Assignment 

The pole assignment problem is defined as follows: given an n by n matrix 
A, an n by m matrix B, and a set {2i} of n complex numbers, find an m by 
n feedback matrix F such that A + B F  has eigenvalues {2i}. The motivation 
for this problem is the following: given a control system ~ = A x + B u ,  choose 
the control input u as a function F x  of x (feedback) to make the matrix of 
the controlled system ~ = (A + B F ) x  have a specified spectrum. It is well known 
that this problem has a solution for arbitrary {2g} if and only if the pair (A, B) 
is controllable, i.e. [B]AB[ AZBt...] A n. J B] has full rank n [19]. If the pair (A, B) 
is not controllable, then some eigenvalues (called the uncontrollable modes) of 
A + BF will be independent of F (and be eigenvalues of A); the remaining eigen- 
values can be set arbitrarily by choosing F. 

The robust pole assignment problem, as defined in [11], is to find F subject 
to the additional condition that X, the eigenvector matrix of A + BF = X A X -  1, 
be as well conditioned as possible (here A=diag(2i)). The condition number 
~(x) - I lXI I -  ItX- ~1[ (in this section H'll denotes the 2-norm and I1" JlF the Froben- 
ius norm) of the best conditioned X turns out to measure the size the sensitivity 
of both F and the time dependent solution of the control system ~ = (A + BF)x .  
For example, if the 21 are distinct, then IIFII will get larger as x(X)  gets larger 
(see [11] for details). Therefore, we shall take ~c(X) as our condition number 
for the robust pole assignment problem. 

We will also use a slightly different measure ot distance than used before: 

dist((Ao, Bo),(A 1 B "'-- I lao--at l lv LIBo--BIlIF (6.1) 
' l))=min(ILAoqlv, Ilallt~) -~ min(lIBoNe, IIBIlIF)" 

This distance has the advantage of being insensitive to the scaling of A and 
B. 

As in previous sections, we are interested in relating x(X)  to the distance 
from (A, B) to the nearest ill-posed pair (for which no X exists). How do we 
characterize the set S of problems (A, B) (for fixed {21}) which are ill-posed? 
From the above discussion, it is clear that it includes all uncontrollable (A, B) 
where {2i} does not include the uncontrollable modes (e.g., if no 2i is an eigen- 
value of A). 

Using Lemma 2, we will prove a theorem which gives a lower bound on 
the distance to the set S of ill-posed problems in terms of the reciprocal of 
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the condition number  to(X). Before doing so we state the following lemma from 
[11]: 

Lemma 4. [Kautsky,  Nichols, Van Dooren]  Let 

where U =  [Uo, U1] is unitary and Z is of full rank. Let X i = N ( U * ( A - - 2 i I ) ) ,  
where N(.) denotes the null space. Then the i-th column xi of X (the right eigenvec- 
tor of  A + BF for the eigenvalue 2/) satisfies x ieXl .  

Proof Premultiply the equation A + BF = X A X  - 1 by U* and rearrange to get 

Z U~ 

or, taking the last n-rank(B) rows 

0 = U* (AX  -- XA).  
q.e.d. 

Let X i be a matrix of or thonormal  columns spanning Xi, and let S 
=[X~I. . .[Xn].  If B is of full rank and 2i is not an eigenvalue of A, X~ will 
be n by m. Lemma 4 says that the eigenvector matrix X can be written as 

I !] X = S .  0 ui (6.2) 

0 , 

where u~ is a column vector of the same dimension as X~. Since it is hard 
to characterize the condition number  of X, we instead use the following lower 
bound based on S: 

Lemma 5. Let X and S be defined as above. Then 

n 

Proof Assume without loss of generality that IIXll : 1. This clearly implies that 
Iluill < 1 in (6.2). Now let a be the smallest singular value of S and v* the corre- 
sponding left singular vector, i.e. II v* II = 1 and II v* S II--~r. Then it follows simply 
that IIv*Xtl <~r. Thus 

n 

as claimed, q.e.d. 
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It is to am2(S) that  we will apply L e m m a  2 to get a lower bound  on the 
distance to the nearest ill-posed problem. 

Lemma 6. Let O'miln(S(A, B)) be the value of O'mil(s) for the S defined by A and 
B. Let S be the set of problems (A, B) for which O'min(A , B))=0. Let dist((A, B), S) 
be defined as 

dist((A,B),S)=- inf dist((A,B),(As, Bs)). 
(As, B.)eS 

Assume B is offidl rank and that none of  the 2i is an eigenvalue of  A so that 

and 

~B -~ I[ B II F/Gmin ( B )  

KA = max (ll A -- •i I1V' H (A -- 2,)- X ll, II A It F" II CA - ~,)- 111) 
i 

are well defined. Then 

dist ((A, B), S) > 
0.187 

~ "  KB' K A �9 O'miln (S (A, B))" 

Proof Consider  per turbat ions  A + 6A of A and B + 6B of  B. We need to estimate 
for small 6A and 6B 

- 2  - 2  - (Tmin(S)--Gmin(S6) : II(SS*) 'll - [ l (So s~')- 111 =- 6 I/(SS*)- 111 

where S = S(A, B) and S6 = S(A + 6A, B + 6B). Let Xi denote  the matrices of  orth-  
onormal  columns comprising S =  [ X d  ... IX,] and let a be the smallest singular 
value of  S. If  the per turbat ions  6A and 6B yield per turbat ions  6 X  i in Xi, then 
S becomes [X~ + 6 X d  ... IX, + 6X,]  and SS* becomes (to first order) 

SS* -[- ~ t~X i X.* t -'1-X i (~X~" ~-SS* -I- [ 6 x ~ l  . . .  I ~ x J  s* + s [ 6 x , I  ... I~x . ]*  
i=1 

and (SS*)- 1 becomes (again to first order) 

(SS*) -x - ( S S * ) -  1 ([~SX,I ... 16Xn] S* + sEOXll ... 16x.]*)(ss*)- '. 

What  we need to estimate, then, is 

I I ( s s * ) -  ~ ( [ 6 x , I  ... 16 x J s* + s [ 6 x ,l . , ,  Io x J * ) ( s s * ) -  l lb. 

Now it is easy to see that  [[S*(SS*)-~[I =a  -1 so 

II(SS*)- 1 ( [6x11  .. .  16 x , ]  s* + s[(~ g l[  ... [(~ Xn]*) (SS*  ) - l t l  

< 2 a -  3. l] [ 6 X l 1  ---16X,,]  II 

_ < 2 ] ~ a  -3 .  max ll6X/ll. 
l ~ i ~ n  

(6.3) 
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To estimate I}~Xill note  that  Xi:N(U~'(A--)~i))=R((A-2i)* U1) • where R(.) 
denotes the column space of  (-). Now let Y be an n by n -  m matr ix of o r thonor -  
mal columns and YJ- an n by m matr ix of o r thonormal  columns or thogonal  
to the columns of Y Then  if Y is per turbed  to Y + f Y ( f Y  in an arbi t rary direc- 
tion), it is easy to verify that  Y• is per turbed to Y •  Y6 Y* yl .  

In our  case we want  Y to span R ((A - hi)* U1) so we may take 

Y= (A - 21)* U1 (U* (A - hi)(A -- hl)* U1)- 1/2 

Xi can be taken as Y• and so 

6Y=(fA* U1 +(A--21)*fUO.(U*(A-2i)(A--2i)* U1)- 1/2 + (A--2i)* U1 D 

where tlDl[ is on the order  of  tl0all and 116BI1 and where the result of per turbing 
B to B+6B is to per turb  U1 to UI+fU1. Thus 

SO 

6 Xi = - Y [(3 A* U1 + (A - 41)* 3 U1 ) ( U* (A -- 2,)(A - 4,)* U~ ) - 1/2] X i 

IlOXill ~<(II,~A II-4-IIA-2ill" I[~ U~II)[I(U* ( A -  21)(A-4i)* U1)-1/211 

<(l16Al[ + IIA -2i l l -  116 U~II)II(A - 2 3 -  all, 

We estimate I]~U1 II similarly. Let  Y= B(B* B)-1/2 be a set of o r thonorma l  
columns spanning the range of B. We may take Uo as Y Per turbing B to B + f B  
makes an equivalent  change of 6Y=6B(B*B)-I/Z+BD in Y, where ItDtl is on 
the order  of It~Bll, so 

IIOBN 
II 6 Ux II = II - Y,~ Y* Y• I[ < - -  

O'min (B)" 

Putt ing these estimates together  yields 

I[6 Xldl <-N6AII" I I (A-2i)- l t l  + 11bell "a~il (e ) 'K(A-  21) 

and substituting into (6.3) we get the following bound  on the change in 
t l(ss*)- 1t1: 

3 II (SS*)- 111 _< 2 Vn  a - 3 .  max(ll 3 A 11" 11 ( A -  2,)- 111 + I[ 6B I1" ~mi~. (B)-tc ( A -  2i)) 
i 

/[n~allF II~BIIF\ 
< 2 ~  a -  3"[ l [~ -~v  + ~ ) "  XA" Xn. (6.4) 

We are now prepared  to apply Lemma  2. Let  (A(s), B(s)) be any smooth  
curve from (A (0), B (0)) = (A, B) to (A (So), B (So)) e S with the following propert ies:  

(1) It is parameter ized by arclength in the sense that  

d A ( s )  v d B ( s )  v 

1. 
IIa(s)llF llB(s)ll~ 
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(2) A(s) is the shortest smooth path from A(0) to A(so) such that IIA(s)IIF 
lies between min(llA(0)llv, HA(so)lie) and max(l[A(0)NF, HA(so)Hv) for all O<_s<_so. 
It is easy to see that this assumption implies that the length of the curve A(s) 
(measured using ]1. lie) is no more than ~/2 times as long as the straight line 
distance N A (0)--A (So)II v- We make the analogous assumption about B(s). 

Let y(s)= ami2(S(A(s), B(s))). Then from (6.4) we see 

d 
ds y (S) < 2 ~ ~C A (s) Ks(s) y312 (S) 

so by applying Lemma 2 with/3 = 3/2 the "distance" So to set the S is at least 

1 1 

So->[/~ m a x  (#Ck(s>tQl(s))yll2(o) ]/n m a x  (RSA(s) K'B(s))O " -1  
O<_s<_so O<--s<.so 

We relate So to the relative distance (6.1) as follows: 

~o ~ A(s) F ~ B(s) 

So= ~ IIA(sl[Iv I- liB(silly 0 
ds 

<_ t 
min NA(s)I[F rain IIB(s)IIF 

O<_s<<_So O<-s<_So 

7"C TC 
IIA(O)-A(so)NF ~ IIB(O)-B(so)IIF 

< r 
-min(l/A(0)HF, IlA(so)llF min(HB(0)Nr, liB(so)lie" 

Therefore 2-So/~ is a lower bound on the distance measure (6.1). 
It remains to estimate the maximum of SeA(s) Xs(s) in the denominator. 
Note that if 

then 

and 

IIA(s)- AHr NB(s)--BII~ 
4 <_q 

min(NANv, IIA(s0)llv) min(IIBNF, liB(so)lie) 

N~SA}IF ~- IlA(s)-AllF<~rt JIANF~rI~cA II(A --~i)- I I I -  1 

II~BIIF~ N B(s)- BllF ~ q Il BllF=rl~CB~rm~.(B). 

(6.5) 

Therefore 
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Similarly 

~CA~s) =max(llA(s)lle. I](A(s)-AD-XlI, IIA(s)--21]le" II(A ( s ) - 2 , ) -  ' I[) 

( mA H,~AIIF' 'I(A - ,~D- ' I, ) 
<max 1-tt(A-. D- ll - It6A tie + 1 2-  

l + q t r  A 

~ / ~ A "  1 - -  ~]/~a " 

IIB(s)ll~ < IIBllF+II6BIIF I+~I~CB 
lgB(s)- ~ 7 ~  -- O'min (B)  - -  113BIIF < ~cB. 1 - r/~c 8" 

Thus (6.5) implies 
(1 + ~/max(teA, tcB)) 2 

xa(,) xB(~)< KA tO8 (1 --~/ max(KA, ~r 2" 

Thus, dist((A, B), S) can be less than q only if 

2 
q >  

-1 (1 +~/max(KA, ~8)) 2 ,/7__ 
7~ V n K A N B G (1 - r /max(Ka, KB)) 2 

or, rearranging 

( 2  ~//n tea ~B a - '  q ) ' ( l  + max(teA, ~r r/)2 _> (1 -- max(teA, tcB) ~/) 2. (6.6) 

Since a <  [ISI[ < V  ~, XA >_ 1 and xB_> 1 

~ ]//~ teA tr n x  o'- i >_ max(KA, ~r 

Thus (6.6) is true only if 

] ~ K A K B O . - l l ~ .  I_[_~]//nKAI(,BO.-I~] 2 >  l _ _ ~ l ( A l ( , B ( ~ - l l ~  �9 (6.7) 

]/~K'AK, BO'--lq, we see (6.7) is equivalent t o  x( l+x)2>_(1-x)  2, Letting x = ~  

or x 3 + x 2 + 3 x  - 1 >_0, which is only true if x >0.295. Thus 

0.295 0.187 
dist ((A, B), S) >_ > 

1 
KB 0 - 1  

as was to be proved, q.e.d. 
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Combining this with Lemma 5 yields 

Theorem 13. Let S be the set of (A, B) where no nonsingular matrix X of eigenvec- 
tors exists. Let B of full rank, no 2i be an eigenvalue of A, and xa and xR 
be defined as in Lemma 6. Then 

0.187 
dist ((A, B), S) > _/-- 

/s V n x~ Ks 

Let U be the set of  uncontrollable pairs (A, B). Then we also have 

0.187 
dist ((A, B), U) > 

I/n KA Ks K(X)" 

Proof From Lemma 5 we have •(X)_> amid(S), so the first claim follows immedi- 
ately from Lemma 6. The second claim follows since the set of uncontrollable 
problems U is contained in S. q.e.d. 

We can also write the second inequality of Theorem 13 as 

0.187 
K(x)_> 

[ /n ~A ~B dist ((A, B), U) '  

implying that the closer (A, B) is to being uncontrollable, the larger the condition 
number K(X) of the problem. Note that the factors ~a and Ks, both at least 
1, tend to make the lower bound on K(X) smaller. The reason for this is as 
follows. If K(B) is large, a very small perturbation of B can change the space 
R(B) spanned by its columns greatly, in particular in such a way that the pole 
assignment problem becomes quite easy. Therefore we cannot guarantee that 
K(X) will be bad in this case. Similarly, if K(A) is large, some 21 is nearly an 
eigenvalue of A. Thus, even if (A, B) is nearly uncontrollable, only a small pertur- 
bation may be needed to put a pole at 21. In the extreme case when {21} is 
the spectrum of A, F = 0  solves the pole assignment problem even if (A, B) is 
exactly uncontrollable and so K(X) depends only on how hard it is to diagonalize 
A. A similar result to Theorem 13 was proven in [3] using more ad hoc tech- 
niques. 

7. Interpretation of the Differential Inequalities 

In this section we provide a numerical interpretation of the differential inequali- 
ties 

m.K2_< HDtcII ~ M . K  2 (7.1) 

stated in the introduction. We will use the relative condition number 

xro~(g, x) = 
IlDg(x)lt- tlxll 

Ilg(x)ll 

this formula holding only if g is differentiable. 
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As in the introduction, it is easy to see that by multiplying inequalities 
(7.1) by Ilxll/•(x), we get 

m'K(X)~Krel(E,x)~M'I~(X ) i f  Ilxtl = 1. (7.2) 

Inequalities (7.2) are equivalent to the statement: solving the problem x, normal- 
ized so Ilxll = 1, is essentially just as hard (within factors m and M) as computing 
the condition number ~ of the problem x. 

If we further assume that the condition number K of Eq. (1) is homogeneous 
of degree k, i.e. ~(~X)=~k~(x) for any real positive ~, then for ~ = 0  or ~ = - - 1  
we will show that (7.2) is essentially equivalent to (7.1). All the condition numbers 
K considered in this paper are homogeneous, either with k = -  1 (for matrix 
inversion, eigenvectors, and polynomial zeros) or k = 0 (for eigenvalues and pole 
placement). K is homogeneous in these cases because the problems themselves 
(i.e., the mapping from problem to solution) whose conditioning ~ measures 
are homogeneous. 

The main point of this paper has been that if (7.1), or equivalently (7.2), 
holds, then the distance d from the problem x to the nearest point in the set 
of ill-posed problems P is bounded by 

1 1 
<d_< (7.3) 

M~c(x) mtc(x) 

(how d is measured depends on the norm II'll and whether the degree k of 
homogeneity is - 1  or 0). Conversely, we will see that if we define K(x) to 
be lid then this ~c(x) satisfies the differential inequalities (7.1) and (7.2) with 
m = M = l .  

The near equivalence of (7.1), (7.2) and (7.3) is very satisfying, because it 
says that if the condition number ~ has the utterly reasonable property of being 
just as hard to compute as the solution x itself, then it has the attractive geomet- 
ric property of being 1 over the distance to the nearest infinitely ill-conditioned 
problem. Indeed, the common formulas for relative condition numbers (e.g., 
IIAIi" IlA-~ll for matrix inversion) lead one to believe that one must solve the 
problem (e.g., compute A-1) to within reasonable accuracy to get a reasonably 
accurate condition number. This intuition is corroborated by these theorems. 

To state our results, we will need to measures of distance. If II" I] 2 is Euclidean 
distance, define 

dist2 (x, P) -= inf II x - y Ib 2 ,  
y~P 

where P is the set of ill-posed problems. Assume the set P is homogeneous, 
i.e. x~P implies ~xEP for all scalars ~. This will be true if ~c is homogeneous. 
Let dGc(a, b) denote shortest distance along a great circle between two points 
a and b on the unit sphere. Define the "great circle" distance between x and 
P 

distac (x, P) = inf dGc -li 412' 
,EP  I1~1 " 

For  the first theorem we assume that ~c(x) is homogeneous of degree - I .  
This is the case for ~(A) = IIA- 111 (matrix inversion), ~c(A)= IISII" IIPII, S a reduced 
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resolvent and P a projector (eigenvectors), ~:(T)= IlP[l/sep(A, B) (eigenvectors), 
and x(p)= 1/]p'(x)l, p a polynomial with zero x (polynomial zero finding). Then 
we have 

Theorem 14. Let a problem x have condition number x(x)>0,  where ~: is homoge- 
neous of degree - 1  and has a continuous Fr~chet derivative Dx(x) almost every- 
where it is finite. Let P denote the set of x where x is infinite. Then (7.4a) 
and (7.4b) below are equivalent wherever D tc exists: 

30<m<_M such that m - K 2 ( x ) <  IIO~(x)ll <-M'xZ(x) (7.4a) 

3 0 < m < M s u c h t h a t m . x ( x ) < G e l ( x , x ) < M . x ( x  ) forall IIxll=l. (7.4b) 

In particular, when D tc is continuously differentiable and t1" I1 = N" H 2, the following 
three conditions are equivalent: 

~c 2 (x)  = II O ~ ( x )  ll 2, (7.5 a) 

~c(x) = Gel(~c, x) for all EIx[I 2 = 1, (7.5b) 

1 
= dist2 (x, P). (7.5 c) ~(x) 

Proof. (7.4a) can be converted into (7.4b) by multiplying through by Ilxll/x(x) 
and taking Hxll = 1. Given (7.4b), (7.4a) can be derived by substituting x/llxll 
for x, yielding inequalities true for all nonzero x, and using the fact that if 

is homogeneous of degree - l ,  Dx(x) is homogeneous of degree - 2 .  The 
equivalence of (7.5a) and (7.5b) follows from taking m = M = l  in (7.4a) and 
(7.4b). To show they imply (7.5c), use the arguments following Lemmas 1 and 
2 in Sect. 2. To show (7.5c) implies (7.5a) and (7.5b), just differentiate, q.e.d. 

For the second theorem assume that to(x) is homogeneous of degree 0. This 
is the case for tc(A)=(llPllZ-1) 1/2, P a projector (eigenvalues), and ~c(A,B,A) 
= lIXII- IIX- ~]b, (A, B) a control system to be assigned the poles A via state feed- 
back F: A + BF = X A X -  t 

Theorem 15. Let a problem x have condition number ~c (x)> O, where ~c is homoge- 
neous of degree 0 and has a continuous FrOchet derivative D tc (x) almost everywhere 
it is finite. Let P denote the set of x where x is infinite. Then (7.6a) and (7.6b) 
below are equivalent wherever D x exists: 

3 0 < m < M  suchthat m.~c2(x)<_llDx(x)ll<M.x2(x) forall IIxll=l, (7.6a) 

3 0 < m < M  suchthat m.tc(x)<Gel(~c,x)<M.~c(x). (7.6b) 

In particular, if DK is continuously differentiable and II" II---11"112, the following 
three conditions are equivalent: 

x2(x)= IIDx(x)ll2 for all Ilxl12 = 1, (7.7a) 

re(x) = Gel(K, x), (7.7 b) 

i x 
~ c ( x ) = d i s t a c ( ~ ,  P). (7.7c) 
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Proof (7.6a) can be converted into (7.6b) by substituting x/tlxll for x, yielding 
inequalities true for all x 4: 0, and using the fact that if ~: is homogeneous of 
degree 0, lID xll is homogeneous of degree - 1. Given (7.6b), (7.6a) can be derived 
by multiplying through by x(x) and taking Itxll = 1. The equivalence of (7.7a) 
and (7.7b) follows from setting re=M= 1 in (7.6a) and (7.6b). To derive (7.7c) 
from (7.7a, b) the argument is similar to that of the last theorem. The only 
difference is that since K is homogeneous of degree 0, D~c is orthogonal to 
x by Euler's theorem for homogeneous functions. Therefore integrating the vec- 
tor field defined by D x yields a curve lying on a sphere of constant radius. 
This is why we deal with shortest paths along great circles between points 
of unit norm. To show (7.7c) implies (7.7a) and (7.7b), just differentiate, q.e.d. 

8. Connections with Newton's Method 

In this section we show that in case the function f which maps problems to 
solutions is scalar, the differential inequality (1.1) underlying our approach is 
nothing more than a restatement of Newton's method. Thus inequality (1.1), 
far from holding only coincidentally for the special problems considered here, 
actually holds locally (in a sufficiently small neighborhood of the set of ill-posed 
problems) for a quite general class of problems. When f maps between spaces 
of the same dimension greater than one, the relationship with Newton's method 
weakens but still holds to some extent. 

In the scalar case, we let f be a smooth function from the real numbers 
to the real numbers (or the complex numbers to the complex numbers), which 
we take as the solution to some problem (such as "evaluate f") .  As the condition 
number of the problem, we can take in principle any multiple of the derivative 
o f f ,  but the one which will turn out to satisfy the differential inequalities (1.1) 
is the absolute condition number Xabs(X ) -  If'(x)/f(x)[, the instantaneous relative 
change in the output per absolute change in the input. (We want to measure 
the absolute distance from the input to the nearst ill-posed input, so this condi- 
tion number turns out to work instead of Xre I(x) = If '  (X) x/f(x)], the instantaneous 
relative change in the output per relative change in the input.) The set of ill-posed 
problems is the set of x where ~(x)=f'(x)/f(x) is infinite. Since f is smooth, 
this is (in general) the set of zeros of f Following the paradigm used so far, 
if ]x'(x)I is close to x2(x), then 1/Ire(x)] should be a good approximation to 
the distance to the nearest ill-posed problem, i.e. zero o f f  Computing 

f"(x) f(x)-- (f'(x)) 2 
tc'(x) = (f(x)) 2 (8.1) 

we see that if x is close to a simple zero o f f  so that f(x) is small, then 

.,~ (f '(x)) 2 
Ix'(x)] ~ (f(x)) 2 =(K(x)) 2 

as required by the paradigm. Thus, an even better approximation to a zero 
o f f  should be 
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1 f(x) 
X - - - - = X  . . . .  

~(x) f '(x) 
which is Newton's  method. 

If f is smooth except for poles, then these poles are also ill-posed problems. 
In this case, just consider g =  l/f, so the poles o f f  are zeros of g. The condition 
number lg'/g[ of g is identical to the condition number  ]f'/f[ of f, so again 
we get Newton's  method, but now it converges to a pole instead of a zero. 

Examining a little more closely the condition that K'(x)~(x(x)) 2, we see 
that for this to be true (f'(x)) 2 has to dominate f (x) f"(x)  in the numerator  
of (8.1) above, or at the very least [f(x)f"(x)l<(f'(x)) 2. But this is just the 
condition that the Newton iteration contracts. For  letting g(x)=x-f(x)/ f ' (x)  
be the Newton iteration, we easily compute 

f(x) f"(x) g'(x)- 
f '(x)f '(x)" 

What, if instead of applying Newton to find a zero of f, we apply Newton 
to find a zero of 1/to(x)? The formula is easily seen to be 

1/to(x) f(x) 
X - - - - . . ~ _ X  

( f  (x)) 2 ] 

which under the same conditions as above (f(x) small so that 
If(x) f"(x)/(f'(x))Z[ < 1) is asymptotically the same as Newton applied to f(x). 

Thus, the property of condition number  being the reciprocal of distance 
to the nearest ill-posed problem is quite universal, holding locally for all simple 
zeros and poles. For  multiple zeros, it is easy to see you get a factor of the 
multiplicity of the zero/pole in the distance estimate from the paradigm, and 
this is just the usual modification to Newton for quadratic convergence to a 
multiple zero/pole. 

The situation is not quite so simple when f maps between higher dimensional 
spaces of equal dimension. As we will see, the steepest ascent direction for 
K is asymptotically (Df)r.f  whereas the Newton direction is (Df)-lf.  These 
two directions can be quite different, especially when Df is ill-conditioned. None- 
theless, we wilt show that asymptotically the paradigm supplies upper and lower 
bounds on the norm of the Newton correction. 

In order to make the calculations easier, we use the 2-norm for vectors 
and Frobenius norm for matrices. Letting x ( x ) -  = [4Df(x)lUHf(x)N, we compute 

[tr(Df)r'~--~iDf] IIDfll 2 (Df) r f 
D t ~ = - -  

I l f l l ' l l D / l l  I l f l l  2 I ID / I I  I l f l l "  

In the neighborhood of a zero of f ,  the second term dominates the first, yielding 

I1DKII ~ K  z I I (D f ) r  f l [  
I IDf l l  I l f l l  ' 
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It is easy to see that 
•2 ]l(Df) y fll  

I[Ofll I[Df ill <K2 [IOfll I[fl[ <•2 

so that according to our paradigm, provided x is close enough to a zero of 

f, 
1 $]fH IlDf [I ]](Df)-  1 ]l 
to-]lDfl]  <dist(x,  P ) <  H(Df)-~[I II(Df)-1H Ilfll = tr 

The norm of the Newton correction is bracketed by these bounds as expected: 

Hfll 
<-II(Df)-afll < ( O f ) - 1  [] IIfll- IIDfll 

Thus, the reciprocal of the condition number  provides an asymptotic lower 
bound on the distance, and can underestimate the distance by a factor of at 
most  IlOfll Ib(Of) -1 II. 

9. Algebraic Functions 

In this section we show that in a neighborhood of a branch point of any algebraic 
function, we expect the distance to the branch point to be at least a multiple 
of the square of the reciprocal of the condition number. As in the last section, 
for utterly general functions the most  we can prove is that this relationship 
holds in a neighborhood of a branch point, not globally. That  such a relationship 
holds globally for eigenproblems and polynomial  zero finding depends on 
exploiting the special structure of these problems. 

We define an algebraic function as a root 2 of the following equation: 

0 =  ~ pi(x) )J-P(p,).  (8.1) 
i=0  

Here n must be at least two for there to be a branch, pi(x) is a scalar function 

of the vector variable x. By P(z~) we mean ~ zz 2 i where z / is  any subscripted 
i=0  ~ ,  

quantity (scalar, vector, or matrix). Analogously, we let P' (z~) denote z~ i 2 ~ - 1. 
i = l  

If 2 is a particular simple root of (8.1), then we can compute the derivative 
D2 of 2 with respect to x by linearizing as follows: 

0= ~" (;~+~2)~p~(x+6x) 
i=0  

= P(pi) + P' (p,) 6 2 + P(Dp,) 6 x + O(II6 xII 2). 

Using the fact that P (p l )=0  we solve for 62 and get 

-P(Dpl)  
6 2 -  6x 

P' (Pl) 
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o r  

leading us to define 

--P(Dp,) 
D 2 -  

P'(Pi) 

K(x, 2)--]lD2}l- 
IPP(Dpi)IP 

IP'(pi)] " 

This condition number can be infinite only when P'(pi)=0. When pi(x)=xi, 
i.e. we have a simple polynomial with coefficients xi (the situation analyzed 
in Sect. 5), this condition P'(p~)=0 is the usual condition for a double root. 
In xz space, the set of points where P'(PO vanishes forms a branch surface rather 
than branch point. The important thing to notice is that since the pz are smooth, 
~(x, 2) is essentially a multiple of 1/]P' (pl)] in a neighborhood of a branch surface 
(barring accidental cancellation in the numerator of K(x, 2). 

To compute DK we proceed as above by linearing ~:(x+6x, 2+62).  The 
result of this rather tedious calculation is 

= (P(Dpi))* P(DDpi) 
IIDK[I P(Dpi) IP'(p31 

(P(Dpl))* (P'(Dpi)) T P(Dpl) HP(Dp,)H P'(Dp,) 
IIP(Dp,)II IP'(p,)[ P'(p,) IP'(p~)J P'(p,) 

]]P(Dpl)][ P"(pi) ~ ( D p l )  ] 
IP'(p3l P' (Pi) g (Pl) " 

As with • itself, the only factors which contribute to ]]D~]] going to infinity 
are the P'(Pl) in the denominators. The first term has one, the second two 
terms have two, and the last term has three factors of P'(pi) in the denominator. 
Thus we expect IIDK[I to grow to infinity no faster than the third power of 
~:, and barring accidental cancellation in the numerator of the third term, it 
will grow this fast. Applying Lemma 2 in Sect. 2 with fl = 3, we see that a lower 
bound on the distance to the nearest ill-posed problem will be proportional 
to the reciprocal of the square of the condition number. 

Looking back to the Sect. 4 and 5 on eigenvalue problems and polynomial 
zero finding we see this square dependence exhibited. In Sect. 5 it was explicit 
in Theorem 12 and its Corollary 1, which supplied lower bounds on the distance 
to the nearest polynomial with multiple roots as a multiple of the square of 
the condition number. In Sect. 4 one must look somewhat closer. The condition 
number for an eigenvalue 2 was computed to be the norm of its associated 
projector IIPt[. A lower bound on the distance was computed to be proportional 
to sep/llpl] (sep and IlPll are defined in Sect. 4). At first glance, the lower bound 
does not appear to be the reciprocal of the square of the condition number, 
no matter how big ]tPlr is. In this case, the sufficiently small neighborhood 
of the set of ill-posed problems where this behavior occurs is the set where 
IIPII assumes its maximum value, which is proportional to 1/sep. In this neighbor- 
hood the condition number behaves like 1/sep and the lower bound like sep 2, 
as expected. 
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Finally, note that we did not need to assume that the Pi were actually polyno- 
mial functions of x, just that they were smooth. Thus the results of this section 
apply to a larger class of problems than just algebraic functions. 

10. Extensions 

In [9] Kahan  relates the condition number  and the distance to the nearest 
ill-posed problem for several problems of numerical analysis. In that paper  he 
also observed that if one had an ill-posed problem, then by restricting it to 
lie within the set P of ill-posed problems it often became well-posed again 
in the sense that i fx  and x + 6 x  were both in P and 6x were small, the difference 
between the solution at x and the solution at x + 6 x  would also be small. It 
would remain well-posed until it approached a subset P~ of P,, where it again 
become ill-posed. Restricted to lie within P1, however, it again became well-posed 
until it approached a further subset P2, and so on. 

For  example, computing the pseudo-inverse T + of a matrix T is equivalent 
to matrix inversion for square, nonsingular matrices, in which case the relative 
condition number  of T for pseudo-inversion can be written as ol /~, ,  where 
ai > . . .  > a.  are the singular values of T. The distance to the set P1 of singular 
matrices in the tl "IIv norm is a., and as it approaches zero, the condition number  
a l /~ ,  approaches infinity. If a ,  is exactly zero, the pseudo-inverse is well defined, 
and as long as T is restricted to have rank n -  1 (or, = 0, or,_ 1 :t = 0), the condition 
number  of its pseudo-inverse is o-l/a,_ 1, where ~,_ 1 is the distance to the nearest 
matrix of rank n - 2 .  So as T approaches the subset P2 of rank n - -2  matrices, 
its condition number  again becomes infinite. If T is restricted to have rank n -  2, 
its condition number  becomes a i/o-,_ 3, which remains finite until T approaches 
the set P3 of matrices of rank n -  3, and so on. 

In the course of establishing the results of the last paragraph,  Kahan  [9] 
also showed that if ~ ( T ) =  Ib T+ Jl, then 

limsup ~c(T+ 6 T) - ~c(T) = K2(T ) (10.1) 
6 T ~ O  116Tlk 

rank (T) = rank (T + 6 T) 

which is analogous to our differential inequalities (1.1). Using (10.1) as we did 
(1.1), one can find another proof  that the distance within the set of matrices 
T of constant rank k to the nearest one of rank k - 1  is 1/liT + ][ =r k. 

The hierarchy of sets of ill-posed problems P~ plays an important  role in 
numerical analysis because an ill-posed problem can often be regularized by 
restricting it to lie in a set P~. For  example, when solving rank deficient least 
squares problems one often regularizes by artificially forcing the smallest singular 
values to zero, thus solving a problem forced to lie in a set P~ [-5]. Similarly, 
when computing eigenvalues and eigenvectors one often computes the invariant 
subspace belonging to a cluster of eigenvalues because it can be much better 
conditioned than the individual eigenvectors which span it. This is an important  
technique when computing functions of matrices [-12]. 

In a future paper  we hope to extend the techniques of this paper  to estimating 
distances to hierarchical subsets P~ of other ill-posed problems. This should 
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lend further geometrical and numerical insight into the solution of ill-posed 
problems. 
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